Math 202C: Spring 2018
 Homework 2
 Due 5/4/2018

Problem 1: Fix a monomial order $<$ on monomials in $k\left[x_{1}, \ldots, x_{n}\right]$, let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and let $G=\left\{g_{1}, \ldots, g_{s}\right\}$ be a Gröbner basis of I. The quotient ring $k\left[x_{1}, \ldots, x_{n}\right] / I$ is a k-vector space. Prove that the set of monomials

$$
\left\{\text { monomials } m \text { in } k\left[x_{1}, \ldots, x_{n}\right]: \operatorname{LM}\left(g_{i}\right) \nmid m \text { for } 1 \leq i \leq s\right\}
$$

descends to a k-vector space basis for $k\left[x_{1}, \ldots, x_{n}\right] / I$.
This is called the standard monomial basis for $k\left[x_{1}, \ldots, x_{n}\right] / I$ with respect to the monomial order $<$.

Problem 2: (202 Qual, Spring 2013) Consider the equations

$$
\left\{\begin{array}{l}
x^{2}-x y-2 x=0 \\
y^{2}-2 x y-y=0
\end{array}\right.
$$

and let I be the ideal in $\mathbb{C}[x, y]$ generated by these equations.
(1) Find the reduced Gröbner basis for I with respect to the lexicographic order where $y>x$.
(2) Find the reduced Gröbner basis for $I \cap \mathbb{C}[x]$.
(3) Find all solutions to these equations which lie in \mathbb{C}^{2}.
(4) Find a \mathbb{C}-vector space basis for $\mathbb{C}[x, y] / I$.

Problem 3: (202 Qual, Spring 2013) Let S be the parametric surface defined by

$$
\left\{\begin{array}{l}
x=u-2 v \\
y=u v \\
z=v
\end{array}\right.
$$

(1) Compute the reduced Gröbner basis for the ideal generated by these equations with respect to the lexicographic order where $u>v>x>y>z$.
(2) Find the equation of the smallest variety V containing S.
(3) Show that $S=V$.

Problem 4: Given a set of variables $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$, the degree d complete homogeneous symmetric polynomial is

$$
h_{d}\left(x_{1}, x_{2}, \ldots, x_{r}\right):=\sum_{1 \leq i_{1} \leq \cdots \leq i_{d} \leq r} x_{i_{1}} x_{i_{2}} \cdots x_{i_{d}} .
$$

For example,

$$
h_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2} .
$$

By convention, $h_{0}\left(x_{1}, \ldots, x_{r}\right)=1$.
(1) Prove the polynomial identity

$$
h_{d}\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}\right)=x_{i} \cdot h_{d-1}\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}\right)+h_{d}\left(x_{1}, x_{2}, \ldots, x_{i-1}\right)
$$

valid for any $d \geq 1$ and $i \geq 2$.
(2) The invariant ideal I_{n} is the ideal in $\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ generated by

$$
h_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right), h_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \ldots, h_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) .
$$

Prove that, for $1 \leq i \leq n$, we have

$$
h_{i}\left(x_{1}, x_{2}, \ldots, x_{n-i+1}\right) \in I_{n} .
$$

(3) A monomial $x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}$ is called sub-staircase if $0 \leq a_{i} \leq n-i$ for all i. Prove that the n ! sub-staircase monomials descend to a \mathbb{C}-vector space spanning set for the coinvariant ring $R_{n}:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I_{n} .{ }^{1}$
(Hint: Consider the lexicographical order where $x_{n}>x_{n-1}>\cdots>x_{1}$. What do you know about the leading term ideal of I_{n} ?)

[^0]
[^0]: ${ }^{1}$ Actually, these monomials are the standard monomial basis for this quotient, but this is a bit trickier to prove. The algebraic properties of R_{n} are deeply tied to the combinatorial properties of permutations in S_{n}.

