Chapter 5 mock test questions

October 29, 2016

- 1. Define the following terms:
 - (a) Half-life
 - (b) Doubling time
 - (c) growth/decay rate
 - (d) $\log_b(y)$.
 - (e) Polynomial function
 - (f) Rational function

2. Multiple choice:

- (I) $10 \log_3(5) =$ (a) $\log_3(15)$ (b) $\log_3(5^{10})$ (c) $\log_3(50)$ (d) $\log_{30}(5)$ (II) $\log_3(x) + \log_3(20) =$ (a) $\log_3(x + 20)$ (b) $\log_3(20^x)$ (c) $\log_3(20x)$ (d) $\log_3(20x)$ (III) $3^{4 \log_3(x)} =$ (a) 4x(b) x^4 (c) 81x
 - (d) Cannot be reduced.

- 3. Find the equation of the line passing through the points (1,4) and (-2,-9)
- 4. Find the vertex of the parabola $y = -4x^2 + 12x + 40$ (Do it anyway you'd like.)
- 5. Solve for x (leave your answer in exact form. I.e., leave your answer in terms of logs, or radicals, etc.):
 - (a) $13 = 10^{2x}$
 - (b) $\log_5(3x+1) = 2$
 - (c) $\log_x(64) = 5$
 - (d) $\log_5(x+5) + \log_5(x+2) = 2$
 - (e) $3 \cdot 5^{2x} = 2^x$
 - (f) $3\log_2(x^{2/3}) = 4$
- 6. Suppose Fakium-123 is a radioactive isotope that has an exponential decay rate of 13% per year. Suppose you start with a sample of 150mg of Fakium-123.
 - (a) Find a formula, P(t), that tells you how much Fakium-123 you have after t many years. Hint, use the form $P(t) = P_0(1-r)^t$.
 - (b) How much Fakium-123 will remain after 13 years?
 - (c) Find the half-life of Fakium-123.
 - (d) Find the inverse of P(t).
 - (e) How long will it take until only $1/5^{th}$ of the original sample remains?
- 7. Suppose the population of a colony of deer is increasing exponentially. Suppose the deer population will double after 7 years.
 - (a) Find a formula, P(t) that tells you the population of the deer after t many years (Since you do not know the initial deer population, leave P_0 in your equation).
 - (b) What is the growth rate of the deer population (hint: Use a calculator for this part. Express the function in the form $P(t) = P_0(1+r)^t$).
 - (c) How long will it take for the population to triple?