Problem 1: Recall that an \(n \times n \) real matrix \(A \) is called \emph{orthogonal} if \(AA^T = I_n \), where \(A^T \) is the transpose of \(A \) and \(I_n \) is the \(n \times n \) identity matrix. Prove that the orthogonal group
\[
O(n) := \{ A \in \text{Mat}_n(\mathbb{R}) : A \text{ is orthogonal} \}
\]
forms a closed subset of matrix space \(\text{Mat}_n(\mathbb{R}) \).

Problem 2: Let \(f : X \to Y \) be a continuous function between topological spaces. The \emph{graph} of \(f \) is the subspace \(\Gamma_f \subset X \times Y \) given by
\[
\Gamma_f := \{ (x, f(x)) : x \in X \}.
\]
Prove that \(X \) is homeomorphic to \(\Gamma_f \).

Problem 3: Let \(Y \) be an ordered set in the order topology and suppose that \(f, g : X \to Y \) are continuous functions (where \(X \) is some topological space).

1. Prove that \(\{ x \in X : f(x) \leq g(x) \} \) is closed in \(X \).
2. Prove that the function \(h : X \to Y \) given by \(h(x) := \min(f(x), g(x)) \) is continuous. (Hint: Pasting Lemma)

Problem 4: Let \(\mathbb{R}^\omega = \mathbb{R} \times \mathbb{R} \times \cdots \) be the set of all infinite sequences \((a_1, a_2, \ldots) \) of real numbers and let \(\mathbb{R}^\infty \subset \mathbb{R}^\omega \) be the set of sequences \((a_1, a_2, \ldots) \) that are \emph{eventually zero} (i.e., there exists \(N \) such that \(n \geq N \) implies \(a_n = 0 \)). Calculate the closure of \(\mathbb{R}^\infty \) inside \(\mathbb{R}^\omega \) if \(\mathbb{R}^\omega \) is given

1. the product topology, and
2. the box topology.

Problem 5: Look up “stereographic projection”. Let \(S^n \) be the \(n \)-sphere and let \(N := (1, 0, 0, \ldots, 0) \) be the ‘north pole’. Prove that \(\mathbb{R}^n \) is homeomorphic to \(S^n - \{ N \} \).

Problem 6: A subset \(D \) of a space \(X \) is called \emph{dense} if \(\overline{D} = X \). Let \(X \) and \(Y \) be spaces with \(Y \) Hausdorff. Let \(D \subset X \) be a dense subset. Let \(f, g : X \to Y \) be continuous functions such that \(f(x) = g(x) \) for all \(x \in D \). Prove that \(f = g \). Does this necessarily hold if \(Y \) is not Hausdorff?

Problem 7: Let \(J \) be a (possibly uncountable) set and endow \(\mathbb{R}^J \) with the product topology. Let \(f_n : J \to \mathbb{R} \) be a sequence in \(\mathbb{R}^J \) and let \(f : J \to \mathbb{R} \) be a point in \(\mathbb{R}^J \).
Prove that the following two conditions are equivalent:

1. We have \(f_n \to f \) in the product topology on \(\mathbb{R}^J \).
2. For each \(j \in J \), we have \(f_n(j) \to f(j) \) in \(\mathbb{R} \).
For this reason, the product topology is sometimes called “the topology of pointwise convergence”.

Problem 8: (Optional - not to be handed in.) A topological group is a group G which is also a topological space satisfying the T_1 axiom (i.e. singleton sets are closed) such that the maps $m : G \times G \to G$ and $i : G \to G$ given by $m(x,y) = x \cdot y$ and $i(x) = x^{-1}$ are continuous.

(1) Explain how the following objects are topological groups.
 (a) Euclidean space \mathbb{R}^n.
 (b) The set $GL_n(\mathbb{R})$ of invertible $n \times n$ real matrices.
 (c) The circle S^1.

(2) Let G be a topological group. Prove that the map $f : G \times G \to G$ given by $f(x,y) = x \cdot y^{-1}$ is continuous.

(3) Let G be a topological group and let H be a subgroup of G. Prove that both H and \overline{H} (i.e. the closure of H within G) are topological groups.

(4) Let G be a topological group. For a fixed $g \in G$, define a map $r_g : G \to G$ by $r_g(x) = g \cdot x$. Prove that r_g is a homeomorphism. (This means that G “looks the same” near any point. That is, G is a “homogeneous” space.)

(5) What should a morphism in the Category of Topological Groups be?