Last Time \(p \) - prime \(\zeta = e^{2\pi i/p} \).

* If \(F \leq \mathbb{C} \) is any subfield, then \(F(\zeta)/F \) is cyclic Galois & \(G(F(\zeta)/F) \) is cyclic.

§ 16.11 Kümmer Extensions

Then let \(n \geq 1 \) and let \(F \leq \mathbb{C} \) be a subfield containing \(\zeta = e^{2\pi i/n} \). Suppose \(\alpha \in \mathbb{C} \) is s.t. \(\alpha^n = \alpha \in F \). Then \(F(\alpha)/F \) is Galois and \(G(F(\alpha)/F) \) is cyclic.

\[
\text{Pf: } F(\alpha) = \mathbb{Q}(\alpha, \zeta) = \mathbb{Q}(\alpha^2, e^{2\pi i/n}) / \mathbb{Q}(e^{2\pi i/n})
\]

not Galois, not Galois, Galois, Galois, Galois, \(q \neq p, q \neq n \).

\[
\text{Pf: } F(\alpha) \text{ is the splitting field for } x^n - \alpha \in F[x] \text{ (\(\zeta, \alpha, \zeta \alpha, -\), \(\zeta \alpha \in F(\alpha) \)) so } F(\alpha)/F \text{ is Galois.}
\]

Given \(\sigma \in G(F(\alpha)/F) \), \(\sigma \) is determined by

\[
\sigma(\alpha) \in \{ \alpha, \zeta \alpha, \ldots, \zeta^{n-1} \alpha \}.
\]

If \(\sigma_i(\alpha) = \zeta^i \alpha \) and \(\sigma_i \) fixes \(F \)

\(\sigma(\alpha) = \zeta^j \alpha \) then \(\sigma_i \sigma_j(\alpha) = \sigma_i(\zeta^j \alpha) = \zeta^i \zeta^j \alpha = \zeta^{i+j} \alpha \).

Thus we have an embedding \(G(F(\alpha)/F) \subseteq \mathbb{Z}/n\mathbb{Z} \)

\[
\sigma \mapsto i
\]

So \(G(F(\alpha)/F) \) is cyclic.
Solvable Groups

Def: A finite gp G is solvable if \exists a sequence of subgps

$$1 = G_0 < G_1 < \cdots < G_r = G$$

s.t. $G_i \triangleleft G_{i+1}$ for all i,

G_{i+1}/G_i is abelian for all i.

Ex - ① G abelian $\Rightarrow G$ solvable.

② S_4 is solvable.

$$1 < V < A_4 < S_4$$

$$\cong C_2 \times C_2 \cong C_3 \cong C_2$$

③ D_n is solvable.

$$1 < C_n^r < D_n$$

$$\cong C_n \cong C_2$$

④ A_n is not solvable for $n \geq 5$. (non-abelian, simple)

⑤ S_n (An only normal subgroup.)

Fact: Suppose F is a field & $f(x) = (x^{p_1} - a_1) \cdots (x^{p_n} - a_n)$ for some primes p_1, \ldots, p_n & $a_1, \ldots, a_n \in F$. Let K/F be the spl. field of f/F. Then $G(K/F)$ is solvable.
We have a chain:

\[F \subseteq F(\xi_1) \subseteq F(\xi_1, \xi_2) \subseteq \cdots \subseteq F(\xi_1, \cdots, \xi_n) \]

where \(\xi_i = e^{2\pi i/p_i} \) and \(\alpha_i = \alpha_i \). By Cyclotomic + Kummer theory, this gives a chain:

\[G(K_F) \supset G(K_{F(\xi_1)}) \supset \cdots \supset G(K_{F(\xi_1, \cdots, \xi_n)}) \supset \cdots \supset G(K_F) = 1 \]

with cyclic factors.

\[\S 16.12 \text{ Insolubility of Quintic} \]

Cardano Formula

\[f(x) = x^3 + px + q \Rightarrow z = \left(\frac{-9}{2} + \sqrt{\frac{9}{4} + \frac{p^3}{27}} \right) \]

Def Let \(F \subseteq C \) be a field. An extension of \(F \) by radicals is a chain of the form

\[F = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_r = K \]

where \(F_{i+1} = F_i(\alpha_i) \) for some \(\alpha_i \in \sigma \) with \(\alpha_i^{n_i} \in F_i \) for some \(n_i > 0 \). \(f(x) \in \mathbb{Q}[x] \) is solvable by radicals if \(F \) an ext. \(K \) of \(\mathbb{Q} \) by radicals st \(f(x) \) splits in \(K[x] \).
Theorem Suppose \(f(x) \in \mathbb{Q}[x] \) is solvable by radicals.

Let \(K \) be the splitting field of \(f(x) / \mathbb{Q} \).

Then \(G(K/\mathbb{Q}) \) is a solvable group.

Proof: Converse also true.

Let \(f(x) = x^5 - 16x + 2 \in \mathbb{Q}[x] \). We claim \(f(x) \) is not solvable by radicals. By calculus, \(f(x) \) has exactly 3 real roots. By Eisenstein @ 2, \(f(x) \) is irreducible. So if \(K \) is the splitting field of \(f(x) / \mathbb{Q} \), then \(5 \mid [K: \mathbb{Q}] \). \(G(K/\mathbb{Q}) \) embeds as a subgroup of \(S_5 \) (it permutes the 5 roots of \(f(x) \)). Since \(5 \mid |G(K/\mathbb{Q})| \), \(G(K/\mathbb{Q}) \) contains a 5-cycle. Also, since \(f \) has 2 non-real roots, complex conjugation yields a 2-cycle in \(G(K/\mathbb{Q}) \). But any subgroup of \(S_5 \) containing a 2-cycle & a 5-cycle is \(S_5 \) itself! So \(G(K/\mathbb{Q}) \cong S_5 \), which is not a solvable group. \(\) \(\)

Ex: \(f(x) = x^5 - 2 \in \mathbb{Q}[x] \) is solvable by radicals.

\(\mathbb{Q} \subseteq \mathbb{Q}(\zeta_5) \subseteq \mathbb{Q}(\zeta_5, 2^{1/5}) \).

\(\text{Gal}(\mathbb{Q}(\zeta_5, 2^{1/5})/\mathbb{Q}) \cong C_5 \times C_4 \), which is solvable.