
Math 190: Quotient Topology Supplement

1. Introduction

The purpose of this document is to give an introduction to the quotient
topology. The quotient topology is one of the most ubiquitous constructions in
algebraic, combinatorial, and differential topology. It is also among the most
difficult concepts in point-set topology to master. Hopefully these notes will
assist you on your journey.

Let X be a topological space. The idea is that we want to glue together
points of X to obtain a new topological space. For example, if X = I2 is the
unit square, glueing together opposite ends of X (with the same orientation)
‘should’ produce the torus S1 × S1. To encapsulate the (set-theoretic) idea of
glueing, let us recall the definition of an equivalence relation on a set.

2. Equivalence Relations

Definition 2.1. Let X be a set. An equivalence relation ∼ on X is a binary
relation on X such that

• for all x ∈ X we have x ∼ x,
• for all x, y ∈ X we have that x ∼ y if and only if y ∼ x, and
• if x ∼ y and y ∼ z, then x ∼ z for all x, y, z ∈ X.

Given x ∈ X, the equivalence class [x] of X is the subset of X given by

[x] := {y ∈ X : x ∼ y}.
We let X/ ∼ denote the set of all equivalence classes:

(X/ ∼) := {[x] : x ∈ X}.

Let’s look at a few examples of equivalence classes on sets.

Example 2.2. Let X = R be the set of real numbers. Define a relation ∼
on X by x ∼ y if and only if x − y ∈ Z. Check that this is an equivalence
relation! Given x ∈ R, the equivalence class [x] is

[x] = {. . . , x− 2, x− 1, x, x+ 1, x+ 2, . . . }.

Example 2.3. Let X be any set and let A ⊂ X. Define a relation ∼ on X by
x ∼ y if x = y or x, y ∈ A. This is an equivalence relation. The equivalence
classes are given by

[x] =

{
A if x ∈ A,

{x} if x /∈ A.

This equivalence relation ‘identifies A to a point’.
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Example 2.4. Let X = [0, 1]2 be the unit square. We want to identify
opposite sides of [0, 1]2 while preserving orientation. To do this, we declare{

(x, 0) ∼ (x, 1) for 0 ≤ x ≤ 1,

(0, y) ∼ (1, y) for 0 ≤ y ≤ 1.

This declaration generates an equivalence relation on [0, 1]2. The equivalence
classes are given by

[(x, y)] = {(x, y)} for 0 < x, y < 1,

[(x, 0)] = {(x, 0), (x, 1)} for 0 < x < 1,

[0, y)] = {(0, y), (1, y)} for 0 < y < 1,

[(0, 0)] = {(0, 0), (0, 1), (1, 0), (1, 1)}.
Pictorially, the points in the interior of the square are singleton equivalence
classes, the points on the edges get identified, and the four corners of the
square are identified.

Recall that on the first day of class I talked about glueing sides of [0, 1]2

together to get geometric objects (cylinder, torus, Möbius strip, Klein bottle,
real projective space). What are the equivalence relations and equivalence
classes for these identifications? (The last example handled the case of the
torus.)

One final remark about equivalence relations. Let X be any set and let
∼ be any equivalence relation on X. We have a canonical surjective map
π : X → X/ ∼ defined by

π : x 7→ [x].

That is, π sends any element to its equivalence class.

3. The Quotient Topology: Definition

Thus far we’ve only talked about sets. We want to talk about spaces. Let
X be a topological space and let ∼ be an equivalence relation on X. Then
(X/ ∼) is a set of equivalence classes. We want to topologize this set in a
fashion consistent with our intuition of glueing together points of X. The
gadget for doing this is as follows.

Definition 3.1. Let X be a topological space, let ∼ be an equivalence relation
on X, and let X/ ∼ be the corresponding set of equivalence classes. The
quotient topology on X/ ∼ has open sets defined as follows. We declare
U ⊂ (X/ ∼) to be open if and only if the union⋃

[x]∈U

[x] ⊂ X
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is open in X.
(Observe that U is a collection of equivalence classes of X (and in particular

a collection of subsets of X), so that the above union makes sense and really
is a subset of X.)

Our first task is to show that this is actually a topology on X/ ∼. This
boils down to some set theoretic facts about equivalence classes.

Proposition 3.2. The definition above gives a topology on X/ ∼.

Proof. We have that ⋃
[x]∈(X/∼)

[x] = X,

which is open in X, so that X/ ∼ is open in X/ ∼. Moreover, we have that⋃
[x]∈∅

[x] = ∅,

which is open in X, so that ∅ is open in X/ ∼.
Let {Uα} be an arbitrary nonempty collection of open sets in X/ ∼. Then⋃

[x]∈
⋃
α Uα

[x] =
⋃
α

( ⋃
x∈Uα

[x]

)
.

For any α, we have that
⋃

[x]∈Uα [x] is open in X. Since X is a topological

space, we conclude that
⋃
α

(⋃
x∈Uα [x]

)
is also open in X. Therefore, we have

that
⋃
α Uα is open in X/ ∼.

Let {U1, . . . , Un} be a finite collection of open sets in X/ ∼. Then⋃
x∈

⋂n
i=1 Ui

[x] =
n⋂
i=1

(⋃
x∈Ui

[x]

)
.

For all 1 ≤ i ≤ n, we have that
⋃

[x]∈Ui [x] is open in X. Since X is a topological

space, we conclude that
⋂n
i=1

(⋃
x∈Ui [x]

)
is also open in X. Therefore, we have

that
⋂n
i=1 Ui is open in X/ ∼. We conclude that the collection of open sets

defined above actually gives a topology on X/ ∼. �

At this point, the quotient topology is a somewhat mysterious object. Just
knowing the open sets in a topological space can make the space itself seem
rather inscrutable. However, we can prove the following result about the
canonical map π : X → X/ ∼ introduced in the last section.

Proposition 3.3. Let X be a topological space and let ∼ be an equivalence
relation on X. Endow the set X/ ∼ with the quotient topology. The canonical
surjection π : X → X/ ∼ given by π : x 7→ [x] is continuous.
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Proof. Let U ⊂ X/ ∼ be an open set. Then U is a union of equivalence
classes in X/ ∼ such that the union

⋃
[x]∈U [x] is open in X. But we have

π−1(U) =
⋃

[x]∈U [x]. �

The proof of the last proposition was easy. The definition of the quotient
topology made it so.

4. Functions on Equivalence Classes

Okay, so we have a topology on X/ ∼. However, this is not enough for
our purposes. We want to (for example) identify the quotients coming from
identifying opposite sides of [0, 1]2 with the cylinder, the torus, etc. In general,
we want an effective way to prove that a given (at this point mysterious)
quotient X/ ∼ is homeomorphic to a (known and loved) topological space
Y . This means that we need to find mutually inverse continuous maps from
X/ ∼ to Y and vice versa. In particular, we need to construct a function
f : (X/ ∼)→ Y . Let’s talk about this first on the level of sets.

If one wants to define a function f : (X/ ∼) → Y , one will typically write
down some formula for f([x]) based on a representative x for the equivalence
class [x]. For example, let X = R and define ∼ on X by x ∼ y if and only if
y − x ∈ Z. We could try to define f : (R/ ∼)→ S1 by

f([x]) = eπix.

But there is a problem here. Since 0 ∼ 1, we have that [0] = [1]. However the
right hand side of the above formula gives eπi∗0 = 1 6= −1 = eπi∗1. Therefore,
the above “function” is not well-defined. On the other hand, we could define
g : (R/ ∼)→ S1 by

g([x]) = e4πix.

Then if x ∼ y, we have that y − x ∈ Z, so that

e4πix = 1 ∗ e4πix = e4πi(y−x)e4πix = e4πiy.

It follows that g is a well-defined function.
The following proposition, whose proof is standard, encapsulates the ideas

in the last paragraph.

Proposition 4.1. Let X and Y be sets and let ∼ be an equivalence relation on
X. Let f : X → Y be a function with the property that f(x) = f(x′) whenever
x ∼ x′ in X. Let π : X → X/ ∼ be the canonical surjection

π : x 7→ [x]

which sends every element to its equivalence class. There exists a unique func-
tion f : (X/ ∼)→ Y satisfying

f = f ◦ π.
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Moreover, we have that
f([x]) = f(x)

for any [x] ∈ (X/ ∼).

Proof. If such a function f exists, the relation f = f ◦ π forces

f(x) = f ◦ π(x) = f([x])

for any x ∈ X. The uniqueness of f follows.
For the existence of f , given [x] ∈ (X/ ∼), let x′ be any representative of

[x]. Set f([x]) := f(x′). The assumption on f makes this choice independent
of the choice of x′. �

5. The Universal Property of the Quotient Topology

It’s time to boost the material in the last section from sets to topological
spaces. The following result is the most important tool for working with
quotient topologies.

Theorem 5.1. (The Universal Property of the Quotient Topology) Let X
be a topological space and let ∼ be an equivalence relation on X. Endow the
set X/ ∼ with the quotient topology and let π : X → X/ ∼ be the canonical
surjection.

Let Y be another topological space and let f : X → Y be a continuous
function with the property that f(x) = f(x′) whenever x ∼ x′ in X. There
exists a unique continuous function f : (X/ ∼)→ Y such that

f = f ◦ π.

Proof. We already know that there exists a unique function f : (X/ ∼) → Y
such that f = f◦π and that this function is given by the formula f([x]) = f(x).
We only need to check that f is actually continuous.

Let U ⊂ Y be an open set. Since f is continuous, we know that f−1(U) ⊂
X is open. Since f(x) = f(x′) whenever x ∼ x′ in X, we also know that
f−1(U) =

⋃
x∈f−1(U)[x] is a union of equivalence classes in X. Since⋃

[x]∈f−1
(U)

[x] =
⋃

x∈f−1(U)

[x] = f−1(U)

is an open subset of X, it follows that f
−1

(U) is an open subset of X/ ∼. We
conclude that f is a continuous function. �

The name ‘Universal Property’ stems from the following exercise. Morally,
it says that the behavior with respect to maps described above completely
characterizes the quotient topology on X/ ∼ (or, more correctly, the triple
(X,X/ ∼, π) where π : X → X/ ∼ is the canonical projection).
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Problem 5.2. Let X be a topological space, let ∼ be an equivalence relation
on X, and let T be a topology on the set X/ ∼ which satisfies the following
property.

The canonical surjection π : X → X/ ∼ is continuous (with
respect to T ).

Moreover, for any topological space Y and any continuous
map f : X → Y such that f(x) = f(x′) whenever x ∼ x′ in
X, there exists a unique continuous map f : (X/ ∼)→ Y such
that f = f ◦ π.

Then T is the quotient topology on X/ ∼.

Alright, how does this actually work in practice? Let’s consider the following
problem.

Problem 5.3. Endow X = R with the standard topology. Define an equiva-
lence relation ∼ on R by x ∼ y if and only if x − y ∈ Z. Prove that R/ ∼ is
homeomorphic to Y = S1 (with the standard topology).

This problem is a typical situation. We have a space that is known and
loved (namely R), we have an equivalence relation on it, and we have to show
that the resulting quotient is homeomorphic to another known and loved space
(namely S1). Here is the basic program for doing this.

(1) Find a candidate continuous function f̃ : X → Y .

(2) Prove that f̃(x) = f̃(x′) whenever x ∼ x′ in X. Then the function
f : (X/ ∼)→ Y defined by

f([x]) = f̃(x)

is well defined. The Universal Property of the Quotient Topology guar-
antees that f is continuous.

(3) Find a candidiate inverse continuous function g : Y → (X/ ∼).
(4) Prove that f ◦ g = idY and g ◦ f = idX .

Here is how we perform this task in the context of the above problem. (As
usual, we identify S1 = {z ∈ C : |z| = 1} with a subset of the complex plane.

(1) Define f̃ : R→ S1 by

f̃(t) = e2πit.

Then f̃ is continuous (from our knowledge of calculus) as a map be-
tween Euclidean spaces.

(2) Suppose t ∼ t′ in R. Then t′ − t ∈ Z. It follows that

f̃(t) = e2πit = e2πi(t
′−t)e2πit = e2πit

′
= f̃(t′).
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Therefore, the induced map f : (R/ ∼)→ S1 given by

f([t]) = e2πit

is well-defined and continuous.
(3) We define two subsets of S1 as follows:

A1 := {z ∈ S1 : I(z) ≥ 0}
A2 := {z ∈ S1 : I(z) ≤ 0}.

(Here I(z) denotes the imaginary part of a complex number z.) Ob-
serve that both A1 and A2 are closed in S1 and that S1 = A1 ∪ A2.
Moreover, we have that A1∩A2 = {±1}. We define functions g̃i : Ai →
R for i = 1, 2 as follows.

Given z ∈ A1, we can uniquely write z = e2πit for 0 ≤ t ≤ 1
2
. Define

g̃1 : A1 → R by g̃1(z) = t. Given z ∈ A2, we can uniquely write
z = e2πit

′
for some 1

2
≤ t′ ≤ 1. Define g̃2 : A2 → R by g̃2(z) = t′. Then

g̃1 and g̃2 are continuous functions by our knowledge of calculus. (N.B.:
The functions g̃1 and g̃2 do not agree on A1 ∩ A2, so do not paste to
give a well defined function S1 → R.)

Now define functions gi : Ai → (R/ ∼) for i = 1, 2 by gi = π ◦ g̃i.
Since π is continuous and g̃i is continuous, we have that gi is continuous.
Moreover, we have that g1(−1) = [1/2] = g2(−1) and g1(1) = [0] =
[1] = g2(1). Since g1 and g2 agree on A1 ∩ A2, the Pasting Lemma
implies that the function g : S1 → (R/ ∼) defined by g|A1 = g1 and
g|A2 = g2 is well defined and continuous. Observe that g(e2πit) = [t]
for any t ∈ R (as can be checked on A1 and A2).

(4) Let t ∈ R, so that [t] ∈ R/ ∼. We calculate

g ◦ f([t]) = g(e2πit) = [t].

Now let z ∈ S1 and write z = e2πit. We calculate

f ◦ g(z) = f ◦ g(e2πit) = f([t]) = e2πit = z.

It follows that f and g are mutually inverse continuous maps, so that
R/ ∼ and S1 are homeomorphic.

Let’s observe what just happened (for it is fairly typical).

In Step 1, we define a candidate function f̃ : X → Y out of the ‘numerator’
space X and into the target space Y . The continuity of f̃ will typically be
obvious from calculus.

In Step 2 we check that f̃ is constant on equivalence classes – a purely set
theoretic check! We appeal to the Universal Property to get that the induced
function f : (X/ ∼)→ Y is continuous.
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Step 3 typically requires the most ingenuity – the Pasting Lemma is not
infrequently applied here. Probably the most useful fact is that the quotient
map X → (X/ ∼) is continuous.

Step 4 is another set-theoretic check that the candidate inverse maps are
actually inverse to one another.

6. Quotient Maps

There is another way to introduce the quotient topology in terms of so-called
‘quotient maps’.

Definition 6.1. Let X and Y be topological spaces. A map g : X → Y is a
quotient map if g is surjective and for any set U ⊂ Y we have that U is open
in Y if and only if g−1(U) is open in X.

In particular, quotient maps are continuous. Moreover, if g : X → Y is a
quotient map, the topology on Y is completely determined by the function g
and the topology on X.

In general, it is not especially easy to identify quotient maps – even between
Euclidean spaces. For example, consider the subspace X ⊂ R2 given by

X = {(x, y) ∈ R2 : xy = 1} ∪ {(0, 0)}.

Define g : X → R by g(x, y) = x. Then g is surjective and continuous.
However, we have that g−1({0}) = {(0, 0)}, which is open in X. However, {0}
is not open in R. In particular, unlike the situation with continuous maps, you
can’t just say that a map between Euclidean spaces is a quotient map from
knowledge of calculus.

The relationship between quotient maps and the quotient topology is as
follows. The proof is a tautology.

Proposition 6.2. Let X be a topological space and let A be a set. Let g : X →
A be a surjective function. Define an equivalence relation ∼ on X by x ∼ x′

if and only if g(x) = g(x′). Then we can identify X/ ∼ with A via [x] 7→ g(x).
The quotient topology on X/ ∼ is the unique topology on X/ ∼ which turns g
into a quotient map.

Here is a criterion which is often useful for checking whether a given map
is a quotient map. If f : A → B is a map of sets, let us call a subset V ⊂ A
saturated (with respect to f) if whenever a ∈ V and f(a) = f(a′), we have
that a′ ∈ V .

Proposition 6.3. Let X and Y be topological spaces and let f : X → Y be
a surjective continuous function. Then f is a quotient map if and only if for
every saturated open set V ⊂ X, we have that f(V ) ⊂ Y is open.
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7. Problems

Problem 7.1. Let X = D2 = {(x, y) ∈ R2 : x2 + y2 ≤ 1} be the closed
unit disc (in the standard topology). Identify S1 with the boundary of D2.
Define an equivalence relation ∼ on D2 by declaring any two points on S1 to
be equivalent. The resulting quotient space D2/ ∼ is denoted D2/S1 (in slang,
we’re identifying S1 to a point). Prove that D2/S1 is homeomorphic to S2.

Problem 7.2. Let X = Dn = {(x1, . . . , xn) ∈ Rn : x21 + · · ·+ x2n ≤ 1} be the
closed unit ball. Define an equivalence relation ∼ on X by declaring x ∼ −x
if x lies on the boundary Sn−1 of Dn. Prove that Dn/ ∼ is homeomorphic to
the projective space P n.

Problem 7.3. Let D1 and D2 be two copies of the 2-dimensional disc D2.
Prove that the quotient space obtained by identifying the boundaries of D1 and
D2 is homeomorphic to S2.

Problem 7.4. Let D2 be the 2-dimensional disc and let M be the Möbius strip.
Prove that the quotient space obtained by identifying the boundary circles of
D2 and M is homeomorphic to the projective space P 2.

Problem 7.5. Let M1 and M2 be two copies of the Möbius strip. Prove that
the quotient space obtained by identifying the boundary circles of M1 and M2

is homeomorphic to the Klein bottle K.

Problem 7.6. Define an equivalence relation ∼ on Rn by x ∼ y if and only
if x− y ∈ Zn. Prove that Rn/ ∼ is homeomorphic to the n-dimensional torus
S1 × · · · × S1 (n copies of S1).

Problem 7.7. Prove that R/Q is not Hausdorff. (This is the quotient space
obtained by starting with R and then identifying Q to a single point.)

Problem 7.8. Let R1 and R2 be two copies of the real line R. For a real
number x, let x1 ∈ R1 and x2 ∈ R2 be the two copies of x. Define an equiv-
alence relation on the disjoint union R1 q R2 by x1 ∼ x2 for all real x 6= 0.
Let X = (R1 q R2)/ ∼ be the quotient space. (X is called the ‘line with two
origins’.) Prove that X is not Hausdorff, but that every point in X has a
neighborhood homeomorphic to R.


