Problem 1: Prove that the Zariski closure of the integer lattice \(\mathbb{Z}^n \) inside affine complex \(n \)-space \(\mathbb{C}^n \) is \(\mathbb{C}^n \) itself.

Problem 2: Let \(R \) be a ring. Show that the following are equivalent.

1. Any ascending chain of ideals \(I_1 \subseteq I_2 \subseteq \cdots \) in \(R \) stabilizes (i.e., \(R \) is Noetherian).
2. Any nonempty family \(\Sigma \) of ideals in \(R \) contains a maximal element under inclusion.
3. Any ideal of \(R \) is finitely generated.

Problem 3: Let \(R \) be a ring and let \(I, J \subseteq R \) be ideals. The ideal quotient (or colon ideal) \((I : J) \) is
\[
(I : J) := \{ f \in R : fJ \subseteq I \}.
\]
Prove that \((I : J) \) is an ideal of \(R \) containing \(I \).

Problem 4: Let \(R \) be a commutative ring and let \(I \subseteq R \) be an ideal. The radical \(\sqrt{I} \) of \(I \) is
\[
\sqrt{I} := \{ f \in R : f^n \in I \text{ for some } n > 0 \}.
\]
Prove that \(\sqrt{I} \) is an ideal containing \(I \).

An ideal \(I \) is called radical if \(I = \sqrt{I} \). Prove that \(I(X) \subseteq \mathbb{K}[x_1, \ldots, x_n] \) is radical for any subset \(X \subseteq \mathbb{K}^n \), where \(\mathbb{K} \) is a field.

Problem 6: Let \(k \) be a field and consider the polynomial ring \(k[x, y] \) in two variables. Let \(R = k[x, xy, xy^2, xy^3, \ldots] \) be the subring of \(k[x, y] \) generated by \(\{xy^n : n \geq 0 \} \). Prove that \(R \) is not Noetherian. (So subrings of Noetherian rings are not necessarily Noetherian.)

Problem 7: Consider the polynomials \(f, f_1, f_2 \in \mathbb{Q}[x, y, z] \) given by
\[
f := x^3 - x^2 y - x^2 z + x \\
f_1 := x^2 y - z \\
f_2 := xy - 1.
\]
Let \(r_1 \) be the remainder of \(f \) upon division by \((f_1, f_2) \) and \(r_2 \) be the remainder of \(f \) upon division by \((f_2, f_1) \) using \(<_{\text{grlex}} \).

1. Compute \(r_1 \) and \(r_2 \).
2. Let \(I = \langle f_1, f_2 \rangle \) be the ideal generated by \(f_1 \) and \(f_2 \). Find a nonzero element of \(I \) whose remainder upon division by \((f_1, f_2) \) is itself.