Chapter 5 mock test questions

October 29, 2016

1. Define the following terms:
(a) Half-life
(b) Doubling time
(c) growth/decay rate
(d) $\log _{b}(y)$.
(e) Polynomial function
(f) Rational function
2. Multiple choice:
(I) $10 \log _{3}(5)=$
(a) $\log _{3}(15)$
(b) $\log _{3}\left(5^{10}\right)$
(c) $\log _{3}(50)$
(d) $\log _{30}(5)$
(II) $\log _{3}(x)+\log _{3}(20)=$
(a) $\log _{3}(x+20)$
(b) $\log _{3}\left(20^{x}\right)$
(c) $\log _{3}(20 / x)$
(d) $\log _{3}(20 x)$
(III) $3^{4 \log _{3}(x)}=$
(a) $4 x$
(b) x^{4}
(c) $81 x$
(d) Cannot be reduced.
3. Find the equation of the line passing through the points $(1,4)$ and $(-2,-9)$
4. Find the vertex of the parabola $y=-4 x^{2}+12 x+40$ (Do it anyway you'd like.)
5. Solve for x (leave your answer in exact form. I.e., leave your answer in terms of logs, or radicals, etc.):
(a) $13=10^{2 x}$
(b) $\log _{5}(3 x+1)=2$
(c) $\log _{x}(64)=5$
(d) $\log _{5}(x+5)+\log _{5}(x+2)=2$
(e) $3 \cdot 5^{2 x}=2^{x}$
(f) $3 \log _{2}\left(x^{2 / 3}\right)=4$
6. Suppose Fakium-123 is a radioactive isotope that has an exponential decay rate of 13% per year. Suppose you start with a sample of 150 mg of Fakium-123.
(a) Find a formula, $P(t)$, that tells you how much Fakium-123 you have after t many years. Hint, use the form $P(t)=P_{0}(1-r)^{t}$.
(b) How much Fakium-123 will remain after 13 years?
(c) Find the half-life of Fakium-123.
(d) Find the inverse of $P(t)$.
(e) How long will it take until only $1 / 5^{\text {th }}$ of the original sample remains?
7. Suppose the population of a colony of deer is increasing exponentially. Suppose the deer population will double after 7 years.
(a) Find a formula, $P(t)$ that tells you the population of the deer after t many years (Since you do not know the initial deer population, leave P_{0} in your equation).
(b) What is the growth rate of the deer population (hint: Use a calculator for this part. Express the function in the form $P(t)=$ $\left.P_{0}(1+r)^{t}\right)$.
(c) How long will it take for the population to triple?
