Math 202C: Spring 2018
 Homework 3
 Due 5/18/2018

Problem 1: Let k be an algebraically closed field, let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, and let $V=\mathbf{V}(I) \subseteq k^{n}$ be the variety corresponding to I. Prove that the quotient ring $k\left[x_{1}, \ldots, x_{n}\right] / I$ is finite-dimensional as a k-vector space if and only if V is a finite set. What happens if k is not algebraically closed.

Problem 2: (202 Qual, Spring 2013) Let k be an algebraically closed field. Two ideals $I, J \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ are comaximal if $I+J=k\left[x_{1}, \ldots, x_{n}\right]$. Prove that I and J are comaximal if and only if $\mathbf{V}(I) \cap \mathbf{V}(J)=\varnothing$. What happens when k is not algebraically closed?

Problem 3: Consider the matrix $A \in G L_{3}(\mathbb{Q})$ given by

$$
A=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Let G be the cyclic group generate by A. Use Molien's Theorem to find the Hilbert series of the invariant ring $\mathbb{Q}[x, y, z]^{G}$.
Problem 4: Find two order 3 subgroups $H, K \subset G L_{3}(\mathbb{C})$ such that the invariant rings $\mathbb{C}[x, y, z]^{H}$ and $\mathbb{C}[x, y, z]^{K}$ are not isomorphic as graded algebras. (Note that H and K must be isomorphic as abstract groups!)

Problem 5: Let $\zeta=\exp (2 \pi i / 3)$ and let $A, B \in G L_{2}(\mathbb{C})$ be the matrices

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right) .
$$

Let G be the subgroup of $G L_{2}(\mathbb{C})$ generated by A and B.
(a) Find the Hilbert series of $\mathbb{C}[x, y]^{G}$.
(b) Do there exist algebraically independent homogeneous invariants $f_{1}, f_{2} \in \mathbb{C}[x, y]^{G}$ such that

$$
\mathbb{C}[x, y]^{G}=\mathbb{C}\left[f_{1}, f_{2}\right] ?
$$

Either find such invariants, or prove that they do not exist.

