Solutions to ch 9, 10, and 11 practice problems

November 29, 2016

1. Look these up in the book if you do not know them by heart.

	θ	sine	cosine	tangent	secant	cosecant	cotangent
	330°	$\frac{-1}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{3}}$	$\frac{2}{\sqrt{3}}$	-2	$-\sqrt{3}$
	390°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	$\frac{2}{\sqrt{3}}$	2	$\sqrt{3}$
2.	480°	$\frac{\sqrt{3}}{2}$	$\frac{-1}{2}$	$-\sqrt{3}$	-2	$\frac{2}{\sqrt{3}}$	$-\frac{1}{\sqrt{3}}$
	$\frac{9\pi}{2}$	1	0	undef.	undef.	1	0
	-3π	0	-1	0	-1	undef.	undef.
	$\frac{-16\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{-1}{2}$	$-\sqrt{3}$	-2	$\frac{2}{\sqrt{3}}$	$-\frac{1}{\sqrt{3}}$

- 3. arc length $= s = 3\pi$.
- 4. $A = \frac{21\pi}{2}$.
- 5. Range of f: [-1, 1]. Range of g: [-1, 1], Range of h: the set of all real numbers.
- 6. $t = \pm \frac{3}{5}$.
- 7. $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, $\frac{8\pi}{3}$, $\frac{10\pi}{3}$.
- 8. $\sin(\theta) = \frac{-3}{\sqrt{10}}, \cos(\theta) = \frac{-1}{\sqrt{10}}.$
- 9. $\cos(\theta) = -\frac{\sqrt{8}}{9}$
- 10. $15\cos(71^\circ)$.

- 11. $\frac{-3\sqrt{2}}{2\cos(51^\circ)-\sqrt{2}}$ NOTE: I simplified this quite a bit, so your answer may look very different. To check if you got the right answer, type your answer into a calculator and see if its the same as mine.
- 12. General hints: use $\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$, $\sin^2(\theta) + \cos^2(\theta) = 1$. (Also, use $1 + \tan^2(\theta) = \sec^2(\theta)$ and $\sec(\theta) = \frac{1}{\cos(\theta)}$.
- 13. On the left hand side. Find a common denominator and add fractions.
- 14. use $\sec(\theta) = \frac{1}{\cos(\theta)}$, $\csc(\theta) = \frac{1}{\sin(\theta)}$ and the previous problem.
- 15. Domains of f and g are both [-1, 1], domain of h is the set of all real numbers. The range of f is $[0, \pi]$. The range of g is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. The range of h is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- 16. $\frac{-1}{2}, \frac{1}{2}, \frac{\sqrt{3}}{2}$
- 17. $\frac{-\pi}{6}, \frac{5\pi}{6}$
- 18. $\frac{t}{\sqrt{1-t^2}}$.
- 19. $\sqrt{1+t^2}$
- 20. period is 2, amplitude is 10. Range is [-11, 9]. Use Wolfram alpha to check your graph (Google wolfram alpha, or find the link to it on the course website under resources).
- 21. amplitude, period and range is the same as above. Use Wolfram alpha to check your graph.