Math 202C: Spring 2018 Homework 1 Due 4/20/2018

Problem 1: Prove that the Zariski closure of the integer lattice \mathbb{Z}^n inside affine complex *n*-space \mathbb{C}^n is \mathbb{C}^n itself.

Problem 2: Let R be a ring. Show that the following are equivalent.

- (1) Any ascending chain of ideals $I_1 \subseteq I_2 \subseteq \cdots$ in R stabilizes (i.e., R is Noetherian).
- (2) Any nonempty family Σ of ideals in R contains a maximal element under inclusion.
- (3) Any ideal of R is finitely generated.

Problem 3: Let R be a ring and let $I, J \subseteq R$ be ideals. The *ideal quotient* (or *colon ideal*) (I : J) is

$$(I:J) := \{ f \in R : fJ \subseteq I \}$$

Prove that (I : J) is an ideal of R containing I.

Problem 4: Let R be a commutative ring and let $I \subseteq R$ be an ideal. The radical \sqrt{I} of I is

$$\sqrt{I} := \{ f \in R : f^n \in I \text{ for some } n > 0 \}.$$

Prove that \sqrt{I} is an ideal containing I.

An ideal I is called *radical* if $I = \sqrt{I}$. Prove that $\mathbf{I}(X) \subseteq \mathbb{K}[x_1, \ldots, x_n]$ is radical for any subset $X \subseteq \mathbb{K}^n$, where \mathbb{K} is a field.

Problem 6: Let k be a field and consider the polynomial ring k[x, y] in two variables. Let $R = k[x, xy, xy^2, xy^3, ...]$ be the subring of k[x, y] generated by $\{xy^n : n \ge 0\}$. Prove that R is not Noetherian. (So subrings of Noetherian rings are not necessarily Notherian.)

Problem 7: Consider the polynomials $f, f_1, f_2 \in \mathbb{Q}[x, y, z]$ given by

$$f := x^{3} - x^{2}y - x^{2}z + f_{1} := x^{2}y - z \\ f_{2} := xy - 1.$$

x

Let r_1 be the remainder of f upon division by (f_1, f_2) and r_2 be the remainder of f upon division by (f_2, f_1) using \leq_{grlex} .

- (1) Compute r_1 and r_2 .
- (2) Let $I = \langle f_1, f_2 \rangle$ be the ideal generated by f_1 and f_2 . Find a nonzero element of I whose remainder upon division by (f_1, f_2) is itself.