Math 202C: Spring 2018
 Homework 1
 Due 4/20/2018

Problem 1: Prove that the Zariski closure of the integer lattice \mathbb{Z}^{n} inside affine complex n-space \mathbb{C}^{n} is \mathbb{C}^{n} itself.

Problem 2: Let R be a ring. Show that the following are equivalent.
(1) Any ascending chain of ideals $I_{1} \subseteq I_{2} \subseteq \cdots$ in R stabilizes (i.e., R is Noetherian).
(2) Any nonempty family Σ of ideals in R contains a maximal element under inclusion.
(3) Any ideal of R is finitely generated.

Problem 3: Let R be a ring and let $I, J \subseteq R$ be ideals. The ideal quotient (or colon ideal) $(I: J)$ is

$$
(I: J):=\{f \in R: f J \subseteq I\} .
$$

Prove that $(I: J)$ is an ideal of R containing I.
Problem 4: Let R be a commutative ring and let $I \subseteq R$ be an ideal. The radical \sqrt{I} of I is

$$
\sqrt{I}:=\left\{f \in R: f^{n} \in I \text { for some } n>0\right\}
$$

Prove that \sqrt{I} is an ideal containing I.
An ideal I is called radical if $I=\sqrt{I}$. Prove that $\mathbf{I}(X) \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is radical for any subset $X \subseteq \mathbb{K}^{n}$, where \mathbb{K} is a field.

Problem 6: Let k be a field and consider the polynomial ring $k[x, y]$ in two variables. Let $R=k\left[x, x y, x y^{2}, x y^{3}, \ldots\right]$ be the subring of $k[x, y]$ generated by $\left\{x y^{n}: n \geq 0\right\}$. Prove that R is not Noetherian. (So subrings of Noetherian rings are not necessarily Notherian.)

Problem 7: Consider the polynomials $f, f_{1}, f_{2} \in \mathbb{Q}[x, y, z]$ given by

$$
\begin{aligned}
f & :=x^{3}-x^{2} y-x^{2} z+x \\
f_{1} & :=x^{2} y-z \\
f_{2} & :=x y-1 .
\end{aligned}
$$

Let r_{1} be the remainder of f upon division by $\left(f_{1}, f_{2}\right)$ and r_{2} be the remainder of f upon division by $\left(f_{2}, f_{1}\right)$ using $<_{\text {grlex }}$.
(1) Compute r_{1} and r_{2}.
(2) Let $I=\left\langle f_{1}, f_{2}\right\rangle$ be the ideal generated by f_{1} and f_{2}. Find a nonzero element of I whose remainder upon division by $\left(f_{1}, f_{2}\right)$ is itself.

