Problem 1: Give \mathbb{R} the standard topology and let \mathbb{R}/\mathbb{Q} be the quotient space obtained by identifying $\mathbb{Q} \subset \mathbb{R}$ to a point. Prove that \mathbb{R}/\mathbb{Q} is not Hausdorff.

Problem 2: Let $D^n = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_1^2 + \cdots + x_n^2 \leq 1\}$ denote the closed n-dimensional disc and let S^{n-1} be its boundary. Let D^n/S^{n-1} be the quotient space obtained by identifying S^{n-1} to a point. Exhibit a continuous bijection $f : D^n/S^{n-1} \rightarrow S^n$.

(Remark: Since D^n/S^{n-1} is compact and S^n is Hausdorff, any continuous bijection $D^n/S^{n-1} \rightarrow S^n$ is automatically a homeomorphism.)

Problem 3: Let \mathbb{R}_1 and \mathbb{R}_2 be two copies of the real line \mathbb{R} in the standard topology and consider the disjoint union topology on $\mathbb{R}_1 \sqcup \mathbb{R}_2$. Define an equivalence relation \sim on $\mathbb{R}_1 \sqcup \mathbb{R}_2$ by setting $x_1 \sim x_2$ for all $x \neq 0$, where x_i is the copy of x in \mathbb{R}_i for $i = 1, 2$. Let $X := (\mathbb{R}_1 \sqcup \mathbb{R}_2)/\sim$ be the resulting quotient space. X is called the “line with two origins”.

Prove that X is not Hausdorff.

Problem 4: Let X be the line with two origins from the last problem. Prove that, for every points $x \in X$, there is a neighborhood U of x which is homeomorphic to Euclidean space.

Problem 5:

(1) Prove that no two of $(0,1), [0,1)$, and $[0,1]$ are homeomorphic.

(2) Prove that \mathbb{R}^n is not homeomorphic to \mathbb{R} for $n > 1$.

In fact, \mathbb{R}^n is homeomorphic to \mathbb{R}^m if and only if $n = m$, but this is harder to prove.

Problem 6: Prove that an infinite set X is connected in the finite complement topology.

Problem 7: A space X is totally disconnected if its only connected components are singletons. Prove that discrete spaces are totally disconnected, but that the converse does not hold.

Problem 8: (Optional; requires some algebra.) Let R be a commutative ring with a $1 \neq 0$. Recall that a prime ideal $P \subset R$ is a proper ideal such that $xy \in P$ implies $x \in P$ or $y \in P$ for any $x, y \in R$. The prime spectrum of R is

$$\text{Spec}(R) := \{\text{all prime ideals } P \subset R\}.$$

This problem studies $\text{Spec}(R)$ as a topological space.

(1) For any subset $E \subseteq R$, let $V(E) \subseteq \text{Spec}(R)$ be given by

$$V(E) := \{P \in \text{Spec}(R) : E \subseteq P\}.$$
Prove that the sets \(\{ \mathbf{V}(E) : E \subseteq R \} \) define the closed sets for a topology on \(\text{Spec}(R) \). This is called the **Zariski topology** on \(\text{Spec}(R) \).

(2) Let \(R = \mathbb{Z} \) be the ring of integers. Describe \(\text{Spec}(\mathbb{Z}) \) (i.e., what are the points? What about the closed sets?)

(3) For any ring \(R \), the **maximal spectrum** of \(R \) is the subspace \(\text{mSpec}(R) \subseteq \text{Spec}(R) \) given by
\[
\text{mSpec}(R) := \{ M \subseteq R : M \text{ a maximal ideal} \}.
\]

Let \(R = \mathbb{C}[x_1, \ldots, x_n] \) be the polynomial ring in \(n \) variables with coefficients in \(\mathbb{C} \). Explain why \(\text{mSpec}(R) \) is ‘the same’ as the Zariski topology on \(\mathbb{C}^n \) explained in a previous optional problem. (Hint: **Hilbert’s Nullstellensatz** says that the maximal ideals in \(\mathbb{C}[x_1, \ldots, x_n] \) are precisely those of the form \(\langle x_1 - a_1, \ldots, x_n - a_n \rangle \), for \((a_1, \ldots, a_n) \in \mathbb{C}^n \). This gives a bijection between \(\text{mSpec}(R) \) and \(\mathbb{C}^n \).

(4) Let \(R \) and \(S \) be rings. Prove that \(\text{Spec}(R \oplus S) \) is homeomorphic to the disjoint union \(\text{Spec}(R) \amalg \text{Spec}(S) \).

(5) Let \(\varphi : R \rightarrow S \) be a homomorphism of rings sending \(1_R \) to \(1_S \). Explain how \(\varphi \) induces a continuous map
\[
\varphi^\# : \text{Spec}(S) \longrightarrow \text{Spec}(R).
\]

(Note the direction of the arrow! In jargon, \(\text{Spec}(\cdot) \) is a contravariant functor from the category of rings to the category of topological spaces. In fact, the space \(\text{Spec}(R) \) can be augmented with a ‘structure sheaf’ \(O_{\text{Spec}(R)} \) to give it the structure of a scheme. Then \(\text{Spec}(\cdot) \) is a contravariant functor from the category of rings to the category of schemes.)