Problem 1: (Exercise 9.6 in Gallian) Let \(H = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in \mathbb{R} \right\} \). Is \(H \) a normal subgroup of \(GL(2, \mathbb{R}) \)?

Problem 2: (Exercise 9.22 in Gallian) Determine the order of \((\mathbb{Z} \oplus \mathbb{Z})/\langle (2, 2) \rangle \). Is this group cyclic?

Problem 3: Give an example of a group \(G \) and subgroups \(K < H < G \) such that \(K \triangleleft H \) and \(H \triangleleft G \) but \(K \) is not a normal subgroup of \(G \).

Problem 4: (Exercise 9.40 in Gallian) Let \(\phi : G \rightarrow H \) be an isomorphism of groups. Suppose that \(K \) is a normal subgroup of \(G \). Prove that \(\phi(K) \) is a normal subgroup of \(H \).

Problem 5: (Exercise 9.62 in Gallian) Let \(G \) be a group and let \(G' \) be the subgroup of \(G \) generated by the set of all elements of the form \(xyx^{-1}y^{-1} \), where \(x, y \in G \). (\(G' \) is called the \textit{commutator subgroup} of \(G \).)

1. Prove \(G' \) is normal in \(G \).
2. Prove \(G/G' \) is Abelian.
3. If \(N \triangleleft G \) and \(G/N \) is Abelian, prove that \(G' \leq N \).
4. Prove that if \(G' \leq H \leq G \), then \(H \) is normal in \(G \).

Problem 6: (Exercise 10.14 in Gallian) Prove that the mapping \(\phi : \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{10} \) given by \(\phi(x) = 3x \) is not a homomorphism.

Problem 7: If \(\phi : G \rightarrow H \) and \(\psi : H \rightarrow K \) are group homomorphisms, prove that \(\psi \circ \phi : G \rightarrow K \) is also a homomorphism.

Problem 8: (Exercise 10.26 in Gallian) Determine all homomorphisms from \(\mathbb{Z}_4 \) to \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \).

Problem 9: Let \(G \) and \(H \) be groups. Prove that the projection map \(\pi : G \oplus H \rightarrow G \) given by \(\pi(g, h) = g \) is a group homomorphism. Deduce that \(\{e\} \oplus H = \{(e, h) : h \in H\} \) is a normal subgroup of \(G \oplus H \) and \((G \oplus H) / \{(e) \oplus H\} \approx G \).