Math 190: Winter 2016
Homework 7
Due 5:00pm on Wednesday 3/2/2016

Problem 1: Let \(X \) be a compact Hausdorff space. Prove that \(X \) is regular. That is, one-point sets are closed in \(X \) and

given \(x \in X \) and a closed set \(A \subset X \) such that \(x \notin A \), we have disjoint open sets \(U \) and \(V \) such that \(x \in U \) and \(A \subset V \).

Problem 2: Let \(X \) be the ‘\(\theta \)-space’:

\[
X = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \cup \{(x,0) : -1 \leq x \leq 1\}.
\]

Prove that \(X \) is not homeomorphic to \(S^1 \).

Problem 3: Suppose \(X \) is locally path connected. Show that every open connected set in \(X \) is path connected.

Problem 4: Let \(X \) be an order topology in which every closed interval is compact. Show that \(X \) has the least upper bound property. (That is, every nonempty subset \(S \subseteq X \) which is bounded above has a least upper bound.)

Problem 5: Prove that \([0,1]\) is not limit point compact as a subspace of \(\mathbb{R}_\ell \).

Problem 6: Let \(f : X \to Y \) be a continuous function. If \(X \) is locally compact, is \(f(X) \) necessarily locally compact?

Problem 7: Let \(P^n \) denote \(n \)-dimensional real projective space. Prove that \(P^n \) is homeomorphic to \(D^n/\sim \), where we declare \(x \sim -x \) whenever \(x \in S^{n-1} \subset D^n \).

Problem 8: Let \(M \) be the Möbius strip and let \(D = D^2 \) be the 2-dimensional disc. Prove that the quotient space \(X = (M \amalg D)/\sim \) obtained by gluing the boundary circle of \(M \) to the boundary circle of \(D \) is homeomorphic to 2-dimensional projective space \(P^2 \). (Constructing the actual maps is tedious here. Intuitive ‘cut and paste’ arguments are acceptable. Hint: Consider the ‘arctic and antarctic’ circles on \(S^2 \).)