Problem 1: [5 + 15 pts.] Let G be a group and let V be a nonzero G-module over some field k.
(a) Carefully state what it means for V to be “indecomposable”.
(b) Suppose V is irreducible. Prove that V is indecomposable.

Problem 2: [25 pts.] Let G be a finite group and let V be a finite-dimensional G-module over \mathbb{C}. The Reynolds operator $R : V \to V$ is defined by

$$R(v) := \frac{1}{|G|} \sum_{g \in G} g.v,$$

for all $v \in V$. Prove that R projects V onto the subspace $V^G \subseteq V$ of G-invariants:

$$V^G := \{v \in V : g.v = v \text{ for all } g \in G\}.$$

Problem 3: [25 pts.] Write down the character table of the product group $S_3 \times S_2$.

Problem 4: [25 pts.] Consider the additive group of integers $G = \mathbb{Z}$. Give an example of two complex matrix representations

$$R, S : \mathbb{Z} \to GL_2(\mathbb{C})$$

of \mathbb{Z} of dimension 2 such that we have an equality of characters

$$\chi_R = \chi_S,$$

but such that R and S are not isomorphic.