Math 202C: Spring 2018 Homework 2 Due 5/4/2018

Problem 1: Fix a monomial order < on monomials in $k[x_1, \ldots, x_n]$, let $I \subseteq k[x_1, \ldots, x_n]$ be an ideal, and let $G = \{g_1, \ldots, g_s\}$ be a Gröbner basis of I. The quotient ring $k[x_1, \ldots, x_n]/I$ is a k-vector space. Prove that the set of monomials

{monomials m in $k[x_1, \ldots, x_n]$: $LM(g_i) \nmid m$ for $1 \le i \le s$ }

descends to a k-vector space basis for $k[x_1, \ldots, x_n]/I$.

This is called the *standard monomial basis* for $k[x_1, \ldots, x_n]/I$ with respect to the monomial order <.

Problem 2: (202 Qual, Spring 2013) Consider the equations

$$\begin{cases} x^2 - xy - 2x = 0\\ y^2 - 2xy - y = 0 \end{cases}$$

and let I be the ideal in $\mathbb{C}[x, y]$ generated by these equations.

- (1) Find the reduced Gröbner basis for I with respect to the lexicographic order where y > x.
- (2) Find the reduced Gröbner basis for $I \cap \mathbb{C}[x]$.
- (3) Find all solutions to these equations which lie in \mathbb{C}^2 .
- (4) Find a \mathbb{C} -vector space basis for $\mathbb{C}[x, y]/I$.

Problem 3: (202 Qual, Spring 2013) Let S be the parametric surface defined by

$$\begin{cases} x = u - 2v \\ y = uv \\ z = v \end{cases}$$

- (1) Compute the reduced Gröbner basis for the ideal generated by these equations with respect to the lexicographic order where u > v > x > y > z.
- (2) Find the equation of the smallest variety V containing S.
- (3) Show that S = V.

Problem 4: Given a set of variables $\{x_1, x_2, \ldots, x_r\}$, the degree d complete homogeneous symmetric polynomial is

$$h_d(x_1, x_2, \dots, x_r) := \sum_{1 \le i_1 \le \dots \le i_d \le r} x_{i_1} x_{i_2} \cdots x_{i_d}$$

For example,

$$h_2(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + x_1 x_3 + x_2^2 + x_2 x_3 + x_3^2.$$

By convention, $h_0(x_1, \ldots, x_r) = 1$.

(1) Prove the polynomial identity

$$h_d(x_1, x_2, \dots, x_{i-1}, x_i) = x_i \cdot h_{d-1}(x_1, x_2, \dots, x_{i-1}, x_i) + h_d(x_1, x_2, \dots, x_{i-1}),$$

valid for any $d \ge 1$ and $i \ge 2$.

(2) The *invariant ideal* I_n is the ideal in $\mathbb{C}[x_1, x_2, \ldots, x_n]$ generated by

$$h_1(x_1, x_2, \ldots, x_n), h_2(x_1, x_2, \ldots, x_n), \ldots, h_n(x_1, x_2, \ldots, x_n).$$

Prove that, for $1 \leq i \leq n$, we have

$$h_i(x_1, x_2, \ldots, x_{n-i+1}) \in I_n.$$

(3) A monomial $x_1^{a_1} x_2^{a_2} \dots x_n^{a_n}$ is called *sub-staircase* if $0 \le a_i \le n-i$ for all *i*. Prove that the *n*! sub-staircase monomials descend to a \mathbb{C} -vector space spanning set for the *coinvariant ring* $R_n := \mathbb{C}[x_1, \dots, x_n]/I_n$.¹ (Hint: Consider the lexicographical order where $x_n > x_{n-1} > \dots > x_1$. What do

you know about the leading term ideal of I_n ?)

¹Actually, these monomials are the standard monomial basis for this quotient, but this is a bit trickier to prove. The algebraic properties of R_n are deeply tied to the combinatorial properties of permutations in S_n .