Problem 1: Prove that the one-point compactification of \mathbb{R}^n is homeomorphic to S^n.

Solution: We know that \mathbb{R}^n is a locally compact Hausdorff space (which is not compact) and that S^n is a compact Hausdorff space. By the uniqueness of the one-point compactification, it is enough to show that there is a subspace X of S^n such that $S^n - X$ is a single point and X is homeomorphic to \mathbb{R}^n. But we know that $X = S^n - \{N\}$, where $N = (1,0,\ldots,0)$ is such a subspace (where the homeomorphism with \mathbb{R}^n is afforded by stereographic projection).

Problem 2: Prove that the one-point compactification of S_Ω is homeomorphic to S_Ω.

Solution: Both of the spaces S_Ω and $\overline{S_\Omega}$ are order topologies, and hence Hausdorff. The sets S_Ω and $\overline{S_\Omega}$ are both well orders. In particular, they have the least upper bound property. If $a_0 \in S_\Omega$ is the smallest element, we have that $S_\Omega = [a_0, \Omega]$ is compact. If $x \in S_\Omega$ and $x < y < \Omega$, we have that $x \in [a_0, y) \subset [a_0, y]$ with $[a_0, y]$ compact, so that S_Ω is locally compact. Finally, we have that $\overline{S_\Omega} - S_\Omega = \{\Omega\}$ is a single point. By the uniqueness of the one-point compactification of a locally compact Hausdorff space, it follows that the one-point compactification of S_Ω is homeomorphic to $\overline{S_\Omega}$.

Problem 3: Let (X,d) be a metric space and assume that X has a countable dense subset (i.e., X is separable). Prove that X is second-countable.

Solution: Let $D = \{x_1, x_2, \ldots\}$ be a countable dense subset of X and let $B := \{B_d(x_n, 1/m) : n, m \in \mathbb{Z}_{>0}\}$.

Then B is a countable collection of open sets in X.

We claim that B is a basis for the topology of X. To see this, let $U \subset X$ be open and let $y \in U$. It is enough to show that there exists $B \in B$ such that $y \in B \subset U$. Indeed, let $0 < \epsilon < 1$ be such that $B_d(y, \epsilon) \subset U$. Since D is dense, there exists $n \in \mathbb{Z}_{>0}$ such that $x_n \in B_d(y, \epsilon/4)$. Choose $m \in \mathbb{Z}_{>0}$ so that $\epsilon/4 < 1/m < \epsilon/2$. Since $\epsilon/4 < 1/m$, we have that $y \in B_d(x_n, 1/m)$. On the other hand, if $z \in B_d(x_n, 1/m)$, we have that $d(y, z) \leq d(y, x_n) + d(x_n, z) < \epsilon/4 + 1/m < 3\epsilon/4 < \epsilon$. It follows that $y \in B_d(x_n, 1/m) \subset B_d(y, \epsilon) \subset U$, so that B is a countable basis for the topology on X and X is second-countable.

Problem 4: Suppose X is a second-countable space and $A \subset X$ is an uncountable subset. Prove that uncountably many points in A are limit points of A.

Solution: Let $B = \{B_1, B_2, \ldots\}$ be a countable basis for the topology on X. We define a function $\varphi : (A - A') \rightarrow \mathbb{Z}_{>0}$.
as follows. For any \(a \in (A - A') \), there exists a basic open set \(B_{n_a} \) such that \(A \cap B_{n_a} = \{a\} \). Choose one such \(n_a \) and set \(\varphi(a) := n_a \). We claim that \(\varphi \) is an injection. Indeed, for \(a_1 \neq a_2 \) in \(A - A' \), we have that \(A \cap B_{\varphi(a_1)} = \{a\} \neq \{a'\} = A \cap B_{\varphi(a')} \). The injectivity of \(\varphi \) implies that \(A - A' \) is countable. Since \(A \) is uncountable, this forces \(A' \) to be uncountable.

Problem 5: Which of the four countability axioms (first-countable, second-countable, Lindelöf, separable) does \(S_\Omega \) satisfy? What about \(\overline{S_\Omega} \)?

Solution: We claim that \(S_\Omega \) is not separable. Indeed, if \(A \subset S_\Omega \) is countable, then there is an upper bound \(b \) for \(A \). Choosing \(b' > b \), we get that \((b, \infty) \) is a neighborhood of \(b' \) which does not meet \(A \). Thus, \(b' \notin \overline{A} \). It follows that \(S_\Omega \) is also not second-countable.

\(S_\Omega \) is first-countable. Indeed, for any \(x \in S_\Omega \), let \(x' \) be the immediate successor of \(x \). Provided \(x \neq a_0 \), we have that \(\{(z, x') : z < x\} \) is a countable basis at \(x \). If \(x = a_0 \), then \(\{(x, x')\} \) is a singleton basis at \(x \).

We claim that \(\overline{S_\Omega} \) is not first-countable. Indeed, there does not exist a countable basis at \(\Omega \). If \(\{B_1, B_2, \ldots\} \) were such a basis, for all \(n \geq 0 \) there would be \(x_n \in S_\Omega \) such that \((x_n, \Omega) \subset B_n \). Let \(b \) be an upper bound in \(S_\Omega \) of the countable set \(\{x_1, x_2, \ldots\} \) and let \(b' \) be the immediate successor of \(b \). Then \((b', \Omega) \) is a neighborhood of \(\Omega \) containing none of the \(B_n \). This completes the proof that \(\overline{S_\Omega} \) is not first-countable. It follows that \(\overline{S_\Omega} \) also fails to be second-countable.

\(\overline{S_\Omega} \) is not separable. If \(A \subset \overline{S_\Omega} \) is countable, let \(b \in S_\Omega \) be an upper bound for \(A \cap S_\Omega \). If \(b' \) is the immediate successor of \(b \), we get that \((b, \Omega) \) is a neighborhood of \(b' \) which does not meet \(A \). Therefore, \(b' \notin \overline{A} \).

\(\overline{S_\Omega} \) is Lindelöf. To see this, let \(U \) be an open cover of \(\overline{S_\Omega} \). There exists \(U \in \mathcal{U} \) such that \(\Omega \in U \). Choose \(x \in S_\Omega \) such that \((x, \Omega) \subset U \). We have that \([a_0, x) \) is countable. Write \([a_0, x) = \{y_1, y_2, \ldots\} \). For every \(n \), there exists \(U_n \in \mathcal{U} \) such that \(y_n \in U_n \). Now \(\{U, U_1, U_2, \ldots\} \) is a countable subcover of \(\mathcal{U} \).

Problem 6: Let \(X \) be a regular space and let \(x, y \in X \) be distinct points. Prove that there exist neighborhoods \(U, V \) of \(x, y \) such that \(\overline{U} \cap \overline{V} = \emptyset \).

Solution: Since \(X \) is regular, \(X \) is Hausdorff. Choose neighborhoods \(U \) of \(x \) and \(V \) of \(y \) such that \(U \cap V = \emptyset \). Now \(X - W \) is a closed set with \(x \notin X - W \). By regularity, there is a neighborhood \(V \) of \(y \) and an open set \(V' \) containing \(X - W \) such that \(V \cap V' = \emptyset \). Now \(X - V' \) is a closed set with \(\overline{V} \subset X - V' \). In particular, we get that \(\overline{V} \subset X - V' \). On the other hand, we have \(\overline{U} \subset X - W \). But \((X - V') \cap (X - W) = \emptyset \), forcing \(\overline{U} \cap \overline{V} = \emptyset \).

Problem 7: Prove that every order topology is regular.

Solution: Let \(X \) be an order topology, let \(x \in X \), and let \(A \subset X \) be a closed set with \(x \notin A \).
Suppose x is the smallest element of X. If x' is the immediate successor of x, then
$[x, x')$ and (x, ∞) are disjoint neighborhoods of x and A, respectively. If x has no
immediate successor, choose $y > x$ such that $[x, y) \cap A = \emptyset$. Now choose $y' \in (x, y)$.
We have that $[x, y')$ and $(y'\infty)$ are disjoint neighborhoods of x and A, respectively.

If x is the largest element of X, we reason as in the previous paragraph, with the
order $<$ reversed.

If x is neither smallest nor largest, consider the closed subspaces $X_1 = (-\infty, x]$ and
$X_2 = [x, \infty)$ of X and let $A_i = X \cap X_i$ for $i = 1, 2$. Then A_i is closed in X_i and,
by the previous arguments, there exist neighborhoods U_i of A_i and V_i of x in X_i such
that $U_i \cap V_i = \emptyset$. We get that $U \cap V = \emptyset$, where $U = U_1 \cup U_2$ and $V = V_1 \cup V_2$. We
claim that U and V are open in X. Indeed, we have that V_1 is open in the open ray
$(-\infty, x)$ and V_2 is open in the open ray (x, ∞). Similarly, U contains an open interval
containing x and $U_i - \{x\}$ is open in X for $i = 1, 2$.