Math 184A Lecture 8 10/16/2017

Last Time * Set pts.

\[B(n) = \text{Bell number} = \#	ext{ of ptms of } [n] \]
\[S(n,k) = \text{Stirling # of } \text{ the 2nd kind} = \#	ext{ of ptms of } [n] \text{ into } k \text{ blocks} \]

Recursion \[S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k). \]

Fact We have \[B(n+1) = \sum_{i=0}^{n} \binom{n}{i} B(n-i). \]

Pf Given any set ptm \(T \) of \([n+1] \), erasing the blk \(B_0 \) of \(T \) containing \(n+1 \) gives a set ptm of a set of size \(n+1 - |B_0| \). This leads to \[B(n+1) = \sum_{S \subseteq [n]} B(n-1|S|) = \sum_{i=0}^{n} \binom{n}{i} B(n-i). \]

Application The number of surjective fnses \(f: [n] \to [k] \)
is \[k! \cdot \text{Stir}(n,k). \]

Pf \[\begin{array}{c}
[\sigma(1)] \quad 1

[\sigma(2)] \quad 2

[\sigma(k)] \quad k
\end{array} \]

A surj \(f: [n] \to [k] \) is determined by a k-blk set ptm \(\{B_1, \ldots, B_k\} \)
of \([n] \), and an permutation of \(\{B_1, \ldots, B_k\} \).

This gives \(\text{Stir}(n,k) \cdot k! \). Adios for \(\sigma \).
Application Let x be a variable. For $k > 0$ let

$$(x)_k \equiv x \cdot (x-1) \cdots (x-k+1).$$

We have $\bigcirc \quad x^n = \sum_{k=0}^{n} S(n,k) \cdot (x)_k.$

$$\begin{array}{ll}
E_{x} (n=3) & \quad 1 \\
x^3 & = S_0^{(3,0)} \cdot x^3 + S_1^{(3,1)} \cdot x + S_2^{(3,2)} \cdot x \cdot (x-1) \\
& \quad + S_3^{(3,3)} \cdot x \cdot (x-1) \cdot (x-2) \\
& = 3 \cdot x^3 - 3x^2 + x^3 - 3x^2 + 2x = x^3.
\end{array}$$

Since \bigcirc is a degree n polynomial identity, it suffices to check that \bigcirc is true for all positive integers x. Indeed, if $x \in \mathbb{N}_{\geq 0},$

$$x^n = \# \left\{ \text{functions } f : [n] \rightarrow [x] \right\}$$

$$= \sum_{T \subseteq [x]} \# \left\{ f : [n] \rightarrow [x] : \text{magee}(f) = T \right\}$$

$$= \sum_{T \subseteq [x]} |T| ! \cdot S_0^{(n,|T|)} = \sum_{k=0}^{n} S(n,k) = \sum_{k=0}^{n} \binom{x}{k} \cdot k! \cdot S(n,k) \quad \text{as desired.}$$
Integer Partitions

Let \(n \in \mathbb{Z}^+ \)

Def: A sequence \((a_1, \ldots, a_k) \) of positive ints is a partition of \(n \) if \(a_1 + \ldots + a_k = n \).

Ex: partitions of 6

\(6, 51, 42, 33, 411, 321, 222, 2211, 3111, 21111, 111111 \)

* Partitions may be represented by Ferrers diagrams

\[(4,4,2,1) \leftrightarrow \begin{array}{c}
4 \\
4 \\
2 \\
1 \\
\end{array} \]

Def: The partition number is \(p(n) = \# \text{ of (integer) partitions of } n \).

Also, \(\pi_k(n) = \# \text{ of partitions of } n \text{ into } k \text{ parts.} \)

\(\begin{align*}
\pi_1(6) &= 1 \\
\pi_2(6) &= 3 \\
\pi_3(6) &= 1 \\
\pi_4(6) &= 1 \\
\pi_5(6) &= 1 \\
\pi_6(6) &= 1
\end{align*} \)
Def Let λ be a partition of n. The conjugate λ' of λ is obtained by reflecting the Ferrers shape of λ across its main diagonal.

$\lambda = \begin{array}{ccc}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
\end{array}$

$\lambda' = \begin{array}{ccc}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
\end{array}$

(4 2 1) \quad (3 2 1 1)

Obs The map $\{\text{partitions of } n\} \rightarrow \{\text{partitions of } n\}$

$\lambda \mapsto \lambda'$

is a bijection (and an involution) $(\lambda')' = \lambda$.

Fact For any $n > 0$, $k > 0$:

\# of partitions of n with k parts = \# of partitions of n whose largest part has size k.

($\pi_k(n)$)

Why? \# of partitions of λ = size of largest part of λ', for any ptn λ.
