Math 140A
Fall 2020
Prof. Seward

Table of Contents
Class Information
Course Summary
Lecture 1 Oct. 2
Lecture 2 Oct. 5
Lecture 3 Oct. 7
Lecture 4 Oct. 9
Lecture 5 Oct. 12
Lecture 6 Oct. 14
Lecture 7 Oct. 16
Lecture 8 Oct. 19
Lecture 9 Oct. 21
Lecture 10 Oct. 23
Lecture 11 Oct. 26
Lecture 12 Oct. 30
Lecture 13 Nov. 2
Lecture 14 Nov. 4
Lecture 15 Nov. 6
Lecture 16 Nov. 9
Lecture 17 Nov. 13
Lecture 18 Nov. 16
Lecture 19 Nov 18
Lecture 20 Nov 20
Lecture 21 Nov 23
Lecture 22 Now 30
Lecture $23 \operatorname{Dec} 2$
Lecture 24 Dec 4
Lecture 25 Dec 7
Lecture 26 Dec a
Lecture 27 Dec 11
3
4
5
8
12
15
20
25
30
34
38
43
48
52
56
61
65
69
73
77
81
86
90
95
99
103
107
111
115

Class Information
Webpage: math.ussd.edu/-bseward/140a_fall2o/
Professor: Brandon Seward (he /him $/ \mathrm{his}$)
Call me Brandon
My office Hours: wed 12:00-1:00 \&2:00-4:00
TA: Srivatsa Srinivas (he $/ \mathrm{him} / \mathrm{his}$)
TA's Office Hours: M 8-9 AM, Tu 6-7PM, W 6-7PM, Th 8-9AM
Textbook: Principles of Mathematical Analysis ($3^{\text {rd }}$ ed.) by W. Rubin
Q\&A: Piazza
Turning in HW and Exams: Gradescope
Lecture Notes will be posted on course webpage
Lecture Videos will be posted on canvas
Grading: Letter grades assigned via a curve based on the max of two weighted averages:
(1) $20 \% \mathrm{HW}+20 \%$ it exam $+20 \% 2^{\text {de }}$ exam $+40 \%$ final
(2) $20 \% \mathrm{H} \mathrm{\omega}+20 \%$ best midterm $+60 \%$ final

Homework: Due most Fridays at $9: 00$ pm. Lowest HW grable will be dropped. Some problems will be graded for correctness, others will be graded for completion.
Exams: Open book and open note. Help from on line resources and other humans is prohibitted. Suspicion of cheating will lead to one-on-one Zoom meetings where you must solve similar problems.
$1^{\text {st }}$ Midterm: Wed. Oct. 28
$2^{\text {nd }}$ Midterm: Wed. Nov. 25
Final Exam: Tues. Dec. 15 11:30 AM-2:30 PM

Course Summary
We will take for granted (and without proof) the basic properties of $\mathbb{N}=\{0,1,2,3, \cdots\}$ (the set of natural numbers) \mathbb{Z} (the set of integers), an \mathbb{Q} (the set of rational numbers).

We will explore in detail the properties of \mathbb{R} (the set of real numbers). With great care and precision we will define what the real numbers are. All of our prior knowledge and beliefs about \mathbb{R} will be held in suspicion until we can find proofs of those properties based on our formal definition of \mathbb{R}.

The longterm goal is to provide the logical and theoretical justification for calculus (in $140 B)$ and go beyond $(\operatorname{in} 140 C)$.

This is a theoretical and philosophical course that requires a strong ability in reading, writing, and understanding proofs.l

We will often focus on specific features of \mathbb{R} and study those features in more abstract settings. CAUTION: Don't assume that we are always working with numbers or sets of numbers. More than 50\% of the time we will not be!

Lecture 1 Oct. 2
Defn: Let S be a set. An order on S, denoted $<$, is a relation satisfying"

- (Tr ichotomy Law) for all $x, y \in S$ exa atty
one of the statements

$$
\text { "x<y", "x=y") } y<x^{\prime \prime}
$$

is true

- (Transitivity) for all $x, y, z \in S$ if $x<y$ and $y<2$ then $x<z$.
An ordered sot is a set on which an or dor is defined

Note: For convenience we write
: $y>x$ to mean $x<y$

- $x \leq y$ to mean $x<y$ or $x=y$

Defn: let S be an ordered set as e $E \subseteq S$. If there is $b \in S$ with $x \leqslant b$ for all $x \in E$ then we say E is bounded above ard call 6 an upperbound to E.

Bounded below and bowerbome are defined similarly.

Defin: Let S be an ordered set ard $E \subseteq S$. We call $\alpha \in S$ the least upper bound of E or the supremum of E, denoted $\alpha=\sup E$, if:
(1) α is an upperbound to E
(2) whenever $x \in S$ and $x<\infty$
x is not an upper bound to E.
The greatest lover bound or intimum of E is defined simitar and dented inf E.
$E x:$ For $E=\left\{\frac{1}{\pi} ; n \in \mathbb{Z}_{+}\right\} \subseteq \mathbb{Q}$

$$
\sup E=1 \text {, inf } E=0
$$

Notice sup $E \in E$ and inf $E \notin E$.
In general, sen E and inf E may or may not be elements of E

Defn: An ordered set S has the least upperbound (lub) property if: whenever $\mathbb{E} \subseteq S$ is none mpty and bounded above, sup E exists.
Ex: \mathbb{Q} does not have the lib property. Recall $\sqrt{2} \& \mathbb{Q}$. Set

$$
\begin{aligned}
& A=\left\{p \in \mathbb{Q}: p \leqslant 0 \text { or } p^{2} \leqslant 2\right\} \\
& B=\left\{p \in \mathbb{Q}: p>0 \text { and } p^{2} \geq 2\right\}
\end{aligned}
$$

Then $\mathbb{Q}=A \cup B, B$ is the set of upperbounds to A and A is the set of lower bounds to B.
Next But A has no largest element and B has
time no smallest dement, so sup A and inf B do not exist (when using Q1).
This implies that (1) does not have lube property.

Lecture 2 Oct 5
HWI Due Friday@ 9:00 PM

$$
\begin{aligned}
& A=\left\{p \in \mathbb{Q}: p \leqslant 0 \text { or } p^{2} \leqslant 2\right\} \\
& B=\left\{p \in \mathbb{Q}: p>0 \text { and } p^{2} \geq 2\right\}
\end{aligned}
$$

But A has no largest element and B has no smallest element,
This is not the focus of the conversation... but here is why: For $p \in \mathbb{Q}, p>0$ set
(1) $2 p+q^{2}=p-\frac{p^{2}-2}{p+2} \in \mathbb{Q}$

Then $q=\frac{2 p+2}{p+2}$ so $q^{2}=2+\frac{2\left(p^{2}-2\right)}{(p+2)^{2}}$
Suppose peA.
Case 1: $p \leq 0$. Then $p<1$ and $1 \in A$
Case 2: $p>0$. Then $q>p$ (by (0) and
So p is not the largest element of $A \in A$.
Suppose $p \in B$.
Then $q<p$ (by (1) and $q \in B(b y$ ($)$)
So p is not the smallest loment of B.

The 1. II If S has the lab property then, it has the "greatest laverband property": if $E \subseteq S$ is nonempty and banded below then inf E exists.
Pf: Let $E \leq S$ be nonempty and bounded below. Let A be the set of all queverbunds to E. Then A is nonempty and bounded above (every $E \in E$ is an upper bound)
its lu y lu b property
So $\alpha=\sup A$ exists l lu lu b property. We wall check $\alpha=\operatorname{infl} E$
(Check α is laverbound to E).
Consider any $e \in E$. By definition of A, we have $\forall a \in A$ apse. Thus e is an upper bound to A. Since a is the least upper bound to A, we have $\alpha \leqslant e_{1}$ Thus α is a loverbound to E
(Check anything bigger than α is not a
(awerbbuig)
If x is a lowerbancl to E, then by definition $x \in A$.
Therefore $x \leq \sup A=\alpha$
We conclude that inf $E=\alpha$ exists.

Defn: A field is a sot F with two binary operations + ard, called addition and multiplication, with' the following properties:
Commutativity: $\forall a, b \in F a+b=b+a, a \cdot b=b \cdot a$
Associcattu'ty: $\forall a, b, b \in F(a+b)+c=a+(b+c),(a \cdot b) \cdot c=a \cdot(b \cdot c)$
Identity: there are $O \neq F F$ with $\forall a \in F O+a=a$ and $1 \cdot a=a$
Inverse for every $a \in F$ there is an element $-a \in F$ with $a+(-a)=0$
for every $a \in F$ with $a \neq 0$ there is $\frac{1}{a} \in F$ with $a \cdot\left(\frac{1}{a}\right)=1$
Distributivity: $\forall a, b, c \in F \quad a \cdot(b+c)=(a, b)+(a \cdot c)=a \cdot b+a c$
Ex: These are fields:

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$
- $\mathbb{Q}^{\prime}(t) \stackrel{(}{ }=\left\{\frac{p(t)}{q(t)}: p, q\right.$ polynomials in t with coefficients in Q 3
- Set of conjugacy class mod p for p ce prime.

Note: We corite: $x-y, \frac{x}{y}, 2,2 x, x^{2}$, etc
for: $x+(-y), x \cdot\left(\frac{1}{y}\right), \frac{1+1}{}, x+x, x \cdot x$ etc norite: $x-y, \frac{x}{y}, 2,2 x, x$, atc
for: $x+(-y), x \cdot\left(\frac{1}{y}\right), 1+1, x+x, x-x$, etc

Prop 1. 14: For a field F and $x, y, z \in F$
(1) $x+y=x+2 \Rightarrow y=2$
(2) $x+y=0 \Rightarrow y=-x$
(3) $x+y=x \Rightarrow y=0$
(4) $-(-(x)=x$

Pf: (1) If $x+y=x+z$ then

$$
y=0+y=-x+x+y=-x+x+z=0+z=z
$$

(2) Apply (1) with $z=-x$
(3) Apply (1) with $z=0$
(4) Since $-x+x=x+(-x)=0$, 2 implies $x=-(-x)$

Prop 1.15: Let F be a field. Then for all $x, y, z \in F$ with $x \neq 0$ we have:
(A) $x y=x z \Rightarrow y=z$
(B) $x y=1 \Rightarrow y=\frac{1}{x}$
(8) $x y=x \Rightarrow y=1$

If: Basically iclentical to the previous frames just use multiplication in place of addition.

Lecture 3 Oct 7
HWI due Friday 9:00 pm
Prop 1.16: For any field F and $x, y \in F$
(1) $0 \cdot x=0$
(2) $x \neq 0$ are $y \neq 0 \Rightarrow x \cdot y \neq 0$
(3) $(-x) \cdot y=-(x \cdot y)=x \cdot(-y)$
(4) $(-x) \cdot(-y)=x \cdot y$

Pf: (1) $0 \cdot x+0 \cdot x=(0+0) \cdot x=0 \cdot x$
So $O \cdot x=0$ by Prop. 1.14
(2) Since

$$
\begin{array}{ll}
0 \cdot\left(\frac{1}{x} \cdot \frac{1}{y}\right) & =0 \\
(x \cdot y) \cdot\left(\frac{1}{x} \cdot \frac{1}{y}\right) & =1 \\
\text { st have } x \cdot y & \neq 0
\end{array}
$$

(3) we must have $(-x) \cdot y+x \cdot y=(-x+x) \cdot y=0 \cdot y=0$

$$
\left(\begin{array}{l}
\text { so }\left(I_{x}\right) \cdot y=-(x \cdot y) \text { by Prop. } 1.14 \\
\text { imilarly, } x \cdot(-y)=-(x, y)
\end{array}\right.
$$

Similarly, $x \cdot(-y)=-(x-y)$
(4) $(-x) \cdot(-y)=^{\prime}-(x \cdot(-y))=-(-(x \cdot y))=x \cdot y$ by Prop. 1,14

Deft: An ordered field is a field F with an ordering such that:
$\begin{array}{lll}\text { (1) } \forall x, y, z \in F & y<z \Rightarrow x+y<x+z \\ \text { (2) } \forall x, y \in F & (x>0 a,() y>0) \Rightarrow x \cdot y>\end{array}$
(2) $\forall x, y \in F \quad(x>0$ and $y>0) \Rightarrow x \cdot y>0$

We call $x \in E$ positive if $x>0$ and negative if $x<0$.
$E x, Q, \mathbb{R}$, and $\mathbb{Q}(t)$ are ordered fields (Ill make a piazza post for $\mathbb{Q}(t)$)
Prop 1.18: For an ordered held F and $x, y, z \in F$
(1) $x>0 \Leftrightarrow-x<0$
(2) $(x>0$ and $y<z) \Rightarrow x \cdot y<x \cdot z$
(3) $(x<0$ and $y<z) \Rightarrow x y>x \cdot z$
(4) $x \neq 0 \Rightarrow x^{2}>0$, (so $1=1^{2}>0$)
(5) $0<x<y \Rightarrow 0<\frac{1}{y}<\frac{1}{x}$

Pf: (1) $x>0 \Leftrightarrow x+(-x)>0+(-x) \Leftrightarrow 0>-x \Leftrightarrow-x<0$
(2) Since $y<z, 0=y-y<z-y$ so $x \cdot(z-y)>0$ and
$x \cdot z=x(z-y)+x y>0+x \cdot y=x \cdot y$
(3) By $2 \&(-x) \cdot y k(-x) \cdot z$ so
$x \cdot z=(-x) \cdot y+x \cdot y+x \cdot z<(-x) z+x \cdot y+x \cdot z=x \cdot y$
(4) If $x>0$ the $x^{2}>0$ def of ordered field $x \cdot z=(-x) \cdot y+x \cdot y+x \cdot z<(-x) \cdot z+x \cdot y+x \cdot z=x \cdot y$
of $x>0$ there $x^{2}>0$ by deft. of ordered field. If $x<0$ the $-x>0 \infty \infty \quad(-x)^{2}>0$. But $(-x)^{2}=x^{2}$ by Prop 1.16
(5) Assure $0<x<y$.

If $z \leq 0$ then $y z \leq 0$ by (2)
Since $y \cdot \frac{1}{y}=1>0$ we must have $\frac{1}{y}>0$.
Similarly $\frac{1}{x}>0$.
Finally multiplying, $x<y$ by positive $\frac{1}{x} \cdot \frac{1}{y}$

$$
\frac{1}{y}=x \cdot \frac{1}{x} \cdot \frac{1}{y}<y \cdot \frac{1}{x} \cdot \frac{1}{y}=\frac{1}{x}
$$

Thy 1.19 There exists a unique or cered field having the least upper baud property,
Moreare, this fred contains (Q. Moreare, this fred contains \mathbb{Q}.
we denote this field \mathbb{R} and call its elements real numbers.

We conns grove this in class.
Existence is proven via a construction in the appalix to ChI
Ill post in Piazza about uniqueness
are containment oft ard containment of \mathbb{Q}.

Thu 1.20: (A) If $x, y \in \mathbb{R}$ and $x>0$ then $\exists n \in \mathbb{N} n \cdot x>y$
(B) If $x, y \in \mathbb{R}$ and $x<y$ then $\exists p \in \mathbb{Q}$
(B) If $x, y \in \mathbb{R}$ and $x<y$ then $\exists p \in \mathbb{Q}$ with $x<p<y$.
Pf: (A) Towards a contra suppose $\forall n \in \mathbb{N} n \cdot x \leq y$. Set $A=\{n \cdot x: n \in \mathbb{N} 1\}$. A is bounded above by y so $\alpha=$ sup A exists.
Since $x>0 \quad \alpha-x<\alpha$. Since $x>0$, $\alpha-x<\alpha$
So $\alpha-x$ is not uppendound to A; meaning there is $n \in \mathbb{N}$ with $n \cdot x>\alpha-x$. Then $(n+1) \cdot x>\alpha$, contract citing $\alpha=$ sup A
and $(n+1) \cdot x \in A$,

- To be continued next class

Lecture 4 Oct 9
HW I due today at 9:00 pm

- Continuing the proof from last class
(B) Since $x<y$ we have $y-x>0$.

So by A there is $n \geq 1$ with $n^{\prime}(y-x)>1$.
Applying A) twice more, we get integers $m_{1}, m_{2} \geq 1$ with $m_{1}>n \cdot x$
and $m_{2}>-n \cdot x$
So $-m_{2}<n x<m_{1}$.
So the finite sat $\left\{-m_{2},-m_{2}+1, \cdots, m_{1}\right\}$
must contain a least on with $n \cdot x<m$.
Since m is least, $m-1 \leq n \cdot x<m$.
Therefore $n \cdot x<m \leq n \cdot x+1<n \cdot y$ and $x<\frac{m}{n}<y$.
Note: (A) is known as the archimedean property
(B) says that (Q) is dense in \mathbb{R} (5) says that © is cense in \mathbb{R} (well define dense next week)

Thin 1.21: If $x \in \mathbb{R}$ is positive and $n \in \mathbb{Z}_{+}$ the there is a unique real $y>0$ with $y^{n}=x$. This number y is denoted $\sqrt[n]{x}$ or $x^{1 / n}$

Pf:
Claim: If $0<y_{1}<y_{2}$ then $y_{1}^{n}<y_{2}^{n}$.
Pf eclairs: Since $\frac{y_{2}}{y_{1}}>1$, we have

$$
\frac{y_{2}^{n}}{y_{1}^{n}}=\left(\frac{y_{2}}{y_{1}}\right)^{n}>1
$$

hence $y_{1}^{n}<y_{2} \hat{1}$ a(clain)
So of y exists, it must be unique.
Set $E=\left\{t \in \mathbb{R}: t>0, t^{n}<x\right\}$.
(Check $E \neq \varnothing$). If $t=\frac{x}{x+1}$ then $t<1$ so $t^{n}<t<x$ and hence $t \in E$.
(Check $1+x$ is upperband to E)

$$
t>1+x \Rightarrow t^{n}>t>x \Rightarrow t \notin E
$$

By lib property, $y=\sup E$ exists. We will che ck $y^{n}=x$.

Recall the identity $b^{n}-a^{n}=(b-a)\left(b^{n-1}+a \cdot b^{n-2}+\right.$
It follows

$$
b^{n}-a^{n}<(b-a) n b^{n-1} \text { when } 0<a<b
$$

Towards a contra., suppose $y^{n}<x$. Choose h with

$$
O<h<\min \left(1, \frac{x-y^{n}}{n(y+1)^{n-1}}\right)
$$

Then $(y+h)^{n}-y^{n}<h \cdot n \cdot(y+h)^{n-1} \leq h \cdot n \cdot(y+1)^{n-1}<x-y^{n}$. So $y+h \in E$ and $y+h>y$, contradiciong y being upperbanl to E.

Toward es a contrice., suppose $y^{n}>x$.
set $k=\frac{y^{n}-x}{n-y^{n-1}}$. Then $0<k<y$.
If $t \geqslant y-k$ then $y^{n}-t^{n} \leqslant y^{n}-(y-k)^{n}<k \cdot n \cdot y^{n-1}=y^{n}-x$ So $t^{n}>x$ and $t k E$. Thus $y-k$ is an upper bound to E and $y-k<y$, contradicting $Y=\sup E$.
Note: It is possible to define decimal representations of real numbers. see the book.

Defn: The extended neal number system
is the set $\mathbb{R} \cup\{-\infty,+\infty\}$ where for all $x \in \mathbb{R}$

- $-\infty<x<\infty$
- $x+\infty=+\infty, x-\infty=-\infty$, $\frac{x}{+\infty}=0, \quad \frac{x}{-\infty}=0$
- $x>0 \Rightarrow x \cdot(+\infty)=+\infty, x(-\infty)=-\infty$
- $x<0 \Rightarrow x \cdot(+\infty)=-\infty, x(-\infty)=+\infty$

All other operations are left unde fined.
This is not a field!
To distinguish $x \in \mathbb{R}$ from $-\infty,+\infty$, we call x finite.
Defn: The set of complex numbers is

$$
\mathbb{C}=\{(a, b) ; a, b \in \mathbb{R}\}
$$

Note $(a, b)=(c, d) \Leftrightarrow a=c$ and $b=Q$.
For $x, y \in \mathbb{C}$, say $x=(a, b)$ ad $y=(c, d)$, we define

$$
\begin{aligned}
& x+y=(a+c, b+d) \\
& x \cdot y=(a c-b d, a d+b c)
\end{aligned}
$$

Thin: \mathbb{C} is a field with $(0,0)$ and $(1,0)$ playing the roles of O and I

Pf: We check existence of inverses, Other proputies are checked by computation. let $x=(a, b) \in \mathbb{C}$.

Write $-x=(-a,-b)$. Then

$$
\begin{aligned}
& \text { ide }-x=(-a,-b) \text { (he } \\
& x+(-x)=(a, b)+(-a,-b)=(0,0)
\end{aligned}
$$

Now assume $x \neq 0$. Then $(a, b) \neq(0,0)$

$$
\text { so } a \neq 0 \text { or } b \neq 0 \text {. Thus } a^{2}+b^{2}>0 \text {. }
$$

write $\frac{1}{x}=\left(\frac{a}{a^{2}+b^{2}}, \frac{-b}{a^{2}+b^{2}}\right)$. Then

$$
x \cdot \frac{1}{x}=(a, b) \cdot\left(\frac{a}{a^{2}+b^{2}}, \frac{-b}{a^{2}+b^{2}}\right)=(1,0)=1
$$

Lecture 5 Oct 12
How 2 due Friday

Please carefully read my email about the first exam and respond promptly if needed

The: For all $a, b \in \mathbb{R}(a, 0)+(b, 0)=(a+b, 0)$
and $(a, 0) \cdot(b, 0)=(a \cdot b, 0)$
If: Easy to check
This means we con identify $a \in R$ with ($a, 0$) ad this identification preserves addition, and multiplication. So ur can view \mathbb{R} as a subfield of \mathbb{C}
Defn: $i=(0,1) \in \mathbb{C}$
The: $i^{2}=-1$
Pf: $i^{2}=(0,1)^{2}=(0,1) \cdot(0,1)=(-1,0)$
The: If $a, b \notin \mathbb{R}$ then $(a, b)=a+b i$
If: $a+b i=(a, 0)+(b, 0) \cdot(0,1)=(a, 0)+(0, b)=(a, b)$

Dean: For $z=a+b_{i} \in \mathbb{C}$ we call a the real part of z and b the imaginary part of z ac h write $a=\operatorname{Re}(z), b=\operatorname{In}(z)$
We cell $\bar{\Sigma}=a-b_{i}$ the complex conjugate of z.
Thin: If $z, w \in \mathbb{C}$ then
(A) $\overline{z+w}=\bar{z}+\bar{w}$
(B) $\frac{\Sigma \omega}{z \omega}=\bar{z} \cdot \bar{\omega}$
(c) $z+\bar{z}=2 \operatorname{Re}(z), z-\bar{z}=3 \operatorname{Im}(z) i$
(1) $z \bar{z} \in \mathbb{R}$ and $z \bar{z}>0$ when $z \neq 0$

Pf: (A), (B) are easy to check by computation.
(B) holds since $z=a+b i \Rightarrow z \bar{z}=a^{2}+b^{2}$ II

Defin: The absolute value of $z \in \mathbb{C}$ is defined $|z|=(z \bar{z})^{1 / 2}$
Note: If $x \in \mathbb{R}$ then $\bar{x}=x$ so $|x|=\sqrt{x^{2}}$ meaning $|x|=x$ if $x=0$ and $|x|=-x$ if $x<0$,

Thm: If $z, w \in \mathbb{C}$ then
(1) $|z|>0$ ualess $z=0, \quad|0|=0$
(2) $|\Sigma|=|z|$
(3) $|z w|=|z| \cdot|w|$
(4) $|\operatorname{Re}(x)| \leqq|z|$
(5) $|z+w| \leqslant|z|+|w|$

Pf: (1) ard (2) easily checked by competation.
(3) $|z w|=(z w \cdot \overline{z w})^{1 / 2}=(z w \bar{z} \bar{w})^{1 / 2}$.
(3) $\begin{aligned}|\tau w| & =(z w \cdot \overline{z w})^{1 / 2}=(z w \bar{z} \bar{w})^{1 / 2} \\ & =(z \bar{z} w \bar{w})^{1 / 2}=(z \bar{z})^{1 / 2}\end{aligned}$
(4) Say $z=a+b_{1}^{\prime}$, Then

$$
\begin{aligned}
& |\operatorname{Re}(I)|=|a|=\sqrt{a^{2}} \leq \sqrt{a^{2}+b^{2}}=\sqrt{z \cdot \bar{z}}=|z|
\end{aligned}
$$

(5) Note $\overline{\bar{z} \omega}=z \cdot \bar{\omega}$ so $\bar{z} \omega+z \bar{\omega}=2 \operatorname{Re}(z \omega)$
therefone

$$
\begin{aligned}
& |z+w|^{2}=(I+w)(\bar{i}+\bar{w})^{y} \mid \\
& \text { y (c) } \\
& =2 \Sigma+\omega \bar{z}+\bar{\omega} z+\omega \bar{\omega} \\
& =|z|^{2}+2 \operatorname{Re}(\bar{\omega} z)+|\omega|^{2} \\
& <|z|^{2}+2|z \bar{\omega}|+|\omega|^{2} \\
& =|z|^{2}+2|z||w|+|w|^{2} \\
& =(|z|+|w|)^{2}
\end{aligned}
$$

Thy (Cauchy-Schwarz Inequality)
If $a_{1}, a_{2}, \cdots, a_{n}, b_{1}, b_{2}, \cdots, b_{n} \in \mathbb{C}$ then

$$
\left|\sum_{k=1}^{n} a_{k} \bar{b}_{k}\right|^{2} \leq \sum_{k=1}^{n}\left|a_{k}\right|^{2} \cdot \sum_{k=1}^{n}\left|b_{k}\right|^{2}
$$

Pf: Next class

Deft: For $k \in \mathbb{Z}_{+}$we let \mathbb{R}^{k} be the set of all k-tuples

$$
\begin{aligned}
& \text { all } k \text { tuples } \\
& \vec{x}=\left(x_{1}, x_{2}, \cdots, x_{k}\right), \quad x_{i} \in \mathbb{R}
\end{aligned}
$$

We call \vec{x} a point or a vector
$\vec{O}=(0,0, \cdots, 0)$ is the origin
\mathbb{R}^{k} is an example of a vector space,
with operations
$\vec{x}+\vec{y}=\left(x_{1}+y_{1}\right)$

$$
\begin{aligned}
& \overrightarrow{\vec{c}}+\vec{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, \cdots, x_{k}+y_{k}\right), \vec{x}, \vec{y} \in \mathbb{R}_{k}^{k} \\
& \alpha \cdot \vec{x}=\left(\alpha x_{1} \alpha x_{2}, \cdots, x_{k}\right) \quad \vec{x} \in \mathbb{R}, \alpha \in \mathbb{R} \\
& \text { inner product (or dot product) is }
\end{aligned}
$$

The inner product (or dost product) is

$$
\vec{x} \cdot \vec{y}=\sum_{i=1}^{0} x_{i} y_{i}
$$

The norm of $\left(\vec{x} \in \mathbb{R}^{k}\right.$ is

$$
\frac{m^{n}}{|\vec{x}|}=(\vec{x} \in \mathbb{R} \cdot \vec{x})^{1 / 2}=\left(\sum_{i=1}^{k} x_{i}^{2}\right)^{1 / 2}
$$

\mathbb{R}^{k} is called k-dimensional Euclidean space

Lecture 6 Oct 14
HW 2 due Friday
First exam will be offered at two times:

- Class time (11-11:50 AM Wed. Oct 28 San Diego local time
- 12 hours prior ($11-11: 50$ PM Tues. Oct, 27 San Diego local time

If you can't take the exam at either of these times you must email me by Satur day
The (Cauchy-Schwarz Inequality)
If $a_{1}, a_{2}, \cdots, a_{n}, b_{1}, b_{2}, \cdots, b_{n} \in \mathbb{C}$ then

$$
\left|\sum_{k=1}^{n} a_{k} \bar{b}_{k}\right|^{2} \leq \sum_{k=1}^{n}\left|a_{k}\right|^{2} \cdot \sum_{k=1}^{n}\left|b_{k}\right|^{2}
$$

Note: If $\left(a_{1}, \cdots, a_{n}\right)=\vec{a} \in \mathbb{R}^{n},\left(b_{1}, \cdots, b_{n}\right)=\vec{b} \in \mathbb{R}^{n}$
this says $|\vec{a} \cdot \vec{b}|^{2} \leq|\vec{a}|^{2}|\stackrel{\rightharpoonup}{b}|^{2}$.
From geometry (intuition, we expect equality to hid $1 \&$ precisely
$B \vec{a}=C \vec{b}$,
where $B=\sum_{k=1}^{n}\left|b_{k}\right|^{2}, C=\sum_{k=1}^{n} a_{k} \bar{b}_{k}$
Pf: De fine $B_{j} C$ as above. Set $A=\sum_{k=1}^{n}\left|a_{k}\right|$?
If $B=0$ then $b_{1}=b_{2}=\cdots=b_{n}=0$ and conclusion is trivial. So assume $B>0$.

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

$$
\begin{aligned}
O \leqslant & \sum_{k=1}^{n}\left|B a_{k}-C b_{k}\right|^{2} \\
= & \sum_{k=1}^{n}\left(B a_{k}-C b_{k}\right)\left(B a_{k}-\bar{C} \overline{b_{k}}\right) \\
= & B^{2} \sum_{k=1}^{n}\left|a_{k}\right|^{2}-B \bar{C} \sum_{k=1}^{n} a_{k} \bar{b}-B C \sum_{k=1}^{n} a_{k} b_{k} \\
& \quad+\left.\left|d^{2} \sum_{k=1}^{n}\right| b_{k}\right|^{2} \\
= & B^{2} A-B|C|^{2}-\left.B\left|C^{2}+B\right| C\right|^{2} \\
= & B^{2} A-B|C|^{2} \\
= & B\left(B A-|C|^{2}\right)
\end{aligned}
$$

Since $B>0$, we get $B A-\mid C^{2} \geq 0$.

Note: $\begin{aligned} & \vec{x} \cdot \vec{y}=\vec{y} \cdot \vec{x} \\ & \vec{x} \cdot(\vec{y}+\vec{z})=\vec{x} \cdot \vec{y}+\vec{x} \cdot \vec{z}\end{aligned}$
Thm: If $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^{k}$ and $\alpha \in \mathbb{R}$ then
(A) $|\vec{x}| \geqslant 0$ and $(|\vec{x}|=0 \Leftrightarrow \vec{x}=\overrightarrow{0})$
(B) $|\alpha \cdot \vec{x}|=|\alpha||\vec{x}|$
(c) $|\vec{x} \cdot \vec{y}| \leqslant|\vec{x}||\vec{y}|$
(D) $|\vec{x}+\vec{y}| \leq|\vec{x}|+|\vec{y}|$

$$
\begin{aligned}
& |\vec{x}+\vec{y}| \leq|x+1 y| \\
& |\vec{x}-\vec{z}| \leqslant|\vec{x}-\vec{y}|+|\vec{y}-\vec{z}|
\end{aligned}
$$

Al: A) ald (B) love easy to check.
follows from dauchy-Schwarz
(D)

$$
\begin{aligned}
|\vec{x}+\vec{y}|^{2} & =\mid \vec{x}+\vec{y}) \cdot \vec{x}+\vec{y} \mid \vec{x} \\
& =|\vec{x}| 2\left|\vec{y} \cdot \vec{x}+\vec{x} \cdot \vec{y}+|\vec{y}|^{3}\right. \\
& =|\vec{x}|^{2}+2 \vec{x} \cdot \vec{y}+|\vec{y}|^{2} \\
& \leq|\vec{x}|^{2}+2|\vec{x}|\left|\overrightarrow{y^{2}}\right|+\left|y^{4}\right|^{2} \\
& =|\vec{x}|+\left.|\vec{y}|\right|^{2} \mid
\end{aligned}
$$

(E) follows from (D)

$$
\text { using } \vec{x}=\vec{x}-\vec{y}, \vec{y}=\vec{y}-\vec{z}
$$

Defn: Let $f: x \rightarrow y$.
The image of $A \leqslant X$ is $f(A)=\{f(a): a \in A\}$
The preimage of $B \subseteq Y$ is $f^{-1}(B)=\{x \in X: f(x) \in B\}$ For $y \in Y$ we write $f^{-1}(y)$ for $f^{-1}\left(\varepsilon y^{3}\right)$
Defn: Two sets X, Y have equal canchinality,
denoted $|X|=|Y|$ if $¥$ bisection $f: X \rightarrow Y$. denoted $|X|=|Y|$ if $¥$ bijection $f: X \rightarrow Y$.

- X is finite if $X=\varnothing$ or $\exists n \in \mathbb{Z}_{4}|X|=|\{1,2, \cdots, n\}|$. Otherwise X is infinite
- X is countable if it is finite or $|X|=|N|$. X is uncountable otherwise.

Den: A sequence is a function f with
 we write $\left(x_{n}\right)_{n \in \mathbb{N}}$ Cor $\left.\left(x_{n}\right)_{n \in \mathbb{t}_{+}}\right)^{n}$ to denote f_{1}

Thin: If X is catbl and $A \subseteq X$ then A is cntbl.
If: This is obvious if A is finite. So assume A is infinite. Then X is infrite so $|X|=|\mathbb{N}|$. So we can list elements of X as

$$
\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}
$$

Let $n_{g} \in \mathbb{N}$ be least with $x_{n} \in A_{1}$. In ducturely, after choosing no, n^{\prime}, n_{k-1} pick $n_{k}>n_{k-1}$ to be least with $\dot{x}_{n_{K}} \in A^{K}$.

Now define $x_{f}: x \rightarrow A$ by $f(k)=x_{n_{k}}$.
Then f is a bijection.
Than: If $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a seq. of cattle sets then $\bigcup_{n \in \mathbb{N}} X_{n}$ is contbl.
Pf: For $n \in \mathbb{N}$, let $\left(x_{n, k}\right)_{k \in \mathbb{N}}$ be a seq in X_{n} that uses every elerneit o\& x_{n} at least once.

$$
\begin{array}{lll}
x_{0} & x_{0,0} & x_{0,1} \\
x_{0,2} & x_{0,3} \\
x_{1} & x_{1,0} & x_{1,1}, \\
x_{1,2} \\
x_{2} & x_{2,0} & x_{2,1} \\
x_{32,2} & x_{3,6} & \\
\vdots & \vdots
\end{array}
$$

let f be the seq

$$
x_{0,0}, x_{1,0,0}, x_{0,1}, x_{2,0}, x_{1,1}, x_{0,2}, \cdots
$$

Then f is onto $\bigcup_{n \in \mathbb{N}} X_{n}$
Set $A=\{n \in \mathbb{N}: \forall k<n \quad f(k) \neq f(n)\}$
Then A is cntbl by prion theorem and $f: A \rightarrow \bigcup_{N \in \mathbb{N}} X_{n}$ is a bijection.
Thmi If X is cnabl then $X^{n}=\underbrace{X \times X \times \cdots \times X}_{n \text { coples }}$ is cntbl
Pa. We use maduction. $X^{\prime}=X$ is catbl. If X^{n-1} is cnibl the each set $\left\{\times \frac{2}{} \times X^{n-1}\right.$ is cntbl, so

$$
X^{n}=\bigcup_{x \in X}\{x\} \times X^{n-1}
$$

is catbl by previaus theorens.

Lecture 7 Oct 16
Hew 2 due today
First exam will be offered at two times:

- Class time (11-11:50 AM Wed. Oct 28 San Diego local tine
- 12 hours prior (11-11:50 PM Tues. Oct, 27 San Diego local time If you can't take the exam at either of these times you must email me by Saturday
Cor: \mathbb{Q} is entbl
Pf: Note by prier theorems that every subset of \mathbb{Z}^{2} is countable. Define $f: \mathbb{Q} \rightarrow \mathbb{Z}^{2}$ by setting $f(q)=(a, b)$ where $a, b \in \mathbb{Z}$ satisfy $b>D_{,} \frac{a}{b}=q$, and $a, 5$ coprime. Then f is a bijection with its image which is citbl.
The: The set $\{0,1]^{\mathbb{N}}$ of all functions $f: \mathbb{N} \rightarrow\{0,1\}$ is uncantable.

Pf: Lat $F \subseteq\left\{0,1 \mathcal{B}^{\mathbb{N}}\right.$ be any catbl infinite set. Sony $F=\left\{f_{0}, f_{1}, f_{2}, \ldots\right\}$, each $f_{1}: \mathbb{N} \rightarrow\{0, B$. Define $g i N \rightarrow 20,1 \frac{1}{3}$ by $g(n)^{\prime}=1-f_{n}(n)$. Then $\forall \cap \in \mathbb{N}, q \neq f_{n}$ since $g(n) \neq f_{n}(n)$. So $g \in\{0,1\}^{n / v} \backslash F$. Thus $F \neq\left\{0,13^{1 N}\right.$.

Defn: A metric space is a pair (X, C) where X is a sat and $d: X \times X \rightarrow \mathbb{R}$ satisfies:
(1) $\forall p, q \in X \quad d(p, p)=0$, if $p \neq q$ then $d(p, q)>0$
(2) $\forall p, q \in X \quad d(p, q)=d(q, p)$
(3) (Triangle inequality) $\forall x, y, z \in X \quad d(x, z) \leqslant d(x, y)+d(y, z)$

The function \& is called a metric.
Ex: - \mathbb{R}^{k} with $d(\vec{x}, \vec{y})=|\vec{x}-\vec{y}|$

- \mathbb{C} with $d(z \omega)=|z-w|$
- \mathbb{R}^{k} with $d_{p}(\vec{x}, \vec{y})=\left(\sum_{i=1}^{k}\left(x_{i}-y_{i}\right)^{p}\right)^{1 / p} \quad(p>1)$
- $[0,1]^{[0,1]}$ with $d(f, g)=\sup \{|f(x)-g(x)|: x \in[0,1]\}$
- \mathbb{R}^{k} with $d_{\infty}(\vec{x}, \vec{y})=\max _{k \leq i, k}\left|x_{i}-y_{i}\right|$

Defn: Let (x, d) be a metric space

- for $p \in X, r>0$, the ball of radius r around x is

$$
B_{r}(p)^{\prime}=\{q \in X: d(p, q)<r\}
$$

- $P E X$ is a limit polit of $E \subseteq X$ if

$$
\forall r>0 \quad\left(B_{r}(p) \backslash\{p \xi) \cap E \neq \varnothing\right.
$$

- set of limit points of $E \subseteq X$ is E^{\prime}
- E is closed if $E^{\prime} \subseteq E$
- E is perfect if $E^{\prime}=E$
- E is dense in X if $E \cup E^{\prime}=X$
- p is an interior polit of E if $\operatorname{Ir>O} B_{r}(p) \subseteq E$
- set of interior points of E is denoted E°
- E is open if every point at E is an interior point of E
- $E^{c}=X \backslash E$ is the compliment of E
- E is boundeel if $\exists M \in \mathbb{R} \exists_{p} \in X E \leq B_{M}(p)$
- E is a neighborhood of p if E is oper and $p \in E$.

The: $B_{r}(p)$ is always open.
Pf: If $q \in B_{r}(p)$ and $x \in B_{r-d}(p, q)(q)$ then

$$
\begin{aligned}
d(p, x) & \leq d(p, q)+d(q, x) \\
& <d(p, q)+r-d(p, q)=r
\end{aligned}
$$

So $x \in \operatorname{Br}(p)$. Thus $B_{r-d}(p, q)(q) \subseteq \operatorname{Br}(p)$ so q is an interior pout act Br (p) is open.

Thm: If p, E^{\prime} then for all $r>0$
($B_{r}(p) \backslash\{p 3) \cap E$ is infinite.
Let $r>0$.
Pf: Towarde contradiction, suppose not.
Then

$$
t=\min \left\{d(p, q): q \in\left(B_{r}(p) \backslash\{p \xi) n E\right\}\right.
$$

is positive. We have

$$
\left(B_{\frac{1}{2} t}(p) \backslash \sum_{p}\right)^{3} \cap E=\varnothing
$$

so $p \& E^{\prime}$, a contradiction.
Cor: E finite $\Rightarrow E^{\prime}=\varnothing$
Thy: E is open $\Leftrightarrow E^{c}$ is closed
PR: E^{c} closed $\Leftrightarrow\left(E^{c}\right)^{\prime} \subseteq E^{c}$

$$
\Leftrightarrow\left(E^{c}\right)^{\prime} \cap E=\varnothing
$$

$\Leftrightarrow \forall x \in E \quad x \notin\left(E^{c}\right)^{\prime}$

$$
\Leftrightarrow \forall x \in E \quad \operatorname{Ir}>0 \quad \operatorname{Dr} \cap E^{c}=\varnothing
$$

$\Leftrightarrow \forall x \in E \quad \exists r>0 \quad D_{r} \cap E^{c}=\varnothing$ and $x \notin E^{c}$

$$
\Leftrightarrow \forall x \in E \quad \exists_{r}>0 \quad B_{r}(x) \cap E^{c}=\varnothing
$$

$$
\Leftrightarrow \forall x \in E \quad \exists r>0 \quad B_{r}(x) \leq E
$$

$\Leftrightarrow \forall x \in E \quad x \in E^{\circ}$
$\Leftrightarrow E$ is open.

Lecture 8 Oct 19
HL 3 due Friday
First midterm next Wed at class time and 12 hours prior
Let (x, d) be metric space
Thy: Let A be any set (possibly uncountable)

(3) $\left(\forall \alpha \in A \quad F_{\alpha} \subseteq x\right.$ is closed. $) \Rightarrow \prod_{\alpha \in A} F_{\alpha}$ is closed
(3) If $U_{1}, \cdots, U_{n} \subseteq x$ are opes then $\bigcap_{i=1}^{n} U_{i}$ is open
(4) If $F_{1}, \cdots, F_{n} \subseteq x$ are closed then $\bigcup_{i=1}^{n} F_{i}$ is closed

Pf: (1) If $x \in \bigcup_{\alpha \in A} U_{0}$ then there is $\beta \in A$ with $x \in U_{B}$. Since U_{B} is open, there is $r>0$ with $B_{r}(x) \stackrel{B}{\leftrightharpoons} U_{B} \subseteq \bigcup_{\alpha \in A} U_{\alpha}$. So x is an interior point of $U_{0 a t} U_{a}^{B}$ so ${ }^{\alpha \in A} \bigcup_{a \in A} U_{\alpha}$ is open.
(2) $\left(\prod_{\alpha \in A} F_{\alpha}\right)^{c}=\bigcup_{\alpha \in A} F_{\alpha}^{c}$ is oven by (1) so $\bigcap_{a \in A} F_{\alpha}$ is closed.
(3) Let $x \in \bigcap_{i=1}^{n} U_{i}$. Each U_{i} is open so W_{e} can pick $r_{i}>0$ with $B_{r_{i}}\left(x_{1}\right) \subseteq U_{i}$. Set $r=\min \left(r_{1}, r_{2}, \cdots, r_{n}\right)$. Than $r>0$ and $B_{r}(x) \subseteq \bigcap_{i=1}^{n} U_{i}$. Thus $\bigcap_{i=1} U_{i}$ is opes.
(4) Take compliments like in (2)

Note Finiteness assumption is necessary in (3) ard (4) Ex: $u_{n}=\left(\frac{-1}{n}, \frac{1}{n}\right) \subseteq \mathbb{R}$ is open but $\cap_{n \in \mathbb{Z}_{+}} U_{n}=\{0\}$ is not open.

Defn: The closure of $E \subseteq X$ is $\bar{E}=E \cup E^{\prime}$
Tho. (A) \bar{E} is closed
(5) $E=\bar{E} \Leftrightarrow E$ is closed
(C) (F closed and $F \geq E$) $\Rightarrow F \geq \bar{E}$

Pf: (A) Let $x \in(\bar{E})^{\prime}$. If $x \in E$ then we acre dose since $x \in \bar{E}$. So, assume $x \notin E$. lat $r>0$, Since $x \in(\bar{E})^{\prime}$ we have $\left(B_{r}(x) \backslash \xi \times \xi\right) \cap \bar{E} \neq \varnothing$ Pick $y \in\left(B_{r}(x) \backslash\{x 3) n \bar{E}\right.$.
Sid $S=\min (r-d(x, y), d(x, y))>0$
Notice $B_{s}(y) \leqslant B_{r}(x) \backslash\{\times\}$ (last class)
Since $y \in \vec{E}$ we mast have $R_{s}(y) \cap E \neq \varnothing$.
So there is $p \in \mathbb{R}_{s}(y) \cap E_{i}$ and we have

$$
p \in\left(B_{r}(x) \backslash\left\{x^{3}\right) \cap E\right.
$$

Thus $\left(B_{r}(x) \backslash \xi \times \xi\right) \cap E \neq \varnothing$ and hence $x \in E^{\prime} \subseteq E$
(B) \bar{E} closed bu (A) so $(E=\bar{E} \Rightarrow E$ closed). Conversely, E close implies $E^{\prime} \leq E$
(C) Whenever $F \geq E$ we have $F^{\prime} \geq E^{\prime}$.

So if F is closed and $F \geq E$ then $F \supseteq E \cup F^{\prime} \geq E \cup E^{\prime}=E$.

The: If $E \in \mathbb{R}$ is nonempty and banded above then $\sup E \in E$. Similarly when inf E, inf $E \in E$.
Pf: We prove the first statement. So condO is similar. Set $y=\sup E$. If $y \in E$ then $y \in E$ and we are cone, So assume $y \& E$. Let $r>0$.
Since $y=\sup E$ and $y^{-r}<y$, by definition there must be $x \in E$ with $y-r<x$. Since $y=\sup E$ al $y \& E$ we must have $x<y$. So $x \in\left(B_{r}(y) \backslash 3 y z_{3}\right) \cap E$. We conclude $y \in E^{\prime} \subseteq E$.
Note: If (X, d) is a metric space and $Y \subseteq x$ then $\left(y, d_{y}\right)$ is a metric space where $d y$ is the restriction of 2 to $Y \times Y$: for $y_{1}, y_{2} \in Y \quad d_{y}\left(y_{1}, y_{2}\right)=\theta\left(y_{1}, y_{2}\right)$.
Defn: If $E \subseteq Y \subseteq X$ we say E is open relative to Y if E is open in $(Y, d y)$ $\binom{$ equivalently, E is open rel. to Y if }{$\forall p \in E \quad \exists r>0}$ Closed relative to Y is defined similarly.

Thm: Let $E \subseteq Y \subseteq X$. Then E is open rel. to Y if and only if there is open $U \& X$ with
$E=U \cap Y$.

$$
E=u \cap Y
$$

Pf: (\Rightarrow) Assure E is open. rel. to Y. For each $p \in E$ pick $r_{p}>0$ with $B_{r_{p}}(p) \cap Y \leqslant E$.
Set $U=\bigcup_{p \in E} B_{r_{p}}(p)$. Then U is open
ane UnY $\subseteq E$. For every peE,
$p \in B_{r_{p}}(p) \in U \cap Y$ so $E \subseteq$ un and $E=$ un.
(\Leftrightarrow) Assume there is open $U \subseteq X$ with

$$
E=u n y \text {. }
$$

Let $p \in E$. Than jell ad U open so there is $r>0$ with $B_{r}(p) \subseteq U$. Hence

$$
B_{r}(p) \cap Y \leq U \cap Y=E
$$

So E is open rel. to Y,

Lecture 9 Oct 21
HoW 3 due Friday
First midterm next Wed at class tithe and 12 hours prior
Def n：Let (X, d) be a metric space．An open covers of $E \subseteq X$ is a collection $\left\{U_{\alpha}: \alpha \in A\right\}$ of open sets $U_{\alpha} \subseteq X$ with $E \subseteq \bigcup_{\alpha \in A} u_{\alpha}$

Defn：$K \subseteq X$ is compact if every open cover $\left\{u_{\alpha}: \alpha \in A\right\}$ of K contains a finite subcover， meaning the ave $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ with $K \subseteq \bigcup \cup U_{\alpha_{i}}$ ． In other corals，K is compact if the follaixus． statement is true： for every collection EUlas：acA多 with each U_{α} open

$$
\left(K \subseteq \bigcup_{\alpha \in A} u_{\alpha} \rightleftharpoons \exists_{n} \exists_{\alpha_{1}}, \alpha_{2}, \cdots, \alpha_{n} \in A \quad K \subseteq \bigcup_{i=1}^{n} u_{\alpha_{i}}\right)^{0}
$$

Note：Finite sets are compact．

The Assume $K \subseteq Y \subseteq X$. Then K is compact rel. to Y if and only if K is compact ned, to X (Compactness is an intrinsic property)
Pf: (\Rightarrow) Assume k is capet rel. to Y.
Suppose $K \subseteq \bigcup_{a \in A} U_{\alpha}$, each U_{α} open in X.
Then $U_{\alpha} n Y$ is open rel. to Y and since $K \leq Y$

$$
K \subseteq Y \cap\left(U_{\alpha E A} u_{\alpha}\right)=\bigcup_{a \in A}\left(u_{\alpha} \cap Y\right)
$$

So the are $\alpha_{1}, \cdots, \alpha_{n} \in A$ with

$$
K \subseteq \bigcup_{i=1}^{n}\left(u_{\infty i} \cap Y\right) \subseteq \bigcup_{i=1}^{n} u_{\alpha_{i}}
$$

(乡) Assure K ic connect relic to X.
Suppose $K \subseteq \bigcup_{\alpha \in A} V_{\alpha}$, each V_{α} opec rel. to Y. By theorem foin coast' class, there ax
open sets in $X, U_{a} \leq X$, with $V_{\alpha}=U_{\infty} \cap Y$.
Then $K \subseteq \bigcup_{a c A} U_{a}$ so there are
$\alpha_{1}, \ldots, \alpha_{n}^{\text {oed }} A$ with $K \subseteq \bigcup_{i=1}^{n} U_{\alpha_{1}}$.
Since $k \subseteq y$,

$$
K \subseteq y \cap\left(\bigcup_{i=1}^{n} U_{\alpha_{i}}\right)=\bigcup_{i=1}^{n}\left(U_{\alpha i} \cap Y\right)=\bigcup_{i=1}^{n} V_{\alpha_{i}}
$$

The: Compact sets are closed.
Pf: Let (x, d) be matin space, let $K \leqslant X$ be compact, we will show $X \backslash K$ is open. So pick $p \in X \backslash K$. For each $q \in K$ set

$$
u_{q} \in B_{\frac{1}{3} d(p, q)}(q), \quad V_{q}=B_{\left.\frac{1}{3} d p, q\right)}(p)
$$

We have $K \subseteq \bigcup_{q \in K} U_{q}$, so by compactness there are $q_{1}, q_{2}, \cdots, q_{n} \in K$ with $K \subseteq \bigcup_{i=1}^{n} u_{q i}$
Then $\bigcap_{i=1}^{n} V_{q:}=B_{\frac{1}{3} \min \{d(q, q)}, \cdots, d(p, q) 3(p)$
is disjoint with $\bigcup_{i=1}^{n} U_{q i} \geq K$
hence a boll anowi'd'p is contained in $X \backslash K$.
Thus K is closed.

Thin: K compact and $F \subseteq K$ is closed then F is compact as well.
P: Say $\left\{u_{\alpha}: \alpha \in A\right\}$ is open caver of F. F^{c} is open so $\{F C\} \cup\left\{U_{\alpha}: \alpha \in A\right\}$ is an open cover of K. So there are $\alpha_{1}, \cdots, \alpha_{n} \in A$ with

$$
F \subseteq K \subseteq F^{c} \cup \bigcup_{i=1}^{n} U_{\alpha_{i}} \text { so } F \subseteq \bigcup_{i=1}^{n} U_{\alpha_{i}}
$$

Cor: K comport, F closed $\Rightarrow K \cap F$ is compact.
Thy (Finite Inter section Property):
If $K_{0} \subseteq X$ is cmpct for every $\alpha \in A$ and if the intersection of every finite collection from $\left\{K_{\alpha}: \alpha \in A\right\}$ is nonempty, then $\bigcap_{\alpha \in A} K_{\alpha} \neq \varnothing$.
Pf: Tow cords contra, assume $\bigcap_{\alpha \in A} K_{\alpha}=\varnothing$. Fix any $K \in\left\{K_{\alpha} \leq \alpha \in A\right\}$. Then

$$
K \subseteq X=X \backslash \varnothing=X \backslash \bigcap_{\alpha \in A} K_{\alpha}=\bigcup_{\sigma \in A}\left(X \backslash K_{\alpha}\right)
$$

and each $x \backslash K_{\alpha}$ is ger. So three are $\alpha_{1}, \cdots, \alpha_{n} \in A$ with $K \subseteq \bigcup_{i=1}\left(X \backslash K_{\alpha_{i}}\right)$

$$
\begin{aligned}
& \text { Then } \\
& K \cap K_{i=1} \\
& \alpha_{1}
\end{aligned} \subseteq\left(\bigcup_{i=1}^{n}\left(x \backslash K_{\alpha_{i}}\right)\right) \cap\left(\bigcap_{i=1}^{n} K_{\alpha_{1}}\right)=\varnothing \text {, }
$$

contradiction.

Cor: If $K_{n} \neq \varnothing$ compact an\& $K_{n+1} \subseteq K_{n}$ for all n then $n_{n \in \mathbb{N}} k_{n} \neq \varnothing$.
Thu ' K comport and $E \subseteq K$ is infinite the $E^{\prime} \cap K \neq \varnothing$

Note: K is closed so $E^{\prime} \subseteq K^{\prime} \subseteq K$
Proof next class...

Lecture 10 Oct 23
How 3 due today
First Midterm Wednesday at class time and 12 hours prior
The 2.37: If K is compact and $E \subseteq K$ is infinite then $E^{\prime} \cap K \neq \varnothing$.

Pf: Towards a contra., assume $E^{\prime} \cap K=\phi$.
This meas for each' $q \in K$ there is $r_{q}>0$ with ($B_{r}(q) \backslash\left\{q z_{0}, \cap E=\varnothing\right.$, meaning $u_{q}=B_{i q}(q)$ satisfies $u_{q} \cap E \subseteq \varepsilon_{q} z_{\text {. }}$
Then $k \subseteq \bigcup_{q \in K} U_{q}$ so by compactness there are $q_{1}, \cdots, q_{n} \in k^{q \in k}$ with $k \subseteq \bigcup_{i=1}^{n} u_{q}$. Then

$$
|E|=|E \cap K| \leq\left|E \cap\left(\bigcup_{i=1}^{n} u_{q}\right)\right|=\left|\bigcup_{i=1}^{n}\left(E \cap u_{q_{i}}|\leq| q_{i}, \cdots, q_{n}\right\}\right|=n
$$

So E is finite, contradiction.
The 2.38: If $I_{n}=\left[a_{n}, b_{n}\right], a_{n} \leqslant b_{n}$, and $I_{n+1} \leqslant I_{n}$ for all no \mathbb{N} then $n_{n \in \mathbb{N}} I_{n} \neq \phi$.
If: For all $n, m \quad a_{n} \leq a_{n+m} \leq b_{n+m} \leq b_{n}$.
So b_{m} is upperbound to $\left\{a_{n}: \wedge \in \mathbb{N} 马\right.$ for all m. So $\alpha=\sup \left\{a_{n}: n \in \mathbb{N} \xi\right.$ exists and $a_{n} \leqslant \alpha \leqslant b_{m}$ for all m. Thus $\alpha \in n_{n \in \mathbb{N}} I_{n}$. II

Thy 2.39: Suppose $C_{n}=\left[a_{n_{1}}, b_{n_{1}} I \times\left[a_{n_{2}}, b_{n_{2}}\right] \times \cdots \times\left[a_{n_{k}}, b_{n_{k}}\right]\right.$

$$
\subseteq \mathbb{R}_{3}^{k}
$$ and $C_{n} \neq \varnothing$ and $C_{n+1} \subseteq C_{n}$ for all n. Then $n_{n \in \mathbb{N}} C_{n} \neq \mathbb{P}_{\infty}$.

$$
\text { Pf: } \bigcap_{n \in \mathbb{N}} C_{n}=\left(\bigcap_{n \in \mathbb{N}}\left[a_{n}, b_{n} I\right) \times \cdots \times\left(\bigcap_{n \in \mathbb{N}}\left[a_{k}, b_{n k}\right]\right) \neq \varnothing\right.
$$

Thy 2.40: $C=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{k}, b_{k}\right]$ is compact,
Pf: Set $\delta=\sqrt{\sum_{i=1}^{k}\left|b_{i}-a_{i}\right|^{2}}$ (length of longest diagonal). Towards contra., suppose $\left\{U_{a} ; \alpha e A 3\right.$ is an open Cover of C having no finite sulbcuper of C, Cut at the midpoint of each side of C to divide C into 2^{k} many rectangles.
Some pieces, call it C, does not admit a finite subcover. Proceed inductively repeating this process, building $\left(C_{n}\right)_{n \in \mathbb{I}_{+}}$with
(1) $C \supseteq C_{1} \supseteq C_{2} \supseteq \cdots$
(2) C_{n} does not admit a finite subcover from $\left\{U_{\alpha} ; \propto \otimes A\right\}$
(3) $\forall \vec{x}, \vec{y} \in C_{n}|\vec{x}-\vec{y}| \leqslant 2^{-n} \cdot \delta$

By prior theorem, $n_{n \in \mathbb{Z}_{+}} C_{n} \neq \varnothing$. Pick $\vec{z} \in \bigcap_{n \in \mathbb{Z}_{+}} C_{n}$.
Pick $\alpha \in A$ with $\vec{z} \in U_{\alpha}$. Since U_{α} open, there is $r>0$ with $B_{r}(z ゙) \subseteq U_{\alpha}$, Pick with $2^{-1}, \delta<r$ then (3) implies $C_{n} \subseteq U_{a}$ since $\vec{z} \in C_{n}$, So C_{n} admits a finite subcover, contra dicing (2)

The 2.41: For $E \subseteq \mathbb{R}^{k}$ the following are equivalent.
(1) E is closed and bounded
(2) E is compact
(3) Every infinite subset of E has a limit point in E.

Pf: $(\mathbb{Q} \neq(3)) E$ bounded nears $E \leq C$, for some $C=\left[a_{1}, b_{1}\right] x \cdots \times\left[a_{x}, b_{x}\right] . C$ is comp ret and $E \subseteq C$ is closul so E is compact.
(3) $\rightarrow(3)$ this is Theorem 2.37
(3) \Rightarrow (D) Towards contra, appose E is not bonded. The for every $n \in \mathbb{N}$ we con find $\vec{x}_{n} \in E$ with $\left|\vec{x}_{n}\right|>n$. Set $S=\left\{\vec{x}_{n}: n \in \mathbb{N}\right\}$.
Claims $S^{\prime}=\varnothing$. Let $\vec{p} \in \mathbb{R}^{k}$. Then

$$
\vec{x}_{n} \in B_{1}\left(\vec{p}_{p}\right) \Rightarrow\left|\vec{x}_{n}\right| \leqslant\left|\vec{p}_{p}\right|+1 \Rightarrow n \leqslant|\vec{p}|+1 .
$$

So $B_{1}(\vec{p}) \cap S$ is flite hence $\vec{p} \& S^{\prime}$.
Thus $S^{\prime}=\varnothing$. This contradicts (3)
Let $\vec{p} \in E^{\prime}$. For each $n \in \mathbb{Z}_{+}$pick $\overrightarrow{x_{n}} \in E$ with $O<\left|\vec{x}_{n}-\vec{p}\right|<\frac{1}{n}$. Set $S=\left\{\vec{x}_{n}, n \in \mathbb{Z}_{4}\right.$, , Claim: $S^{\prime}=\frac{p}{4} \vec{p}^{\prime} \frac{1}{5}$. Clearly $\vec{p} \in S^{\prime}$.
Consider $\vec{p} \neq \vec{q} \in \mathbb{R}^{k}$. Pick $N \in \mathbb{N}$ with $|\vec{q}-\vec{p}|>\frac{2}{N}$. If $\vec{x}_{n} \in B_{\frac{1}{N}}(\vec{q})$ then

$$
\left|\vec{x}_{n}-\vec{p}\right| \geq|\vec{q}-\vec{p}|-\left|\vec{x}_{n}-\vec{q}\right|>\frac{2}{N}-\frac{1}{N}=\frac{1}{N}
$$ and thus $n \leq N$. So $B_{1}(\vec{q}) \cap S$ is finite So $\vec{q} \in S^{\prime}$. Thus $S^{\prime}=\left\{\vec{p} 3^{n}\right.$

(3) implies $\vec{p} \in E$. Thus E closed

Note: Equivalence of (1) and (2) is known as the Heine-Borel Theorem.
Thy 2.4z (Bolzano-Weierstrauss):
Every bounded infinite subset of \mathbb{R}^{k} has a limit point in \mathbb{R}^{k}.

Pf: Take the closure and apply (1) \Rightarrow (3) of previous theorem.

Lecture 11 Oct 26
First Midterm on Wednesday - see course webpage for detailed instructions
My office hows this week: M 6:30-8:00 PM, Tu 12:00-1:30 PM, Th 1:00-2:00 PM HoW 4 due Friday
Recall: $p \in E^{\prime} \Rightarrow \forall r>0 \quad\left(B_{r}(p) \backslash\{p\}\right) \cap E$ is infinite So if U is open and $U \cap E^{\prime} \neq \varnothing$ then $U \cap E$ is infinite.

Note: For any metric space (X, d)

$$
\overline{B_{r}(p)} \subseteq\{q \in X: d(p, q) \leqq r\}
$$

Proof is an exercise
Thm 2.43:, If $P \subseteq \mathbb{R}^{k}$ is perfect $\left(P^{\prime}=P\right)$ and $P \neq \varnothing$ then P is uncountable.

Pf: Since $P^{\prime}=P \neq \varnothing$, we must have that P is infinite.
Towards a contrice, suppose

$$
P=\left\{\overrightarrow{x_{0}}, \overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \ldots\right\} .
$$

We will inductively build sets $V_{n}, n \in \mathbb{N}$, satosfuing:
(1) V_{n} is open
(2) $V_{n} \cap P \neq \varnothing$
(3) when $n \geq 1, \quad \bar{V}_{n} \subseteq V_{n-1}$
(4) when $n \geq 1, \quad \vec{x}_{n-1} \notin V_{n}$

To begin, set $V_{0}=B_{1}\left(\vec{x}_{0}\right)$. Now inductively
cossumpe that V_{0}, \cdots, V_{n} have been deftruce.
(1) and (B) imply that $V_{n} \cap P$ is infmite. So we can pick $\vec{y} \in V_{n} \cap p$ with $\vec{y} \neq \overrightarrow{x_{n}}$.
$r>0$.
Let $r<d\left(\vec{y}, \vec{x}_{n}\right)$ be small en ugh so that $B_{r}(\vec{y}) \subset V_{n}$. Now set $V_{n+1}=B_{r / 2}(\vec{y})$. Set $K_{n}=\bar{V}_{n} \cap P$. Then K_{n} is compact and nonempty and $K_{n+1} \subseteq K_{n}$, so
by finite intersection property, (Thin. 2.36)
there is $\vec{Z} \in \cap_{n \in \mathbb{N}} K_{n}$. Each $K_{n} \subseteq P$ so $\vec{Z} \in P$.
Hence thane is ${ }^{n \in \mathbb{N}} n \in \mathbb{N}$ with $\vec{z}=\vec{x}_{n} \in P$. But
(4) $\vec{z}=\vec{x}_{n} \& K_{n+1}$, a contradiction.

Cor: For all $a<b \in \mathbb{R},[a, b]$ is perfect hence uncountable. Similarly \mathbb{R} is uncantable.
Ex: Build a seq, of sets:

$$
\begin{aligned}
& E_{0}=[0,1 I \\
& E_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right] \\
& E_{2}=\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right]
\end{aligned}
$$

Keys on removing the midele-thind
from each interval.

$$
C=\bigcap_{n \in \mathbb{N}} E_{n} \text { is the Cantor set }
$$

- Each En is compact, so C is nonempty and compact
- En contains no interval of length greater than 3^{-n}, so C contains no intervals
- Each endpoint of each E_{n} is in C, and these endpoints are dense in C, so C is perfect.
- Since C perfect, it is un countable.

Review
Two properties defining sup's (also inf's) lab property

- know when sup's ald inf's exist in \mathbb{R} (The. LII)

Ordered fields
Properties of \mathbb{R} : archimedean, density of \mathbb{Q} (Thm. 1.20) existence add wiqueniss of roots (Tho, 1.21)

$$
\mathbb{C}, \mathbb{R}^{k}
$$

Cardinality via bijection
Operations that preserve being cantable
Diagnolization me thad for shaving set is uncountable
Definition of metric spaces
Triangle inequality
Definition of limit points, closed setts
Definition of interior points, open sets
E open $\Leftrightarrow E^{c}$ clorech.
Prove $\overline{B_{r}(p)} \subseteq\{q \in X: O(p, q) \leqslant r\}$
Pf: Clearly $\operatorname{Br}(p) \leq\{q \in X: d(p, q) \leq r\}$. Do
suffices to check $B_{r}(p)^{\mid} \subseteq\{q \in x: d(p, q) \in r\}$.
let $x \in B_{r}(p)$. Towards a conte, suppose $d(p, x)>r$. Set $R=d(p, x)-r$. Then $R>0$ and
Slue $x \in B_{r}(p)^{\prime}$ there is $y \in\left(B_{R}(x) \backslash\{x \xi) \cap B_{r}(p)\right.$.
Then $\begin{aligned} d(p, x) & \leqslant d(p, y)+d(y, x) \\ & <r+R=d(p, x)\end{aligned}$

$$
<r+R=d(p, x)
$$

So $d(p, x)<d(p, x)$, a contradiction.
Thus $d(p, x) \leq r$ and $x \in\{q \in X: d(p, q) \leq r\}$.

If $(X, 2)$ is as in Ch. 2 Prob 10 (Lw) and $r=1$ then
but $\quad \begin{aligned} & B_{r}(p)=\left\{p \beta=\overline{B_{r}(p)}\right. \\ & q \in X: d(p, q) \leq 1\}=X\end{aligned}$
Ch. 1 Prob 15
Cauchy-Schwow

$$
\begin{aligned}
0 \leqslant \sum_{i=1}^{k}\left|B a_{i}-C b_{i}\right|^{2} & = \\
& = \\
& =B\left(A B-|C|^{2}\right)
\end{aligned}
$$

Equally ff $\forall i \quad B a_{i}-C b_{i}=0$

$$
\begin{aligned}
B a_{i} & =C b_{i} \\
a_{i} & =\frac{C}{B} \cdot b_{i}
\end{aligned}
$$

Lecture 12 Oct 30
HF 4 due Monday 9:00 PM
Defy: A, B subsets of metric space (X, C)
are separated if $\bar{A} \cap B=\varnothing$ and $A \cap B=\varnothing$. $E \subseteq X$ is connected if E is not the union of two nonempty separated sets
Nate: Separated is stronger than di sjeint.
$\cdot(0,1)$ and $(1,2)$ are separated land disjoint)

- (0,1 and $(1,2$) are nat separated but dissent

The 2.47: $E \subseteq \mathbb{R}$ is connected iff $\forall x \leq y \in E \quad[x, y] \in E$.
Pf: Assume there are $x \leq y \in E$ with $[x, y \perp \notin E$
Pick $x<z<y$ with $z \in E$. Set

$$
A=E \cap(-\infty, z), B=E \cap(z,+\infty)
$$

Then A, B are nonempty $(x \in A, y \in B)$
And sine $\bar{A} \subseteq(-\infty, 2]$ and $\bar{B} \subseteq I I,+\infty)$, A and B ar separated. Also $A \cup B=E$ so E is not connected.

Next assure e F is not connected. Say A, B
rower pt y separated and $E=A \cup B$. nowempty, separated and $E=A \cup B$. Pick $x \in A$ and $y \in B$. By swapping A and B we can assure $x<y$. Set

$$
\frac{z}{A \cap \Gamma}=\sup _{C} A \cap[x, y]
$$

Then $z \in \overline{A n[x, y]} \subseteq \bar{A}$ hence $z \& B$.
If $Z \notin A$ then $Z \notin E$ hence $[x, y] \notin E$ as $I \in I x, y I D$. If $z \in A$ then $z \& \bar{B}$. Since $z \in \overline{\left(I, y^{\top}\right.}$ we must have $(z, y \neq B$. So there is $z^{\prime} \in\left(z, y I \backslash B\right.$. Also $z^{\prime} \& A$ sauce $z^{\prime}>z$, Thus $z^{\prime} \in I x, y I \backslash(A \cup B)=I x, y I \backslash E$. So $q x, y I \& E$.

Defn: A seq. $\left(p_{n}\right)_{n \in \mathbb{N}}$ in a metric space (x, d) converges if there is $p \in X$ with $\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall n \geq N \quad d\left(p_{1}, p\right)<\varepsilon$
In this case we say $\left(p_{n}\right)_{n} \in \mathbb{N}$ converges to p or has limit p and write $p_{n} \rightarrow p$ or $\lim _{n \rightarrow \infty} p_{n}=p$. If $\left(p_{n}\right)_{n \in \mathbb{N}}$ does not converge we say it diverges
Deft: The range of $\left(p_{n}\right)_{n \in \mathbb{N}}$ is $\varepsilon p_{n}: n \in \mathbb{N}$

- $\left(p_{n}\right)_{n \in \mathbb{N}}$ is bounded if the range is bounded.

Thy 3.2:
(A) $\left(p_{n}\right)$ converges to p inf $\forall \varepsilon>0 ~ \exists N \in \mathbb{N} \forall n \geqslant N \quad p_{n} \in B_{\varepsilon}(p)$
(B) If $\left(p_{n}\right)$ converges to p and p^{\prime} then $p=p^{\prime}$
(C) $\left(p_{n}\right)$ converges $\Rightarrow\left(p_{n}\right)$ bounded
(P) If $E \subseteq X$ and $p \in E^{\prime}$ then $\exists \operatorname{ser}\left(p_{n}\right)$ in E and $p_{n} \rightarrow p$
(E) If $\forall p_{n} \in E$ and $p_{n} \rightarrow p$ the $p \in \bar{E}$

Pf: (A) This follows firm fact $d\left(p_{n}, p\right)<\varepsilon \Leftrightarrow p_{n} \in B_{\varepsilon}(p)$
(B) Let $\varepsilon>0$. Pick $N N^{\prime}$ with
(B) Let $\varepsilon>0$. Pick N, N with
$\forall_{n} \geqslant N d\left(\rho_{n}, p\right)<\varepsilon / 2$ and $\forall_{n} \geqslant N^{\prime} d\left(\rho_{n}, \rho^{\prime}\right)<\varepsilon / 2$
Then using $n=\max \left(N_{g} N^{\prime}\right)$ we obtain

$$
d\left(p, p^{\prime}\right) \geq d\left(p, p_{0}\right)+d\left(p, p^{\prime}\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

Since ε was arbitrary, $d\left(p, p^{\prime}\right)=0$ and $p=p^{\prime}$.
(C) Say $p_{n} \rightarrow p$. p_{i} ck N with $\forall_{n} \geqslant N d(p, p)<1$.

$$
\text { Set } r=\max \left(1, d(p, p), d\left(p_{1}, p\right), \cdots, d\left(p_{N-1}, p\right)\right)
$$

Then $\forall_{n} \in \mathbb{N} d\left(p_{n}, p\right) \leq r$ so $\left\{p_{n} \cdot n \in \mathbb{N} \xi\right.$ is bounded.
(D) For each $n \in \mathbb{Z}_{+}$, pick $p_{n} \in E \cap B_{y}(p)$. Given $\varepsilon>0$ pick $N \in \Pi_{+}$, with $\frac{1}{N}<\varepsilon \quad(N \varepsilon>1)$. For $n \geqslant M$ $d\left(\rho_{n}, p\right)<\frac{1}{n} \leqslant \frac{1}{N}<\varepsilon$. This $\rho_{n} \rightarrow p$.
(E) If $P \in E$ then we are done $(p \in E)$.

Assume $p \in E$. The for every $r>0$ there is n with $p_{n} \in B_{r}(p) \cap E=\left(B_{r}(p) \backslash s p i\right) \cap E$ Thus $\left(B_{1}(p) \backslash \xi p^{3}\right) \cap E \neq \varnothing$ so $p \in E^{\prime}$.

Thy 3.3: Suppose $\left(s_{n}\right)_{n e / N},\left(t_{n}\right)_{n c i N}$ are $r e q ' s$ in \mathbb{C} with $s_{n} \rightarrow s$ ard $t_{n} \rightarrow t$. Then
(1) $\lim _{n \rightarrow \infty}\left(s_{n}+t_{n}\right)=s+t$
(2) $\forall c \in \mathbb{C}$ ($\lim _{n \rightarrow \infty}\left(s_{n}+c\right)=s+c, \lim _{n \rightarrow \infty}\left(c \cdot s_{n}\right)=c \cdot s$
(3) $\lim _{n \rightarrow+\infty} s_{n} t_{n}=s t$
(4) $\lim _{\rightarrow \infty} \frac{1}{\delta_{n}}=\frac{1}{s}$ if $s \neq 0$ ard $\forall n \in \mathbb{N} s_{n} \neq 0$.
(5) $\left.\forall n \in \mathbb{N} \quad s_{n}, t_{n} \in \mathbb{R}, s_{n} \leq t_{n}\right) \Longrightarrow s \leq t$

Pf: (1) For $\varepsilon>0$ prick N_{1}, N_{2} with

$$
\forall n \geqslant N_{1} \quad\left|s_{n}-s\right|<\varepsilon / 3, \quad \forall n \geqslant N_{2} \quad\left|t_{n}-t\right|<\varepsilon / 2
$$

Then for $n \geq \max \left(N_{1}, N_{2}\right)$

$$
\left|\left(s_{n}+t_{n}\right)-\left(s_{x+}\right)\right| \leq\left|s_{n}-s^{\prime}\right|+\left|t_{n}-t\right|<\varepsilon
$$

Thus $s_{n}+t_{n} \rightarrow s+t$.
(2) Exercise
(3)

$$
\begin{aligned}
\text { Exercise } & \left(s+\left(s_{n}-s\right)\right)\left(t+\left(t_{n}-t\right)\right) \\
s_{n} t_{n} & = \\
& =s t+t\left(s_{n}-s\right)+s\left(t_{n}-t\right)+\left(s_{n}-s\right)\left(t_{n}-t\right)
\end{aligned}
$$

T_{0} see $\left(s_{n}-s\right)\left(t_{n}-t\right) \rightarrow 0$ let $\varepsilon>0$ and pick N_{1}, N_{2} with

$$
\forall n \geqslant N_{1}\left|s_{n}-s\right|<\sqrt{\varepsilon}, \quad \forall n \geqslant N_{2}\left|t_{n} \cdot t\right|<\sqrt{\varepsilon} .
$$

Then for $n \geq \max \left(N_{1}, N_{2}\right)^{1}$

$$
\begin{aligned}
& \text { for } n=m a x u N_{1}, N / 2 \\
& \left|\left(s_{n}-s\right)\left(t_{n}-t\right)-0\right|=\left|s_{n}-s\right| \cdot\left|t_{n}-t\right|<\varepsilon
\end{aligned}
$$

$$
\begin{aligned}
\lim \left(s_{n} t_{n}\right) & =\lim \left(\left(s+\left(s_{n}-s\right)\right)\left(t+\left(t_{n}-t\right)\right)\right)^{\prime} \\
& =\lim \left(s t+t\left(s_{n}-s\right)+s\left(t_{n}-t\right)+\left(s_{n}-s\right)\left(t_{n}-t\right)\right) \\
& =s t+t \cdot \lim \left(s_{n}-s\right)+s \cdot \lim \left(t_{n}-t\right)+\lim \left(s_{n}-s\right)\left(t_{n}-t\right) \\
& =s t+0+0+0=s t
\end{aligned}
$$

- Proof of (4) and (5) next class.

Lecture 13 Nov 2
Hw 4 due today
Hw 5 due Friday
How 5 due Friday
(4) $\lim _{x \rightarrow \infty} \frac{1}{\delta_{n}}=\frac{1}{s}$ if $s \neq 0$ and $\forall n \in \mathbb{N} s_{n} \neq 0$.
(5) $\left(\forall n \in \mathbb{N} \quad s_{n}, t_{n} \in \mathbb{R}, s_{n} \leqslant t_{n}\right) \Longrightarrow s \leq t$

Pf: (4) Choose m with $\forall n \geq m\left|s_{n}-s\right|<\frac{1}{2}|s|$.
Tho for $n \geqslant m\left|s_{n}\right|>\frac{1}{2}|s|$. Now let $\varepsilon>0$ and pick $N \geq_{m}$ with $\forall_{n} \triangleq N| | s_{n}-\left.s\left|<\frac{1}{2}\right| s\right|^{2} \varepsilon$,
Then for $n \geq N$

$$
\left|\frac{1}{s_{n}}-\frac{1}{s}\right|=\frac{\mid s-s .1}{s_{n} s \mid}<\frac{1}{\frac{1}{2}|s|^{2}} \cdot\left|s-s_{n}\right|<\varepsilon
$$

Thus $\frac{1}{s_{n}} \rightarrow \frac{1}{s .}$
(5) For every $n, t_{n}-s_{n}$ lies in the closed
set $[0,+\infty) \subseteq \mathbb{R} \leq \mathbb{C}$. Thus $t-s=\lim _{n \rightarrow \infty}\left(t_{n}-s_{n}\right] \in[0,+\infty)$ so $\sigma \leqslant t$.

Thy 3.4: (A) If $\vec{x}_{n}=\left(\alpha_{1}, \alpha_{2_{n}}, \cdots, \alpha_{k_{n}}\right) \in \mathbb{R}^{k}$ then
$\vec{x}_{n} \rightarrow \vec{x}=\left(\alpha_{1}, \cdots, \alpha_{k}\right)$ if $\forall 1 \leqslant i \leqslant k \quad \alpha_{i n} \rightarrow \alpha_{i}$
(B) Let $\left(\vec{x}_{n}\right),\left(\vec{y}_{n}\right)$ be seq's in \mathbb{R}^{K} with
$\vec{x}_{n} \rightarrow \vec{x}, \overrightarrow{y_{n}} \rightarrow \vec{y}$. Let $\left(\beta_{n}\right)$ be seq in \mathbb{R} with $\beta_{n} \rightarrow \beta$. Then

- $\vec{x}_{n}+\vec{y}_{n} \rightarrow \vec{x}+\vec{y}_{y}$
- $\vec{x}_{n} \cdot \vec{y}_{n} \rightarrow \vec{x} \cdot \vec{y}$
- $\beta_{n} \vec{x}_{n} \rightarrow \beta \vec{x}$

Pf: (A) follow from the following inequalities:

- $\forall 1 \leq i \leq k \quad\left|\alpha_{i}-\alpha_{i}\right| \leq\left|\vec{x}_{n}-\vec{x}\right|$
- $\left|\vec{x}_{n}-\vec{x}\right|=\left(\sum_{i=1}^{k}\left|\alpha_{n i}-\alpha_{i}\right|^{2}\right)^{1 / 2} \leqslant \sqrt{k} \cdot\left(\max _{1 \leqslant i \leqslant k}\left|\alpha_{n_{i}}-\alpha_{i}\right|\right)$
(B) follows from (A) and previous theorem.

Deft: If $n_{1}<n_{2}<n_{3}<\cdots$ are integers in \mathbb{N} (or \mathbb{Z}_{+}) then $\left(p_{n_{i}}\right)$ ied (or $\left.\left.\left(p_{n_{i}}\right)\right)_{i \in \mathbb{Z}_{4}}\right)$ is called a subsequence of (p_{n}), If ($p_{n_{i}}$) converges, its limit is called a subsequential limit of $\left(p_{n}\right)$.

Thin: A point q in a metric space (X, l) is a subsaq, limit of $\left(p_{n}\right)_{\text {NAN }}$ if f

$$
\mathcal{G}_{r}>0\left\{\begin{array}{l}
\left.0 \in \mathbb{X}: p_{n} \in B_{r}(q)\right\} \text { is infinite }
\end{array}\right.
$$

If: First assume ($p_{n_{i}}$) is subset with $p_{n i} \rightarrow q$,
Let $r>0$. Pick N with $\forall i \geq N d\left(p_{n_{i}}, q\right)<r$. Then $\left\{n_{N}, n_{N+1}, n_{N+2}, \cdots\right\}_{j} \subseteq\left\{\begin{array}{l}\left\{\mathbb{N}: p_{n} \in B_{r}(q)\right\} \\ \}\end{array}\right.$ thus $\left\{\begin{array}{l}\mathbb{N}: p_{n} \in \operatorname{Br}(q) \mathcal{S}_{3} \text { is inf nite. }\end{array}\right.$

Now assume $\forall r>0$ 解 $n \in \mathbb{N}_{n} \in B_{r}(q) \frac{3}{3}$ is infinite. pick any n_{0} with $p_{n_{1}} \in B_{1}(q)$. Once $n_{0}<\cdots<n_{i-1}$ have been defined, pick $n_{i}>n_{i-1}$ with $p_{n_{i}} \in B_{y_{i}}(q)$. This defines a selbreq ($\left.p_{n_{i}}\right)_{i \in \mathbb{N}}$. Let $\varepsilon>0$. Pick N with $\frac{1}{N}<\varepsilon$. Then for $i \geqslant N$ $d\left(p_{n_{i}}, q\right)<\frac{1}{i} \leqslant \frac{1}{N}<\varepsilon$ since $p_{n_{i}} \in B_{y_{i}}(q)$. Thus $p_{n_{i}} \rightarrow q$,

Cor: If $q \in\left\{p_{n}: n \in \mathbb{N}\right\}^{\prime}$ then q is a subset, (Imit E (po)
ff: Let $r>$. Set $I=\left\{_{n} \in \mathbb{N}: p_{r} \in B_{r}(q)\right\}$. Then $\left\{_{p_{i}}: i \in I \bar{g}=\left\{p_{n}: \cap \in \mathbb{N} \cap \cap B_{r}(q)\right.\right.$ and the right-hand set is infinite she e
 so I must be infinite as well.

Thy 3.6: (A) If $(p a)$ seq. in comport metric space $(X$, , $)$
then (pa) has a suibseq. limit.
(B) Every bounded seq. in \mathbb{R}^{c} has a convergat sabseq.
Pf: (A) Sot $E=\left\{q_{p_{n}: n \in N} n_{3}\right.$. If E is finite then there must be some $p \in E$ ail $n_{1} \times n_{2}<n_{3}<\cdots$ with $\forall_{i}^{\prime} p_{n}=p$. So $p_{n i} \rightarrow p$.

If E is infuite then $E^{\prime} \neq \varnothing$ by earlier theorem. Thus (p_{n}) has a subsec lunk by
previous corollary. previous corollary.
(B) follows from (A) and Heine-Bonel theoreon.

Thin 3.7 The set of all subseq limits of $\left(p_{n}\right)$ is a closed set.

Pf: Let E^{*} be set of all cubseg, limits of (pu). Let $q \in\left(E^{*}\right)^{\prime}$. Let $r>0$. Since $q \in\left(E^{*}\right)^{\prime}$ we con pick $x \in\left(B_{r / 2}(q) \backslash\{q \xi) \wedge E^{*}\right.$. Notice that $B_{r / 2}(x) \subseteq B_{r}(q)$
(if $w \in B_{r, 2}(x)$ then $\left.d(q, w) \leq d(q, x)+d(x, w)<r\right)$),
and hence $w \in B_{r}(q)$
Since $x \in E^{*}, \quad\left\{n \in \mathbb{N}: p_{n} \in B_{r / 2}(x)\right\}$ is infinite.
Then tore $\left\{\begin{array}{l}G \in \mathbb{N}: p_{n} \in B_{r}(q) \sum_{3} \text { is in finite since }\end{array}\right.$ it contains $\left\{\begin{array}{l}n \in \mathbb{N}(1 ;\end{array} p_{n} \in B_{r / 2}(x) \frac{3}{2}\right.$ By prior theorems $q \in E^{*}$. We con chicle E^{*} is close o.

Defn: A seq (p_{n}) in a metric space (x, C) is Cauchy if

$$
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall n, m \geq N \quad d\left(p_{n}, p_{m}\right)<\varepsilon
$$

Defn: The diameter of nonempty $E s X$ is $\operatorname{diam} E=\sup \{d(p, q): p, q \in E\}$ if the supnemum exists (otherwise diam $E=\infty$)
Obs: $\left(p_{n}\right)$ Cauchy $\Leftrightarrow \lim _{n \rightarrow \infty} \operatorname{diam}^{\{ }\left\{p_{n}, p_{n+1}, p_{n+2}, \cdots\right\}=0$

Lecture 14 Nov 4
Hew 5 due Friday
The 3.10: Let (x, c) be metric space
(A) If $\varnothing \neq E \subseteq X$ and diam E exists then $\operatorname{dian} \bar{E}=\operatorname{diam} E$
(B) If K_{n} compact, none empty, $K_{1} \geq k_{n+1}$, and $\lim _{n \rightarrow \infty} \operatorname{dia}_{n} K_{n}=0$ then $\cap_{n \in \mathbb{N}} k_{n}$ is a singleton
Pf: A) Clewly dian $\bar{E} \geq$ diam E since $\bar{E} \geq E$. let $p, q \in \bar{E}$. Let $\varepsilon>0$ and pick $p^{\prime}, q^{\prime} \in E$ with $d\left(p>p^{\prime}\right), d\left(q, q^{\prime}\right)<\varepsilon$. Then

$$
\begin{aligned}
d(p, q) & =d\left(p>p^{\prime}\right), d\left(q, q^{\prime}\right)<\varepsilon . \\
& <2\left(p, p^{\prime}\right)+d\left(p^{\prime}, q^{\prime}\right)+d\left(q^{\prime}, q\right) \\
& <2 \text { dian } E .
\end{aligned}
$$

This holds for all $\varepsilon>0$ so $d(p, q) \leqslant \operatorname{diam} E$. This hold e fircull $\theta, q \in E$ so dian $\bar{E} \leqslant \operatorname{dian} E$.
(B) Set $K=n_{n \in \mathbb{N}} K_{n}$. Then $K \neq \varnothing$ by Thin 2.36 and $\operatorname{diam} K \leq \operatorname{diam} K_{n}$ for all n since $K \subseteq K_{n}$. Thus diam $k=0$ and hence k consists of a single point

The 3.11: (1) For any metric space (x, d) if $\operatorname{seq}\left(p_{n}\right)$ converges, then (p_{n}) is cauchy.
(2) If (X, O) is compact and $\left(p_{n}\right)$ Cauchy
(3) In \mathbb{R}^{k} every cauchy sequence
conner ores (cauchy Crit converges (Cauchy Criterion)
Pf: (1) Say $P_{n} \rightarrow p$. Let $\varepsilon>0$. Pick N with $\forall_{n} \geqslant N d\left(p_{n}, p\right) \varepsilon \varepsilon / 2$. Then for $n, m \geq N$ we have

$$
d\left(p_{n}, p_{m}\right) \leq d\left(p_{n}, p\right)+d\left(p, p_{m}\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

Thus $\left(p_{n}\right)$ is Cauchy.
(3) Set $E_{n}=\left\{p_{n}, \rho_{n+1}, p_{n+2}, \cdots, 3\right.$. Since $\left(p_{n}\right)$ is Cauchy, $\lim _{n \rightarrow \infty} \operatorname{diam}_{n+1} E_{n}=0$ by Thy $3,10(A)$. X is conpct so each \bar{E}_{n} coipect and $\bar{E}_{n} \geq \overline{E n+1}$. So by Thy 3.10 (B) $\bigcap_{n \in \mathbb{N}} E_{n}=\{p \xi$ for some $p \in X$. Now leet $\varepsilon>O$ and picks N with diam $\bar{E}_{N}<\varepsilon$. Then for $n \geq N$, we have $p_{n} \in E_{n} \subseteq \bar{E}_{N}$ and $p \in \bar{E}_{N}$ So $d\left(p_{n}, p\right) \leq \operatorname{diam} \bar{E}_{N}<\varepsilon$. Thus $p_{n} \rightarrow p$.
(3) Say (\vec{x}_{n}) Cauchy seq in \mathbb{R}^{k}. Pick N with dian $\left\{\vec{x}_{N,}, \vec{x}_{N+1}, \cdots \geqslant<1\right.$. Then for $n \geqslant N$

$$
\left|\vec{x}_{n}\right| \leq\left|\vec{x}_{N}\right|+\left|\vec{x}_{A}-\vec{x}_{N}\right|<\left|\vec{x}_{N}\right|+1
$$

So $\left\{\vec{x}_{0}, \vec{x}_{1}, \cdots\right\} \stackrel{N}{c} B_{r}(\overrightarrow{0})$ where $r=1+\min \left(\left|\vec{x}_{0}\right|, \cdots,\left|\vec{x}_{N}\right|\right)$. By Helne-Bord theorem, $\left(\vec{x}_{n}\right)$ is a seq in the compact set $\overline{B_{r}(\overrightarrow{0})}$, hence converges by (2).

Defn: A metric space (x, d) is complete if every Cauchy sequence converges.
Ex: Compact spaces, Euclidean spaces, closed subsets of theron are complete.
Non-ex: \mathbb{Q} is not complete
Fact: \mathbb{R} is the smallest Complete metric space containing \mathbb{Q} (Cauchy construction)
Dean: A seq. (s_{n}) in \mathbb{R} is

- monotone increasing if $\forall n s_{n} \leqslant s_{n+1}$
- Monotone decreasing if $\forall n s_{n} \geq s_{n+1}$
- monotone if either of the above.

Thy 3.14: Suppose (s_{n}) is monotone. Then $\left(s_{n}\right)$ converges of $\left(s_{n}\right)$ is bounded
Rf: (\Rightarrow) follows by Thm 3.2
(\Leftrightarrow) let's say (sn) is monotone in creasing the other case is similar) Since (bn) is bounded, $s=\sup \left\{S_{n}: n \in \mathbb{N}\right\}_{3}$ exists let $\varepsilon>0$. Since $s-\varepsilon$ is not an upper bound to $\left\{s_{n}: n \in \mathbb{N}\right\}$, So thane is N with $S_{N}>S-\varepsilon$. The for $n \geqslant N$ $s-\varepsilon<S_{N} \leqslant S_{n} \leqslant s$ hence $\left|s-s_{n}\right|<\varepsilon$. we conclude $S_{n} \rightarrow S$.

Defn: For a seq. $\left(s_{n}\right)$ in \mathbb{R} we write

- $\lim _{n \rightarrow+\infty} s_{n}=+\infty$ or $s_{n} \rightarrow+\infty$ if $\forall M \in \mathbb{R} \quad \exists N \in \mathbb{N} \quad \forall_{n} \geqslant N \quad s_{n} \geqslant M$
- $\lim _{1 \rightarrow \infty} s_{n}=-\infty$ or $s_{n} \rightarrow-\infty$ if $\forall M \in \mathbb{R} \Xi N \in \mathbb{N} \quad \forall_{n} \geqslant N \quad s_{n} \leqslant M$

Note: When either of the scour hold Q3, $\left(s_{n}\right)$ still diverges ($\mathbb{R} \cup\{-\infty$, +ane, is not a metric space)
Defn: Let $\left(s_{n}\right)$ be seq, in \mathbb{R}. Let E bo sot of all sulosequentral limits of $\left(s_{n}\right)$ (induding $+\infty,-\infty$ if appropriate $)$.

- The upper limit or limitsupresnum of $\left(s_{n}\right)$, denoted $\limsup _{n \rightarrow \infty} S_{n}$, is $\sup E \in \mathbb{R} \cup\{-\infty,+\infty\}$
- The lover limit or limit inftomum of $\left(s_{n}\right)$, devoted $\liminf _{n \rightarrow \infty} \delta_{n}$, is inf $\in \in \mathbb{R} \cup\{+\infty,-\infty\}$
Obs: $E \neq \varnothing$ by Bolzano-Weierstrauss. (Exercise)
Thy 3.17: Let $\left(S_{n}\right), E$ be as above. Then
(A) $\limsup _{n \rightarrow \infty} S_{n} \in E$
(B) If $x>\operatorname{limsuep}_{n \rightarrow \infty} s_{n}$ then $\exists N \in \mathbb{N} \quad \forall_{n} \geqslant N \quad s_{n}<x$ Moreover, $\lim _{n \rightarrow \infty} \operatorname{lin}_{n} S_{n}$ is the wique extended real number with these properties.

Note: Similar result holes for $\liminf _{\substack{n \rightarrow \infty}} S_{n}$.

- Prof nextime...

Lecture 15 Nov 6
He 5 due today
Pf of Thy 3.17:
(A) If $l i m s u p s_{n} \in \mathbb{R}$ then limsup $s_{n}=\sup E \in E=E$ by Thu's 3.7 and 2.28 .
If limsups $s_{n}=+\infty$ then E is not bouncled above by anything in \mathbb{R}, hence $\left\{S_{n}: n \in \mathbb{N}\right\}$ is not banded above (in \mathbb{R}) so there is subseq. $\left(S_{n_{k}}\right)$ with $S_{n_{k}} \rightarrow+\infty$. Thus limsup $S_{n}=+\infty \in E$.
If limsup $s_{n}=-\infty$ then $E=\{-\infty\}$ hence $\limsup s_{n} \in E$.
(B) Towards contra, suppose $s_{n} \geq x$ for infinitely-maxy
n. Then $\left(s_{n}\right)$ hab a subbed in $\left.I x,+\infty\right)$, 1 . Then $\left(s_{n}\right)$ hab a subset in $[x,+\infty)$,
hence hab a subsequential limit $y \in[x,+\infty]$.
Thus $l_{\text {imsup }} S_{n}=\sup E \geq y \equiv x(\sin c e y \in E)$, contraclicting $x>\operatorname{Vmsup} S_{n}$,
Lastly, suppose $p<q$ both satisfy (A) all B.
Choose $p<x<a$. Apply ing (B) to ad x Choose $p<x<q$. Applying (B) to p and x, we have $\exists N, \forall n \geq N$ S $S_{n}<x$. It follows every subseq. limit of $\left(s_{n}\right)$ is in $[-\infty, x]$. So $E \subseteq[-\infty, x]$. Thus q cannot satisfy A, contradiction.

Ex: For $S_{n}=(-1)^{n}\left(1+\frac{1}{2^{n}}\right)$, \quad limsup $S_{n}=1$, liming $S_{n}=-1$
Obs: $\lim s_{n}$ exists and equals s
iff limsup $S_{n}=S=\liminf S_{n}$

Thy 3,19: If $\forall_{n} s_{n} \geq t_{n}$ then

$$
\limsup s_{n} \geq \limsup t_{n} \text { and liminf } s_{n} \geq \text { liming } t_{n}
$$

Pf: Exercise
Defn: For $n, k \in \mathbb{N}, 0 \leq k \leq n$

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n(n-1) \cdots(n-k+1)}{k!}
$$

(this is pronounced "n choose k ")
Binomial Theorem: For $a, b \in \mathbb{C}$ and $n \in \mathbb{N}$

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Pf Sketch: It is easy to check that

$$
\binom{n-1}{k-1}+\binom{n-1}{k}=\binom{n}{k}
$$

Given this, easy to prove binomial theorem by incluction.

Thm 3.20: (A) If $p>0, \lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0$
(B) If $p>0, \quad \lim _{n \rightarrow \infty} \sqrt[n]{p}=1$
(C) $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$
(1). If $p>0$ and $\alpha \in \mathbb{R}, \quad \lim _{n \rightarrow \infty} \frac{n^{\alpha}}{(1+p)^{n}}=0$
(E) If $z \in \mathbb{C}$ and $|z|<1$ then $\lim _{n \rightarrow \infty} z^{n}=0$

Pf: (A) $\left|\frac{1}{n^{p}}-0\right|=\frac{1}{n^{p}}<\varepsilon$ cehenever $\left(\frac{1}{\varepsilon}\right)^{1 / p}<n$.
Follows from archimedear principle $\frac{1}{n^{p}} \rightarrow 0$
(B) Clear if $p=1$.

Assune $p>1$. Set $x_{n}=\sqrt[n]{p}-1$. Then $x_{n}>0$
and by Binomial Thm

$$
1+n x_{n} \leqslant\left(1+x_{n}\right)^{n}=p
$$

So $O<x_{n} \leq \frac{p-1}{n}$ and thas $x_{n} \rightarrow 0$
If $O<p<1$ then b Thim 3.3 ,

$$
1=\frac{1}{1}=\frac{1}{\lim \sqrt[{\sqrt{\frac{1}{p}}}]{ }}=\lim \frac{1}{\sqrt[n]{\frac{1}{p}}}=\lim \sqrt[n]{p}
$$

(C) Sed $x_{n}=\sqrt[n]{n}-1$. Thin $x_{n}>0$ and by Bumomial Thm
$\binom{n}{2} x_{n}^{2}=\frac{n^{n}(n-1)}{2} x_{n}^{2} \leqslant\left(1+x_{n}\right)^{n}=n$
So $0<x_{n} \leqslant \sqrt{\frac{2}{n-1}}$ thus $x_{n} \rightarrow 0$ (when $\frac{2}{n-1}<\varepsilon^{2}$ we har $\sqrt{\frac{2}{n-1}}<\varepsilon$)
(D) Fix $k \in \mathbb{N}$ with $k>\alpha$. When $n>2 k$ by Bmom. Thm

$$
(1+p)^{n}>\binom{n}{k} p^{k}=\frac{n(n-1) \cdots(n-k+1)}{k!} p^{k}>\left(\frac{n}{2}\right)^{k} \cdot \frac{p^{k}}{k^{k}!}=\frac{0^{k} p^{k}}{2^{k} \cdot k^{k}!}
$$

Thus $O<\frac{\alpha^{\alpha}}{(1+p)^{n}}<\frac{2^{k} \cdot k!}{p^{k}} \cdot \frac{1}{n^{k-\alpha}}$
Shace $k-\alpha>0, \quad \frac{2^{k} \cdot k!}{p^{k}} \cdot \frac{1}{n^{k-\alpha}} \rightarrow 0$ by A and Thm 3.3
(E) Apply (D) with $\alpha=0$ and $p=\frac{1}{|z|}-1$
we find $|z|^{n} \rightarrow 0$. Since $\left|z^{n}\right|=|z|^{n}$, we obtain $z^{n} \rightarrow 0$

Defn: Given a seq (an) in \mathbb{C} we write $\sum_{n=p}^{i} a_{n}$ for $a_{p}+a_{p 11}+\cdots+a_{q} \quad$ for $p \leqslant q \in \mathbb{Z}$).
We associate to (an) the partial sums $s_{n}=\sum_{k=0}^{n} a_{k}$.
The expressions $a_{0}+a_{1}+a_{2}+\cdots$ and $\sum_{n \in N} a_{n}$
are called (infinite) series and denote the value $\lim _{n \rightarrow \infty} S_{n}$ when it exists. We say
$\sum_{n \in \mathbb{N}}$ on converges/divenaps if $\left(b_{n}\right)$ convergeb/diverges.
Series and seq's are closely connected.
Thy 3.22: $\sum a_{n}$ converges of $\forall \varepsilon>0 ~ \exists N \quad \forall n, m \equiv N \mid\left(\sum_{k=n}^{n} a_{k}<c \varepsilon\right.$
Pf! This follows from Cauchy criterion (Thy 3, II) and $\left|s_{m}-s_{n}\right|=\left|\sum_{k=1}^{m} a k_{k}\right|$.

Thm 3.23: If $\sum a_{n}$ converops then $a_{n} \rightarrow 0$
Pf" Follows from Thy. 3.22 by using $m=n$.

Lecture 16 Nov 9
HW 6 due Friday
Wed is a university holiday
My office hows this week: Th 3-51, F 1-2

* Please read my email about Eastern Hemisphere

Second Midterm, respond promptly if needed
Obs: Converse of The 3.23 is false:
$\frac{1}{n} \rightarrow 0$ but $\sum \frac{1}{n}$ diverges
The 3.24: If $a_{n} \geq 0$ then Σa_{n} converges if its partial suns ane bench
Pf: $\exists_{n} a_{n} \geqslant 0$ implies partial $\operatorname{suns} s_{n}=\sum_{k=0}^{n} a_{k}$ are mono. in creasing. Apply The. 3.14
The 3.25 (Comparison Test):
(1) If $\left|a_{n}\right| \leqslant c_{n}$ for $n \geq N$ and $\sum c_{n}$ converges then $\sum a_{n}$ converges
(2) If $a_{n} \geq d_{n} \geq 0$ and $\sum d_{n}$ diverges thea Σa_{n} dive get

Pf'(1) Given $\varepsilon>0$ pick M with $\forall_{m \geq n \geq M} \sum_{k=n}^{m} c_{k}<\varepsilon$.
The for $m \geqslant n \geq \max (N, M)$

$$
\left|\sum_{k=n}^{m} a_{k}\right| \leqslant \sum_{k=n}^{n}\left|a_{k}\right| \leqslant \sum_{k=n}^{n} c_{k}<\varepsilon
$$

So $亡 a_{n}$ converges by Whim, 3.22.
(2) Follows from (1) (also follaub from previas theorem)

The 3.26: If $z \in \mathbb{C}$ and $|z|<\mid$ the $\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$. If $|z| \geqslant 1$ then $\sum z^{n}$ diverges.
Pf: Notice $(1-z) \cdot \sum_{k=0}^{n} z^{k}=1-z^{n+1}$ so

$$
S_{n}=\sum_{k=0}^{n} z^{k}=\frac{1-z^{n+1}}{1-z} \text { thus } \lim _{n \rightarrow \infty} S_{n}=\frac{1}{1-z}
$$

when $|z|<1$. When $|z| \geqslant 1$ we have $z^{n} \rightarrow 0$ hence Σz^{n} diverges (by $\pi_{m}, 3,23$).
Deft: $\sum_{n=0}^{\infty} z^{n}$ is called a geometric series
The 3.27: Suppose $a_{1} \geqslant a_{2} \geqslant a_{3} \geq \cdots \geqslant 0$.
Then $\sum_{n=1}^{\infty} a_{n}$ converops iff $\sum_{k=0}^{\infty} 2^{k} a_{2^{k}}$ converges.
Pf: For both series, they converge iff their partial sums are banded (Thy 3.24).
Set $s_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}$

$$
t_{k}=a_{1}+2 a_{2}+4 a_{4}+\cdots+2^{k} a_{2^{k}}
$$

When $n<2^{k}$

$$
\begin{aligned}
& n<2^{k} \\
& \left.s_{n} \leqslant a_{1}+\left(a_{2}+a_{3}\right)+\left(a_{4}+a_{5}+a_{6}+a_{2}\right)+\cdots+\left(a_{2} k+\cdots+a_{2 k+1}\right)-1\right) \\
& \leqslant a_{1}+2 a_{2}+4 a_{4}+\cdots+2^{k} a_{2 k}=t_{k}
\end{aligned}
$$

And when $n>2^{k}$

$$
\begin{aligned}
2 s_{n} & \geqslant a_{1}+2 a_{2}+2\left(a_{3}+a_{4}\right)+\cdots+2\left(a_{2^{k-1}}+\cdots+a_{2^{k}}\right) \\
& \geqslant a_{1}+2 a_{2}+4 a_{4}+\cdots+2^{k} a_{2^{k}}=t_{k}
\end{aligned}
$$

Thus $\left(s_{n}\right)$ is bouncled of $\left(t_{k}\right)$ is bounded.

Thy 3.28: $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$, diverges if $p \leqslant 1$.
Pf: When $p \leqslant 0$ series cliverges since $\frac{1}{n^{p}} \nrightarrow 0$. Assume $p>0$. By previcues thin, $\sum_{i=1}^{\infty} \frac{1}{n^{p}}$ converges iff $\sum_{k=0}^{\infty} 2^{k} \cdot \frac{1}{2^{k p}}=\sum_{k=0}^{\infty}\left(2^{1-p}\right)^{k}$ converges.
This is a geometric series, so converges iff $2^{1-p}<1$ iff $p>1$.

Note: We haven't learned about log yet, but for the sake of example lets pretend we know what it i.
Thm 3.29: $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}$ converges if $p>1$, diverges if $p \leqslant 1$.
Pf: When $p \leq 0$ series drwiges because $\frac{1}{n} \leq \frac{1}{n(\log n)^{r}}$ for $n \geqslant 1$. (use comparison test).
Assure pro. Terms ane monotone decreasing and positive, so by The 3.27 convergence hoppers ff $\sum_{k=1}^{\infty} 2^{k} \cdot \frac{1}{2^{k}\left(\log 2^{k}\right)^{p}}=\sum_{k=1}^{\infty} \frac{1}{k^{p}(\log 2)^{p}}=\frac{1}{(\log 2)^{2}} \cdot \sum_{k=1}^{\infty} \frac{1}{k^{p}}$ converges. By Thaw 3.28 this happens of $p>1$. I

Def: $e=\sum_{n=0}^{\infty} \frac{1}{n!} \approx 2 \cdot 71828 \quad(0!=1, n!=n(n-1) \cdots 3 \cdot 2 \cdot 1)$
Obs: $\frac{1}{n!} \leqslant \frac{1}{2^{n-1}}$ so $\sum \frac{1}{n!}$ converges by com paisas
with geometric series $\sum_{n=0}^{2} \frac{1}{2^{n-1}}=2 \cdot \sum_{n=0}^{\infty} \frac{1}{2^{n}}$
Thin 3.31: $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$Proof next class...

Lecture 17 Nov 13
HW 6 due today
Email me by tomorrow if you cant take $2^{\text {nh }}$ midterm at these times:

- class time \|:00 \|l:50 AM Wed Nov 25 (san Diego time)
- 12 how's later ll:00-11:50 PM Wed Nov 25 (San Diego time)

The 3.31: $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e \quad$ (by definition $e=\sum_{n=0}^{\infty} \frac{1}{n!}$)
Pf: Set $S_{n}=\sum_{k=0}^{n} \frac{1}{k!}$ and $t_{n}=\left(1+\frac{1}{n}\right)^{n}$.
By Binomial Theorem

$$
\begin{aligned}
t_{n} & =1+n \cdot \frac{1}{n}+\frac{n(n-1)}{2} \cdot \frac{1}{n^{2}}+\cdots+\frac{n(n-1) \cdots(n-k+1) \cdot \frac{1}{n^{k}}}{k!}+\cdots \\
& \left.\cdots+\frac{n(n-1) \cdots(n-(n-1))}{n!}\right) \cdot \frac{1}{n^{n}} \\
& =1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\cdots+\frac{1}{k!}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)+\cdots \\
& \cdots+\frac{1}{n!}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{n-1}{n}\right)
\end{aligned}
$$

So limsup $t_{r} \leqslant e$.
Now fix $m \in \mathbb{N}$. If $n \geqslant m$ then $\left(b_{y} *\right)$

$$
t_{n} \geq 1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\cdots+\frac{1}{m!}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right)
$$

Holding m fixed, take liming over n on both sidles to get liminf $t_{n} \geq 1+1+\frac{1}{2!}+\cdots+\frac{1}{m!}=S_{m}$
Taking $\lim _{m}$ as $m \rightarrow \infty$ we obtain

$$
\lim _{1} \text { if } b_{r} \geqslant \lim s_{m}=e
$$

Since $e \leq \lim \operatorname{mif} t_{n} \leq \lim \operatorname{sep} t_{n} \leq e$ so all are equal and $\left(t_{n}\right)$ converges to e.

The 3.32: e is irrational
Pf: Towards a contra, say $e=\frac{p}{q}, p, q \in \mathbb{N}$. Then

$$
\begin{aligned}
O<e-s_{q} & =\frac{1}{(q+1)!}+\frac{1}{(q+2)!}+\frac{1}{(q+3)!}+\cdots \\
& <\frac{1}{(q+1)!}\left(1+\frac{1}{q+1}+\frac{1}{(q+1)^{2}}+\cdots\right) \\
& =\frac{1}{(q+1)!} \cdot\left(\frac{1}{1-\frac{1}{q+1}}\right)=\frac{1}{(q+1)!} \cdot q+1 \\
q & =\frac{1}{q!q}
\end{aligned}
$$

So $0<q!\left(e \cdot s_{q}\right)<\frac{1}{q}$
Bullisscunption, q ! e is a integer.
Also $q!s_{a}=q!\left(l+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{q!}\right)$ is an integer.
So q^{\prime} ! $(l-s q)$ is an intemfor strictly between
0 and $\frac{1}{q}$, contradiction.
Fact: e is not algebraic
The 3.33 (Root Tact): Consider a series $\sum a_{n}$ and set $\alpha=\limsup \sqrt{\left|a_{n}\right|}$.
(A) If $\alpha<1, \sum_{\sum} a_{n}$ converges
(B) If $\alpha>1$, $\sum a_{n}$ diverges
(C) If $\alpha=1$, no information

Pf: (A) Dick β with $\alpha<\beta<1$ and choose N (Th 3.17)
$\left(\begin{array}{l}\left.\begin{array}{l}\text { converges } \\ \text { to } \frac{1}{1-\beta}\end{array}\right) \rightarrow \sum \beta^{n} \text { converges and }\left|a_{n}\right|<\beta^{n} \text { for } n \geq N \\ \\ \text { so } \sum \text { an converges by comparison. }\end{array}\right.$ so Σa_{n} converges by comparison.
(B) If $\alpha>1$ then there is a subseq $\left(a_{n_{k}}\right)$ with $\forall k\left|a_{n_{k}}\right|>1$, so $a_{n} \nleftarrow 0$ and
thus $\sum a_{n}$ diverges
(C) $\alpha=1$ for both $\sum \frac{1}{n}$ and $\sum \frac{1}{n^{2}}$ the frat diverges and the second' converges.

The 3.34 (Ratio Test): Suppose $\forall n a_{n} \neq 0$.
Then $\bar{z} a_{n}$
(1) converges if limsup $\left|\frac{a_{n+1}}{a_{n}}\right|<1$
(2) diverges if $\exists N \quad \forall_{n} \geq N \quad\left|\frac{a_{n+1}}{a_{n}}\right| \geqslant 1$

Pf: (1) Pick limsup $\left|\frac{a_{n+1}}{a_{n}}\right|<\beta<1$ and pick N with $\forall n \geq N \quad\left|\frac{a_{n+1}}{a_{n}}\right|<\beta$. Then
$\left|a_{N+1}\right|<\beta\left|a_{N}\right|$ and by induction

$$
\left|a_{N+k}\right|<\beta^{k}\left|a_{N}\right|
$$

meaning $\left|a_{n}\right|<\beta^{n-N}\left|a_{N}\right|=\beta^{-N}\left|a_{N}\right| \cdot \beta^{n}$
for $n \geq N$.
$\sum \beta^{n}$ converges so $\sum a_{n}$ converges by comparison.
(2) This is inner late since $a_{n} \nrightarrow \rho$.

$$
\left(0<\left|a_{n}\right| \leq\left|a_{n+1}\right| \leq\left|a_{n+2}\right| \leq \cdots\right)
$$

most of the time
Note: Root text is the ratio test. But sometimes the root test is harder to evaluate.
Ex: For the series $\frac{1}{2}+\frac{1}{3}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\cdots$

$$
\limsup \sqrt[n]{\left|a_{n}\right|}=\frac{1}{\sqrt{2}}, \quad \limsup \frac{a_{n+1}}{a_{n}}=\infty
$$

Root teed giver convergence, ratio test gives no info.
Thin 3.37: For any seq, $\left(a_{n}\right), \forall n a_{n}>0$
1 mint $\frac{a_{n+1}}{a_{n}} \leq \liminf \sqrt[n]{\left|a_{n}\right|} \leq \limsup \sqrt[n]{\left|a_{n}\right|} \leq \limsup \frac{a_{n+1}}{a_{n}}$
Pf! (2) is immediate. We cell prove (3). (1) is similar. Pick $\beta>\limsup \frac{a_{n+1}}{a_{n}}$ ard pick N with

$$
\forall n \geq N \quad \frac{a_{n+1}}{a_{n}}<\beta
$$

Then las before) by induction for $n \geqslant N$

$$
\begin{aligned}
& a_{n} \times \beta^{n-N} a_{N} s_{o} \\
& \sqrt[n]{a_{n}}<\sqrt[n]{\beta^{n-N} a_{N}}=\sqrt[n]{\beta^{-N} a_{N}} \cdot \beta
\end{aligned}
$$

So limsup $\sqrt[n]{a_{n}} \leq \beta$,
$\beta>\limsup \frac{a_{n+1}}{a_{n}}$ was arbitrary, so

Lecture $18 \mathrm{Nov}_{\text {ow }} 16$
HL 7 due Friday
Second midterm next week at two times:

- classtime $11: 00-11: 50$ AM Wed Nov 25
- 12 hours later $11: 00-11: 50$ PH Wed Nov 25

Defn: E or $\operatorname{seq}\left(c_{n}\right)$ in \mathbb{C} and $z \in \mathbb{C}$, the series $\sum_{n=0}^{\infty} c_{n} z^{n}$ is called a power series.

Nate: Conner gence depends on value of z
Thin 3.39: For a paler series $\sum_{n=0}^{\infty} c_{n} z^{n}$
Set $\alpha=\limsup \sqrt[n]{\left|c_{n}\right|}$ and $R=\frac{1}{\alpha}$
(if $\alpha=0$ set $R=+\infty$, if $\alpha=+\infty \operatorname{set} R=0$).
Then $\sum c_{n} \sigma^{n}$ converges when $|z|<R$ a\& diverges wham $|z|>R$.
Pf: Apply root test:

$$
\limsup \sqrt[n]{\left|c_{n} z^{n}\right|}=|z| \cdot \mid \text { inselp } \sqrt[n]{\left|c_{n}\right|}=\frac{|z|}{R}
$$

Note: R is callual the radius of convergence Cunvergence/devergence when Ia FR is complicated and varies.

Ex: - For $\sum n^{n} z^{n}, R=0$

- For $\sum \frac{\sum^{n}}{n!}, R=\infty$
- For $\sum z^{n}, \quad R=1$ and diverges when $|z|=1$ since $z^{n}+0$
- For $\sum \frac{z^{n}}{n^{2}}, \mathbb{R}=1$ and converges chen $|z|=1$ (orpoare with $\Sigma \frac{1}{n^{2}}$)
- For $\sum \frac{\Sigma_{n}}{n}, R=1$, dieseges when $z=1$ bat converges if $|z|=1$ and $z \neq 1$ (Thy 3.44)

Recall from calculus: By integration by pats

$$
\int_{a}^{b} f g d x=-\int_{a}^{b} F_{g}^{\prime} d x+[F g]_{a}^{b}
$$

where $F^{\prime}=f$.
Thy 3.41: For $\operatorname{seq}^{\prime} s\left(a_{n}\right),\left(b_{n}\right)$ set $A_{-1}=0$ and $A_{n}=\sum_{k=0}^{n} a_{k}$ for $n \geq 0$. Then for $0 \leqslant p \leqslant q$

$$
\sum_{n=p}^{q} a_{n} b_{n}=\sum_{n=p}^{q-1} A_{n}\left(b_{n}-b_{n+1}\right)+A_{q} b_{q}-A_{p-1} b_{p}
$$

Pf: $\sum_{n=1}^{q} a_{n} b_{n}=\sum_{n=p}^{q}\left(A_{n}-A_{n-1}\right) b_{n}=\sum_{n=p}^{q} A_{n} b_{n}-\sum_{n=p-1}^{q-1} A_{n} b_{n+1}$

$$
=\sum_{n=p}^{q-1} A_{n}\left(b_{n}-b_{n+1}\right)+A_{q} b_{q}-A_{p-1} b_{p}-1
$$

Thy 3.42: If the partial suns of Σ an are bounded and $b_{0} \geqslant b_{1} \geq b_{2} \geq \cdots \geq 0$ with $\lim b_{n}=0$ then $\sum a_{n} b_{n}$ converges
Pf: Set $A_{-1}=0, A_{n}=\sum_{k=0}^{n} a_{k}$ for $n \geq 0$,
pick M with' $\forall_{n}\left|A_{n}\right| \leq M$.
Let $\varepsilon>0$ ard pick N with $b_{N}<\frac{\varepsilon}{2 M}$.
For $q \geqslant p \geq N$

$$
\begin{aligned}
&\left|\sum_{n=p} a_{n} b_{n}\right|=\left|\sum_{n=p}^{\infty-1} A_{n}\left(b_{n}-b_{n+1}\right)+A_{q} b_{q}-A_{p-1} b_{p}\right| \\
& \leq \sum_{n=p}^{q^{1}} \mid A_{n}\left(v\left(b_{n}-b_{n+1}\right)+\left|A_{q}\right| b_{q}+\left|A_{p-1}\right| b_{p}\right. \\
& \leq M\left(\sum_{n=p}^{\infty-1}\left(b_{n}-b_{n+1}\right)+b_{q}+b_{p}\right) \\
&=M\left(b_{p}-b_{q}+b_{q}+b_{p}\right) \\
&=2 M b_{p} \leq 2 M b_{N}<\varepsilon
\end{aligned}
$$

Thus Eanb, converges by Cauchy criterion.
The 3.43 (Alternat ing Series Test):
Suppose $\left|c_{1}\right| \geq\left|c_{2}\right| \geq \cdots, \quad c_{2 m-1} \geq 0$ and $c_{2 m} \leqslant 0$ for $n \geqslant 1$ and lime $c_{n}=0$. Then Σc_{n} converges
Pf: Apply above theorem wash $a_{n}=(-1)^{n+1}, b_{n}=\left|c_{n}\right|$

Thy 3.44: Suppose $\sum c_{n} z^{n}$ has radius of convergence $1, c_{0} \geqslant c_{1} \geqslant \cdots$ and $\lim c_{n}=0$. Then $\Sigma c_{n} z^{n}$ converges for all z with $|z|=1$ except possibly $z=1$.
Pf: Apply The 3.42 with $a_{n}=z^{n}, b_{n}=c_{n}$ and note If $|z|=1$ and $z \neq 1$ then

$$
\left|\sum_{k=0}^{n} a_{k}\right|=\left|\sum_{k=0}^{n} z^{k}\right|=\left|\frac{1-z^{n+1}}{1-z}\right| \leqslant \frac{2}{|1-z|}
$$

Dean" $\sum a_{n}$ converges absolutely if $\sum\left|a_{n}\right|$ converges If $Z a_{n}$ converges but $\sum\left|a_{n}\right|$ diverges, we cay Σ an converges non-absolutely
Thu 3.45 : If \sum an converges absolutely
then it converget.
Pf StatchiApply Cauchy criterion and notice

$$
\left|\sum_{k=n}^{m} a_{k}\right| \leqslant \sum_{k=n}^{m}\left|a_{k}\right|
$$

Note: If $\forall_{n} a_{n} \geqslant 0$ then absolute convergence is save as convergence

Note: Comparison, not, and ratio test demonstrate absolute convergence

Lecture 19 Nov 18
HO 7 due Friday
$2^{\text {nd }}$ Midterm next week at two times:

- Class time ||:00-II:50 AM Wed Nov 25
- 12 hours later |l:00-|1:50 PM Wed Nov 25

Thy 3.47 If $\sum a_{n}=A$ ard $\sum b_{n}=B$
then $\sum\left(a_{n}+b_{n}\right)=A+B$ and $\forall c \in \mathbb{C} \quad \sum c a_{n}=c \cdot A$
Pf: Sect $A_{n}=\sum_{k=0}^{n} a_{k}, B_{n}=\sum_{k=0}^{n} b_{k}$. Then $A_{n}+B_{n}=\sum_{k=0}^{n}\left(a_{k}+b_{k}\right)$.
So $A+B=\lim A_{n}+\lim B_{n}=\lim \left(A_{n}+B_{n}\right)=\sum\left(a_{n}+b_{n}\right)$.
$a_{c l} c \cdot A=c \cdot \lim A_{n}=\lim c \cdot A_{n}=\Sigma c \cdot a_{n}$
Defni The (Cauchy) product of $\sum a_{n}, \sum b_{n}$
is $\sum c_{n}$ where $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$

Note: Motivation from "suspected" equalities

$$
\begin{aligned}
\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} z^{n}\right) & =\left(a_{0}+a_{1} z+a_{2} z^{2}+\cdots\right)\left(b_{0}+b_{1} z+b_{2} z^{2}+\cdots\right) \\
& =\left(a_{0} b_{0}\right)+\left(a_{0} b_{1}+a_{1} b_{0}\right) z+\left(a_{6} b_{2}+c_{1} b_{1}+a_{2} b_{0}\right) z^{2}+\cdots \\
& =c_{0}+c_{1} z+c_{2} z^{2}+\cdots=\sum_{n=0}^{\infty} c_{1} z^{n}
\end{aligned}
$$

Note 1 It is not clear, and somettines false, that

$$
\sum c_{n}=\left(\sum a_{n}\right)\left(\sum b_{n}\right)
$$

Ex: Suppose $a_{n}=b_{n}=\frac{(-1)^{n}}{\sqrt{n+1}}$
$\sum a_{n}, \sum b_{n}$ converge (bat not absolutely)

$$
\begin{array}{r}
\left|c_{n}\right|=\left|\sum_{k=0}^{n} a_{k} b_{n-k}\right|=\left\lvert\, \sum_{k=0}^{n} \frac{(-1)^{n}}{\sqrt{(k+1)(n-k+1)} \left\lvert\, \geq \sum_{k=0}^{n} \frac{2}{n+2}=\frac{2(n+1)}{n+2}\right.} \begin{array}{r}
(k+1)(n-k+1)=\left(\frac{n}{2}+1\right)^{2}-\left(\frac{n}{2}-k\right)^{2} \leq\left(\frac{n}{2}+1\right)^{2}
\end{array}\right.,=\text {. }
\end{array}
$$

so $c_{n} \ngtr O$ and $\sum c_{n}$ diverges

Thin 3.50 (Martens): Suppose $\sum a_{n}=A$ ard $\bar{\lambda} b_{n}=B$ with Σa_{n} converging as solutely. Let Σc_{n} be the Cauchy product. Then $\Sigma c_{n}=A \cdot B$
Pf: Set $A_{n}=\sum_{k=0}^{n} a_{k}, B_{n}=\sum_{k=0}^{n} b_{k}, C_{n}=\sum_{k=0}^{n} c_{k}, \quad \beta_{n}=B_{n}-B$
Then

$$
\begin{aligned}
& \text { Chen } \\
& \begin{aligned}
C_{n} & =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right)+\cdots+\left(a_{0} b_{n}+\cdots+a_{n} b_{0}\right) \\
& =a_{0} B_{n}+a_{1} B_{n-1}+\cdots+a_{n} B_{0} \\
& =a_{0}\left(B+\beta_{n}\right)+a_{1}\left(B+\beta_{n-1}\right)+\cdots+a_{n}\left(B+\beta_{0}\right) \\
& =A_{n} B+a_{0} \beta_{n}+a_{1} \beta_{n-1}+\cdots+a_{n} \beta_{0}
\end{aligned}
\end{aligned}
$$

call this γ_{n}
Since $A_{n} B \rightarrow A B$, puffer to show $\gamma_{n} \rightarrow 0$
Set $\alpha=\sum\left|a_{n}\right|$ ard let $\varepsilon>0$.
Since $\beta_{n} \rightarrow 0$ we can pick N with $\forall_{n} \geqslant N \quad\left|\beta_{n}\right|<\varepsilon$ So for $n \geq N$

$$
\begin{aligned}
\left|\gamma_{n}-O\right|=\left|\gamma_{n}\right| & \leq\left|a_{0}\right|\left|\beta_{n}\right|+\left|a_{1}\right|\left|\beta_{n-1}\right|+\cdots\left|a_{n-N}\right|\left|\beta_{N}\right|+\left|\beta_{n-N+1}\right|\left|\beta_{N-1}\right|+\cdots \\
& <\varepsilon\left(\left|a_{0}\right|+\left|a_{1}\right|+\cdots \psi\left|a_{n-N}\right|\right)+\left|a_{n-N+1}\right|\left|\beta_{N-1}\right|+\cdots\left|a_{n}\right|\left|\beta_{0}\right| \\
& \leq \varepsilon \alpha+\left|\beta_{0}\right| \\
& \leq-N+1| | \beta_{N-1}|+\cdots| a_{n}| | \beta_{0} \mid
\end{aligned}
$$

For n large enough, $\left|a_{n-N+1}\right|\left|\beta_{N-1}\right|+\cdots+\left|a_{n}\right|\left|\beta_{0}\right|$ will be less than ε shoe it converges to 0 Si for loge evanish n, $\left|\gamma_{n}-0\right|<\varepsilon(\alpha+1)$. Thus $r_{n} \rightarrow 0$

Thy 3.51 (Abel) If $\sum a_{n}, \Sigma b_{n}, \Sigma c_{n}$ converge to A, B, C, where Σc_{n} is the Cauchy product then $C=A \cdot B$
Pf: In 140 B (p.175)
Defn: If $\left(k_{n}\right)$ is a seq in \mathbb{N} using each natural number precisely once, and \& $\sum a_{n}$ is a series die wee set ' $a_{n}^{\prime}=a_{k_{n}}$ then $\sum a_{n}^{\prime}$ is called a rearrangement of $\sum a_{n}$

Thy 3.55: If $\sum a_{n}$ converges absolutely then every rearrangement converges to the
sane value.
Pf: Let (k_{n}) be sea in \mathbb{N} using each nathan number precisely once. Let $\varepsilon>0$ ard pick N with $\forall m \geqslant n \geqslant N \sum_{i=n}^{m}\left|a_{i}\right|<\varepsilon$ Now choose p with $\left\{k_{0}, K_{1}, \cdots, k_{p}\right\} \geq\{0,1,2, \cdots, N\}$ The for $n>\max (p, N)$ we have

$$
\begin{aligned}
& \left|\sum_{i=0}^{n} a_{k_{i}}-\sum_{i=0}^{n} a_{i}\right|<\varepsilon \\
& \left|\sum_{i \in\left\{k_{0}, \cdots, k_{n}\right\} \backslash\left\{0,1, \cdots, \cdots \frac{n_{2}}{}\right.}^{a_{i}}-\sum_{i \in\{0,1, \cdots, n\} \backslash\left\{k_{0}, \cdots, k_{n}\right\}} a_{i}\right| \\
& \text { more } \\
& \text { explanation } \\
& \text { on next } \\
& \text { page }
\end{aligned}
$$

To write what I verbally said in le cure:

$$
\text { Pick } m \geq n \text { with }\left(\left\{k_{0}, \cdots, k_{n}\right\} \backslash\{0, \cdots, n\}\right) \cup\left(\{0, \cdots, n\} \backslash\left\{k_{0}, \cdots, k_{n}\right\}\right) \subseteq\{N+1, \cdots, m\}
$$

Then $\left|\sum_{i=0}^{n} a_{k_{i}}-\sum_{i=0}^{n} a_{i}\right| \leqslant \sum_{i=N+1}^{m}\left|a_{i}\right|<\varepsilon$

Lecture 20 Nov 20
HF 7 due today
$2^{n d}$ Midterm next week at two times:

- Class time 11:00-11:50 AM Wed Nov 25
- 12 hours later 11:00-11:50 PM Wed Nov 25

The 3.54 (Riemann): Suppose. San converges non-cebsolutely $a_{1} \alpha-\infty \leq \alpha \leq \beta \leq+\infty$. Then there is a recorrangement $\sum a_{n}^{\prime}$ with partial sums s_{n}^{\prime} satisfying liming $S_{n}^{\prime}=\alpha, \quad \limsup s_{n}^{\prime}=\beta$
PF: Set $p_{n}=\left\{\begin{array}{ll}a_{n} & \text { if } a_{n}=0 \\ 0 & \text { otherorse }\end{array}, q_{n}=\left\{\begin{array}{cc}-a_{n} & \text { if } a_{n} \leq 0 \\ 0 & \text { otherwise }\end{array}\right.\right.$
Note $p_{n}, q_{n} \geq 0, a_{n}=p_{n}-q_{n}$.
If $\sum_{n_{1}} p_{n}$ were to connery. then $\Sigma q_{n}=\Sigma\left(p_{n}-a_{n}\right)$ would converge a_{n} d $\sum\left|a_{n}\right|=\sum\left(p_{n}+q_{n}\right)$ would converge, contradiction. So Ip diverges, Similarly $\sum q_{n}$ diverges.
Let P_{1}, p_{2}, \cdots be the non-negaticu terms from a_{1}, q_{2}, \cdots in oder
Let Q_{1}, Q_{2}, \cdots be the absolute -value of the strictly negative terns from a_{1}, a_{2}, \cdots (in order:)
$\sum P_{n}$ differs from $\bar{\Sigma} p_{n}$ only by o terms, so $E P_{n}$ diverge. Similarly ΣQ_{n} diverges

Choose $\alpha_{n}, \beta_{n} \in \mathbb{R}$ with $\beta_{1}>0, \alpha_{n}<\beta_{n}, \alpha_{n-1}<\beta_{n}$, $\alpha_{n} \rightarrow \alpha, \beta_{n} \rightarrow \beta$

$$
\left(\begin{array}{c}
D_{n} \alpha, \\
\text { Saly }^{o_{n}} \beta_{1}=|\beta|+1, \beta_{n}=\beta+2^{-n}, \alpha_{n}=\alpha-2^{-n}, \\
\text { wher } \alpha, \beta \in \mathbb{R}
\end{array}\right)
$$

Let $m_{1}, k_{1} \in \mathbb{Z}_{+}$be least with

$$
\begin{aligned}
& P_{1}+P_{2}+\cdots+P_{m_{1}}>\beta_{1} \\
& P_{1}+P_{2}+\cdots+P_{m_{1}}-Q_{1}-Q_{2}-\cdots-Q_{k_{1}}<\alpha_{1}
\end{aligned}
$$

Continue inductively, letting $m_{n}, k_{n} \in \mathbb{Z}_{+}$be least with

$$
\begin{aligned}
& x_{n}=P_{1}+P_{2}+\cdots+P_{m_{1}}-Q_{1}-\cdots-Q_{k_{1}}+\cdots-Q_{k_{1-1}}+P_{m_{1-1}+1}+\cdots+P_{m_{1}}>\beta_{n} \\
& y_{n}=P_{1}+P_{2}+\cdots+P_{m_{1}}-Q_{1}-\cdots-Q_{k_{1}}+\cdots+P_{m_{n}}-Q_{k_{n-1}+1}-\cdots-Q_{k_{n}}<\alpha_{n}
\end{aligned}
$$

Then $\left|x_{n}-\beta_{n}\right|<P_{m_{n}}$ ard $\left|y_{n}-\alpha_{n}\right|<Q_{k n}$
Since $\sum a_{n}$ converges, $P_{n} \rightarrow 0, Q_{n} \rightarrow 0$.
Since $\beta_{n} \rightarrow \beta, P_{n} \rightarrow 0$, we have $x_{n} \rightarrow \beta$
Shre $\alpha_{n} \rightarrow \alpha, Q_{n} \rightarrow 0$, we have $y_{n} \rightarrow \alpha$
Thus α, β are least/greatect subseq. limits of the partial sumis from \&urther explanation $P_{1}+\cdots+P_{m_{1}}-Q_{1}-\cdots \cdots \sim$ below and next page
(*) $\binom{$ Parthal sums ave increasing from $y_{n-1}}{$ and decreasing fromn x_{n} to $y_{n}}$

We will wot Thy 3.17.
Let $\beta^{\prime}>\beta$. Thin there exists N
so that for all $n \geq N \quad \beta_{n}+\left|P_{n}\right|<\beta^{\prime} \quad\left(\begin{array}{l}\text { since } \\ \beta_{n} \rightarrow \beta \\ P_{n} \rightarrow 0\end{array}\right)$
So if S^{\prime} is a partial sum between y_{n-1} and x_{n} with $n \geqslant N$ then $m_{n} \geqslant n \geqslant N$
by $(*) \quad s^{\prime} \leq x_{n}<\beta_{n}+P_{m_{n}}<\beta^{\prime}$. Similarly when s' between x_{n} and y So eventually all partial suns are strictly less than ' β '. So β is limsup of spatial sums by Theorem 3.17.
Defn: Suppose $\left(X, d_{x}\right),\left(Y, d_{y}\right)$ are metric spaces, $E \subseteq X, f: E \rightarrow Y$, p $\in E^{\prime}$. For a point $q \in Y$ we say the limit of f at p is 1 and write $f(x) \rightarrow q$ as $x \rightarrow p^{\prime \prime}$ or $\lim _{x \rightarrow p} f(x)=q^{\prime \prime}$ if:

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \in E O<d_{x}(x, p)<\delta \Rightarrow d_{y}(f(x), q)<\varepsilon
$$

Note" It way be that $p \in E$ so $f(p)$ is not defied. Ever R $p \in E$ it can happen $f(p) \neq \lim _{x \rightarrow p} f(p)$

Thy 4.2: $\lim _{x \rightarrow p} f(x)=q$ inf for all seq's $\left(p_{n}\right)$ in E $\left(\forall_{n} p_{n} \neq p\right.$ and $\left.p_{n} \rightarrow p\right) \Rightarrow f\left(p_{n}\right) \rightarrow q$

Pf: Assume $\lim _{x \rightarrow p} f(x)=q$. Let $\left(p_{n}\right)$ be seq in E with $\forall_{n} p_{n} \neq p$ and $p_{n} \rightarrow p$. Let $\varepsilon>0$ and pick $\delta>0$ with

$$
\begin{aligned}
& d^{7} O \text { with } \\
& \forall x \in E \quad O<d_{x}(x, p)<\delta \Rightarrow d_{y}(f(x), q)<\varepsilon \text {. }
\end{aligned}
$$

Since $p_{n} \rightarrow p$ there is N with

$$
\forall n \geqslant N o<d_{x}\left(p_{n}, p\right)<\delta
$$

Then for $n \geqslant N$ we have $d_{y}\left(f\left(p_{n}\right), q\right)<\varepsilon$. Thus $f\left(p_{n}\right) \rightarrow q$
Now assure the staternest " $\lim _{x \rightarrow p} f(x)=q$ " is false. Then there is $\varepsilon>0$ so that

$$
\forall \delta>0 \quad \exists x \in E \quad 0<d_{x}(x, p)<\delta \text { and } d_{y}(f(x), q) \geq \varepsilon \text {. }
$$

For each $n \geqslant 1$, apply above with $\delta=\frac{1}{n}$ to obtain $p_{n} \in E$ satisfying

$$
0<\theta_{x}\left(p_{n}, p\right) \times 1 / n \text { and } d_{y}\left(f\left(p_{n}\right), q\right) \geqslant \varepsilon
$$

Then $p_{n} \rightarrow p$ and $\forall_{n} p_{n} \neq p$ but $f\left(p_{n}\right) \not \geqslant q$
Cor: If f has a limit at p then the limit is unique

Lecture 21 Nov 23
Second Midterm on Wedne slay

- Class time 11:00-11:50 AM Wed Nov 25
- 12 hours later $11: 00-11: 50$ PM Wed Nov 25

My office hours this week: T_{u} 12:30-2:00 PM, 7:00-8:30 PM
The TA will have extrce office how W8:00-9:00 AM
Def: If $f, g: E \rightarrow \mathbb{C}$ then we obtain new fun citrons

- $(f+g)(x)=f(x)+g(x) \cdot(f-g)(x)=f(x)-g(x)$
- $(f g)(x)=f(x) g(x) \cdot\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}($ when $g(x) \neq 0)$

If $f, g: E \rightarrow \mathbb{R}$ we carte $f \leqslant g$ if $\forall x \in E f(x) \leqslant g(x)$.
Smulaily if $\vec{f}, \vec{g}: E \rightarrow \mathbb{R}^{k}$ we define

- $\left(\vec{f}+{ }^{-1}\right)(x)=\vec{f}(x)+\vec{g}(x)$
- $\left(\vec{f} \cdot \cdot^{-1}\right)(x)=\vec{f}(x) \cdot \vec{g}(x)$
- for $\lambda \in \mathbb{R}(\lambda \vec{f})(x)=\lambda \vec{f}(x)$

Thin 4.4: Let (x, C) be a metric space $E \subseteq X, f, S: E \rightarrow \mathbb{C}$ and $p \in E^{\prime}$. If $\lim _{x \rightarrow p} f(x)=A$ and $\lim _{x \rightarrow p} g(x)=B$ then

- $\lim _{x \rightarrow p}(f+g)(x)=A+B$
- $\lim _{x \rightarrow p}\left(f_{s}\right)(x)=A B$
$\therefore \lim _{x \rightarrow p}\left(\frac{f}{g}\right)(x)=\frac{A}{B}$ if $B \neq 0$
$\operatorname{sinil}\left(\operatorname{arly}\right.$, if $\vec{f}, \vec{g}: E \rightarrow \mathbb{R}^{k}, \lim _{x \rightarrow p} \vec{f}(x)=\vec{A}, \lim _{x \rightarrow p} \vec{g}(x)=\vec{B}$
then - $\lim _{x \rightarrow p}(\vec{f}+\vec{g})(x)^{\prime}=\vec{A}+\vec{B}$
- $\lim _{x \rightarrow p}(\vec{f} \cdot \vec{g})(x)=\vec{A} \cdot \vec{B}$

Pf: Follows from Theorem 3.3 and the previous theorem

Review for Second Midterm
Compact sots
Perfect sets
Connected sets
Convergence of sequences
Cauchy sequences, Cauchy criterion
Subsequences
liming y limsup
Special sequences
e
Convergence of series

- Ratio test $\}$
- Root test $\}$ - Comparison test for absolute convergence
- Alternating series test
- Summation by parts
- Cauchy criterion for series

Absolute convergence
Radius of convergence

1. Let (X, d) be a metric space, $\left(p_{n}\right)_{n \in N}$ a seq. in X, and let $K \subseteq X$ be compact. Prove that if no subser, of (p_{n}) has limit pout in K then there exists open sect $U \supseteq K$ with $q_{n} \in \mathbb{N}, p_{n} \in U 3$ is finite

If: For each $q \in K, q$ is not a subseg. limit of $\left(p_{n}\right)$ so by thereren in class (not in book) there is $r(q)>0$ such that

$$
\left\{n \in \mathbb{N}\left(!p_{n} \in B_{r(q)}(q)\right\} \text { is } \operatorname{tanite}\right. \text {. }
$$

The sets $B_{r q u}(q), q \in K$, ane open and cover K. Since K is compact, there are $q_{1}, q_{2}, \cdots, q_{n} \in K$ with $K \leq \bigcup_{i=1}^{n} B_{r\left(q_{i}\right)}\left(q_{i}\right)$, Set $U=\bigcup_{i=1}^{m} B_{r\left(q_{i}\right)}\left(q_{i}\right)$. Then U is open ad $u \geq k$. Finally,

$$
\left.\xi_{n} \in \mathbb{N}: p_{n} \in U\right\}=\bigcup_{i=1}^{m}\left\{_{n} \in \mathbb{N}: p_{n} \in B_{r\left(q_{i}\right)}\left(q_{i}\right)\right\}
$$

which is finite
2. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be seq, of positive real numbers such that $\sum_{k \in \mathbb{N}} a_{n}$ converges. Prove that $\sum_{n \in \mathbb{N}} 2 a_{n}^{2}$ converges.

Pf: Since Σa_{n} converges, we have $a_{n} \rightarrow 0$.
So there is N with $\forall n \geq N\left|a_{n}-0\right|<1 / 2$ hence $\forall_{n} \geq N \quad 0 \leq a_{n}<1 / 2$. If follows that $2 a_{n}^{2}<a_{n}$ for all $n \geqslant N$. Therefore $\sum 2 a_{n}^{2}$ converges by comparison (for $n \geqslant N$.) with Σa_{n}
3. Suppose $\left(s_{n}\right)_{n \in \mid \mathbb{N},}\left(t_{n}\right)_{n \in|X|}$ ane seq's of real numbers with $\forall n \in \mathbb{N} s_{n} \leq t_{n}$. Prove

$$
\limsup _{n \rightarrow \infty} s_{n} \leq \limsup _{n \rightarrow \infty} t_{n}
$$

(This is Theorem 3.19)
Pf: This is trivial of $\operatorname{limnap}_{n \rightarrow \infty} f_{n}=+\infty$ or $\limsup _{n \rightarrow \infty} S_{n}=-\infty$. Do assume $\lim _{n \rightarrow \infty} x_{i} t_{n} \neq+\infty$ ard $\lim _{n \rightarrow 4} \operatorname{lil}_{n} \neq-\infty$.
By Theorem $3.17(a)^{n-20}$ there is subsea ($s_{n_{i}}$) with
$S_{n} \rightarrow \limsup _{n \rightarrow \infty} \delta_{n}$. Consider any $y \in \mathbb{R}$ with $y>\operatorname{limssup}_{n \rightarrow \infty} t_{n}$.
By Theoren $3.17(b)$ there is N with $\forall_{n} \geqslant N t_{n}<y$.
Pick m with $\forall_{i} \geq m \quad n_{i} \geq N$. The for all $i \geq m$ we have
$s_{n_{i}} \leqslant t_{n_{i}}<y$, meaning $\delta_{n_{i}} \in(-\infty, y I$. By Theorem 3.3(5) (lecture-onn)) $\lim _{n \rightarrow \infty} S_{n}=\lim _{i \rightarrow \infty} S_{n} \in(-\infty, y]$, so $\lim _{n \rightarrow \infty} s_{n} S_{n} \leqslant y_{1}$
Since $y>\limsup _{n \rightarrow \infty} t_{n}$ was arbitrary, we conclude $\lim _{n \rightarrow \infty} s_{n} \leqslant \operatorname{limaxip}_{n \rightarrow \infty} t_{n}$.

Lecture 22 Nov 30
HeW 8 due Friday
Recall: If $f: E \rightarrow Y$ where $E \subseteq X$ and ($X, d x$) ard $(y, d y)$ are metric spaces, then for $p \in E^{\prime}$ and $q \in Y$ the statement $\lim _{x \rightarrow p} f(x)=q$ means $\forall \varepsilon>0 \quad I \delta>0 \quad \forall x \in E \quad O d_{x}(x, p)<\delta \Rightarrow \delta_{y}(f(x), q)<\varepsilon$
Deft: Let $\left(X, d_{x}\right)\left(Y, D_{y}\right)$ be metric spaces, $E \subseteq x$, ad $f: E \rightarrow Y$. We say f is continuous at $p \in E$ if $\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \in E \quad d_{x}(x, p)<\delta \Rightarrow d_{y}(f(x), f(p))<\varepsilon$ If f is continuaes at every $p \in E$ then we say f
is contnuales on E continuous).

The 4.6: If $p \in E \backslash E^{\prime}$ then every function $f: E \rightarrow y$ is conthruous at p. If $P \in E \cap E^{\prime}$ the $f: E \rightarrow Y$ is contrucals at p if $\lim _{x \rightarrow p} f(x)=f(p)$.
If: If $p \in E \backslash E^{\prime}$ then there is $\delta>0$ with $B_{\delta}(p) \cap E=\{p \xi$. So for all $x \in E$

$$
d_{x}(x, p)<\delta \Rightarrow x=p \Rightarrow f(x)=f(p) \Rightarrow d_{y}(f(x), f(p))=0
$$

So this δ works for all $\varepsilon>0$.
The se cone statements is imnnediate form definitions

The 4. 7: Suppose $\left(x, \partial_{x}\right),\left(y, \partial_{y}\right),\left(z, \theta_{z}\right)$ are metric spaces, $E_{x} \subseteq X, E_{y} \subseteq y, f: E_{x} \rightarrow E_{y}$, $g: E_{y} \rightarrow Z^{\text {. Define }} h: E \rightarrow Z^{\prime} a_{y} h(p)=g(f(p))$.
If f is continceovs at p and g is conto muss of $f(p)$ then h is continuous at p.
Pf: Let $\varepsilon>0$. Since g is cont, at $f(p)$, thee is $r>0$ with
$\forall y \in E_{y} d_{y}(y, f(p))<r \Rightarrow d_{z}(g(y), g(f(p)))<\varepsilon$.
Since f is cont, at p, there is $\delta>0$ with
$\forall x \in E_{x} \quad d_{x}(x, p)<\delta \Rightarrow \partial_{y}(f(x), f(p))<r$.
If follows that $\quad h(x) \quad h_{11}(p)$
$\forall x \in F_{x} \quad d_{x}(x, p)<\delta \Rightarrow d_{z}(g(f(x)), g(f(p)))<\varepsilon$.
we con clue h is cont. af p.

Note: The propertil of conthuity of $f: E \rightarrow Y$ does not depard in any way on $X \backslash E$. It is therefore convenient to take the domain of f as the entire metric space.
Tim 4.8: $f: X \rightarrow Y$ is continuous $(\operatorname{lon} X)$ iff $f^{-1}(V)$ is open for every open set $V \subseteq Y$.
Pf: Assume f is cont and let $V \subseteq Y$ be open. Let $p \in f^{-1}(V)$. Then $f(p) \in U$. Since U is open there is $\varepsilon>0$ with $B_{\varepsilon}(f(p)) \subseteq V$, meaning $\forall y \in Y \quad d y(y, f(p))<\varepsilon \Rightarrow y \in U$.
since f cont, there is $\delta>0$ with

$$
\forall x \in X \quad Q_{x}(x, p)<\delta \Rightarrow Q_{y}(f(x), f(p))<\varepsilon \text {. }
$$

It follows that $f\left(B_{\delta}(p) \subseteq V\right.$, meaning $B_{s}(p) \subseteq f^{-1}(U)$. Thus $f^{-1}(U)$ is open.

Now abs um $\delta^{-1}(V)$ is open for all opec $V \subseteq Y$. Fix $p \in X$ and let $\varepsilon>0$. Set $V=B_{\varepsilon}(f(p))$. Then U is open so $f^{-1}(U)$ is open. Since $p \in f^{-1}(v)$ there is $\delta \lessdot 0$ with $B_{\delta}(p) \subseteq f^{-1}(v)$. So if $x \in X$ satisfies $d_{x}(x, p) \subset \delta$ then $x \in B_{\delta}(p) \subseteq f^{-1}(V)$ so $f(x) \in V=B_{\varepsilon}(f(p))$ and thus $d_{y}(f(x), f(p))<\varepsilon$. We con claude f is continuoles.

Cor: $f: X \rightarrow Y$ is cont. (on X) iff $f^{-1}(C)$ is closed for all closed sets $C \subseteq y$.

Pf Sketch: This follows from previous theorem together with duality between open and closed sets and the fact that for all sett $D \subseteq Y$

$$
f^{-1}(y \backslash D)=x \backslash f^{-1}(D)
$$

Thy 4.9: If $f, g: X \rightarrow \mathbb{C}$ are continuous the so are $f+g, f . g, \frac{f}{g}($ if $\forall x \in X g(x) \neq 0)$
If: At isolated ponents there is nothing to prove. At limit points this follows from Theorem 4.4 an Q 4.6 a

Thm 4.10: A Let $f_{1}, f_{2}, \cdots, f_{k}: X \rightarrow \mathbb{R}$ and define $\vec{f}: x>\mathbb{R}^{k}$ by $\vec{f}(x)=\left(f_{1}(x), \cdots, f_{k}(x)\right)$.
Then \vec{f} is cont, $\Leftrightarrow \forall 1 \leqslant i \leqslant k f_{i}$ is cont,
(B) If $\vec{f}, \vec{g}: x \rightarrow \mathbb{R}^{k}$ are cont, then so are $\vec{f}+\vec{g}$ and $\vec{f} \cdot \vec{g}$
Pf: (A) Follows from Theorems 3.4, 4.2, 4.6 (B) Follow's from Theorems 4.4^{\prime} and 4.6

Lecture 23 Dec 2
HF 8 due Friday
Obs: For $k_{i} \leq k$ the map from, \mathbb{R}^{k} to \mathbb{R} giver by $\vec{x}=\left(x_{1}, \cdots, x_{c}\right) \mapsto x_{i}$ is contmuous leas to check).
Thus for $n_{1}, n_{2}, \cdots, n_{k} \in \mathbb{N}$

$$
\left(x_{1}, x_{2}, \cdots ; x_{k}\right) \mapsto x_{1}^{n_{1}} x_{2}^{n_{2}} \ldots x_{k}^{n_{k}}
$$

is continuous. So polynomials $P(\vec{x})=\sum c_{n_{1}, n_{2}}, \cdots, n_{k} x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{k}^{n_{k}}$ Cohere $c_{n}, n_{2}, \cdots, n_{x} \in \mathbb{C}$ are fixed and all but fin italy mary are O are continuous. Additionally, rational functions $\frac{P(x)}{Q \infty}(P, Q$ are polyionialb) are continuous on their domain. Also, simila to HHO $2 C_{h} 1$ Prada 13 one can show that $||\vec{x}|-|\vec{y}|| \leq|\vec{x}-\vec{y}|$, and it follows from this th of the map $\vec{x} \in \mathbb{R}^{k} \rightarrow|\vec{x}|$ is continuous.

Def n" A function $f: x \rightarrow y$ is bouncled if there is $q \in y$ and $M>0$ with $f(X) \subseteq B_{M}(q)$.
The 4.14: Let $(X, d x),(Y, d y)$ be metric spaces.
If $f: X \rightarrow Y$ is continuous and X is compact then $f(X)$ is compact.

Pf: Let $\left\{V_{\alpha}: \alpha \in A\right\}$ be an open cover of $f(X)$. Since f is continually, by Thm. 4.8 each $f^{-1}\left(V_{\alpha}\right)$ is open and $X=\bigcup_{a \in A} f^{-1}\left(U_{\alpha}\right)$. Since X is cmpct, there are $\alpha_{1}, \cdots, \alpha_{n}$ with $X=\bigcup_{i=1}^{n} f^{-1}\left(V_{\alpha_{i}}\right)$. The we have

$$
f(X)=f\left(\bigcup_{i=1}^{n} f^{-1}\left(V_{\alpha_{i}}\right)\right)=\bigcup_{i=1}^{n} f\left(f^{-1}\left(V_{\alpha_{i}}\right)\right) \leq \bigcup_{i=1}^{n} V_{\alpha_{i}}
$$

We conclude $f(X)$ is compact.

Thin 4.15: If $f: X \rightarrow \mathbb{R}^{k}$ is contimaess and X is compact the $f(x)$ is closed and bounded.
Pf: Follows from previous theorem and Heine-Borel thy 2.41

Thy 4.16: Suppose $\left(X, d_{x}\right)$ is copt metric space and $f: x \rightarrow \mathbb{R}$ is continuous. Sat

$$
M=\sin _{x \in f} f(x)=\sup f(x), M=\inf _{x \in X} f(x)=\operatorname{in} f(x)
$$

Then there ore $p, q \in X$ with $f(p)=M, f(q)=m$.
Pf! $f(X)$ is closed and banded by previous theorem, so $M, m \in f(X)$

Obs: Thy means that f achieves its maximum/mnimum,
Thin. 4.17: $\operatorname{Lat}\left(X, O_{X}\right),\left(Y, C_{y}\right)$ be metric spaces ad let $f: x \rightarrow Y$. If X is compact ard if f is a contrnucess bijection then $f^{-1}: Y \rightarrow X$ is continuous.
If: Since $\left(f^{-1}\right)^{-1}=f$, the corollary to Theorem 4.8
tells us that f^{-1} is continuous $\Leftrightarrow f(C)$ is closed for all closed sots $C \subseteq X$.
Let $C \subseteq X$ be closed. Then C is compact, so by Thin $4.14 f(c)$ is compact, hence $f(c)$ is closed. Thus f^{-1} is conthyuens.

Defn: Let $\left(X, d_{x}\right),\left(Y, D_{y}\right)$ be metric spaces and let $f: X \rightarrow Y$. We say f is uniformly continuous if $\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x_{1}, x_{2} \in X \quad d_{x}\left(x_{1}, x_{2}\right)<\delta \Rightarrow d_{y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)<\varepsilon$

Obs: f being continuous means that if we f ix $\varepsilon>0$ then for every $x_{1} \in X$ use can find $\delta_{x_{1}}$ (depending on x_{1})
with

$$
\forall x_{2} \in X \quad d_{x}\left(x_{1}, x_{2}\right)<\delta_{x_{1}} \Rightarrow d_{y}\left(f\left(x_{1}, f\left(x_{1}\right)\right)<\varepsilon\right.
$$

But with only continuity it may be that inf $\left\{\delta_{x_{1}}: x_{1} \in X\right\}=0$. Uniform continuity means there is a fixed $\delta>0$ that works for all $x_{1} \in X$ simultaneously.
Thy 4.19: let $(X, d x),\left(Y, d_{y}\right)$ be metric spaces and let $f!x \rightarrow y$. If f is continuous ad X is compact then f is uniformly continuous.
Pf: Let $\varepsilon>0$. Since f is continuous, for each $p \in X$ we can pick $\delta_{p}>0$ with

$$
\forall q \in X \quad d x(p, q)<\delta_{p} \Rightarrow d_{y}(f(p), f(q))<\varepsilon / 2
$$

Set $V_{p}=B_{\frac{1}{2} \delta_{p}}(p)$.

Claim: If $q \in U_{p}, x \in X$ and $d_{x}(x, q) \times \frac{1}{2} \delta_{p}$ then $d_{y}(f(x), f(q))<\varepsilon$
If of C lawn: Since $q \in V_{p}$ (meaning $\left.d_{x}(p, q)<\frac{1}{2} \delta_{p}\right)$ and $d_{x}(x, q)<\frac{1}{2} \delta_{p}$, we se have $d_{x}(p, x)<\delta_{p}$ (by triangle) and $d_{x}(p, q)<\frac{1}{2} \delta_{p}<\delta_{p}$. So inequally)

$$
\begin{aligned}
& d_{y}(f(p), f(q))<\varepsilon / 2 \\
& d_{y}(f(p), f(x))<\varepsilon / 2
\end{aligned}
$$

and by triangle inequality $d_{y}(f(q), f(x))<\varepsilon \square($ claim $)$
$\left\{V_{p} ; \rho \in X\right\}$ is an open cover of X, so by compactness there are p_{1}, \cdots, p_{n} with $X=\bigcup_{i=1}^{U} V_{p i}$
Set $\delta=\frac{1}{2} \min \left(\delta_{p_{1}}, \cdots, \delta_{p_{n}}\right)$.
Consider $x_{1}, x_{2} \in X$ with $d_{x}\left(x_{1}, x_{2}\right)<\delta$.
Since $X=\bigcup_{i=1}^{n} V_{P_{i}, \text {, there is }} \leq i \leq n$ with
$x_{1} \in U_{p_{i}}$. Now Claims implies

$$
d_{y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \subset \varepsilon
$$

Lecture 24 Dec 4
HW 8 due to clay
Email me by tomorrow if you cant take Final Exam at these times:

- Tuesday Dec 15 11:30 AM-2:30 PM
- Tuesday Dec 15 11:30 PM-Wedresday Dec 16 2:30 AM

Thu 4.20: Let $E \subseteq \mathbb{R}$ be non-compact. Then
(A) $\exists f: E \rightarrow \mathbb{R} f$ is cont. but not bounclecl
(B) If $: E \rightarrow \mathbb{R} f$ is cont, and banded but has no maximum

If addition ally E is bancled then
(C) If: $E \rightarrow \mathbb{R} f$ is cont, but not uniformly cont.

Pf: Assume E is bounced. By Heine-Bonel the orem
E is not closed so there is $x_{0} \in E^{\prime} \backslash E$.
For (A) ard (C) set $f(x)=\frac{1}{x-x_{0}}$ for $x \in E$.
Claim: f is not bounded (A)
let $M>0$. Since $x_{0} \in E^{\prime}$ we can find $x \in E$ with $\left|x_{0}-x\right|<\frac{1}{M}$. For this x we have

$$
|f(x)|=\frac{1}{\left|x-x_{0}\right|}>M
$$

Thus f is not bounded
Clam: f is nat wiformly cant. (c)
Let $\varepsilon, \delta>0$. First pick any p sit. $p \in E$ and $\mid p-x_{0} k \delta / 2$ Since f is not bounded on $\left(x_{0}-\varepsilon / 2, x_{0}+\delta / 2\right) \cap E$, we con find $q \in E$ with $\left|q-x_{0}\right|<\delta / 2$ and

$$
\begin{aligned}
& |f(q)|>|f(p)|+\varepsilon_{0} \text { Then } \\
& |p-q| \leq\left|p-x_{0}\right|+\left|x_{0}-q\right|<\delta \text { lav } \\
& |f(q)-f(p)| \geqslant|f(q)|-|f(p)|>\varepsilon \text {. Thus } f \text { not } \\
& \text { unit, cont. }
\end{aligned}
$$

For (B) at $g(x)=\frac{1}{1+\left(x-x_{0}\right)^{2}}$
Claim! g is bounded ard $\forall x \in E g(x)<1$ but $\operatorname{sep}_{x \in E} g(x)=1$.
Clearly $\forall x \in E \quad 0<g(x)<1$ and g is bounded,
Let $\varepsilon>0$. Pick $x \in E$ with

$$
\left|x-x_{0}\right|<\sqrt{\frac{1}{1-\varepsilon}-1}
$$

For this x

$$
g(x)=\frac{1}{1+\left(x-x_{0}\right)^{2}}>\frac{1}{1+\sqrt{\frac{1}{1-8}-1}^{2}}=1-\varepsilon
$$

Thus $\operatorname{sug}_{x \in t} g(x)=1$.
Now assure E is not bocuded.
For (A) set $h(x)=x$ for $x \in E$
For (B) set $s(x)=\frac{x^{2}}{1+x^{2}}$ for $x \in E$
Claim: s is banded ard $\forall x \in E \quad s(x)<1$ and $\sup _{x \in E} s(x)=1$
Ifs clear that $\forall x \in E \quad O \leqslant s(x)<1$ ard s is bounded let $\varepsilon>0$. Pick $x \in E$ sit.

$$
\begin{aligned}
& \text { Pick } x \in E \text { sit } \\
& |x|>\sqrt{\frac{1}{1-\varepsilon}-1}
\end{aligned}
$$

For this x.

$$
s(x)=\frac{x^{2}}{1+x^{2}}=\left(\frac{1}{x^{2}}+1\right)^{-1}>1-\varepsilon
$$

Thus $\sup _{x \in E} s(x)=1$.

Obs: (c) is not true if boundedness is not assume $)$. Ex: \mathbb{Z} is non-compact but every function $f: \mathbb{Z} \rightarrow \mathbb{R}$ is uniformly contlimeus.
Ex: Define $f:(-1,0] \cup[1,2 I \rightarrow[0,2]$ by $f(x)=|x|$.
Then f is a continuous bijection but f^{-1} is not cont mucus.

Thin 4.22: let $\left(X, d_{x}\right),\left(Y, d_{y}\right)$ be me trice spaces, and $f: x \rightarrow y$. If $E \subseteq X$ is connected and f is contimucuss then $f(E)$ is connected.

Pf: Suppose $f(E)$ is not connected. Say $A, B \subseteq Y$ are nonempty separated and $A \cup B=f(E)$.

Set $G=f^{-1}(A) \cap E, H=f^{-1}(B) \cap E$. Then
$=G \cup H$ and G, H are nonempty. $E=G \cup H$ and G, H are nonempty.

Since $A \subseteq \bar{A}$, we have $G \subseteq f^{-1}(\bar{A})$. Since f is cont., $f^{-1}(\bar{A})$ is closed so $\bar{G} \subseteq f^{-1}(\bar{A})$. Thu for

$$
\bar{G} \cap H \subseteq f^{-1}(\bar{A}) \cap f^{-1}(B)=f^{-1}(\bar{A} \cap B)=f^{-1}(\phi)=\varnothing
$$

So $\bar{G} \cap H=\varnothing$. Similarly, $G \cap \bar{H}=\phi$.
Thus G, H ar sepdated ard E is not connected.

The 4.23 (Intermediate Value Theoreon): Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. If $f(a)<f(b)$ Cor $f(b)<f(a)$ and $c \in \mathbb{R}$ satisfies $f\left(a_{0}\right)<c<f(b)$ (or $\left.f(b)<c<f(a)\right)$ then there is $x \in(a, b)$ with $f(x)=c$.

Pf: $[a, b I$ is connected (Thu. 2.47) and so by previous theorem $f([a, b])$ is connected Since $f(a), f(b) \in f([a, b])$ and $f(a)<c<f(b)$, Theorem 2.47 implies that $c \in f([a, y])$.
Obs: Converse is false.
Ex: $f: \mathbb{R} \rightarrow \mathbb{R} \quad f(x)= \begin{cases}\sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { otherwise }\end{cases}$

Lecture 25 Dec 7
HW 9 due Friday
Final Exam at two times:

- Tuesday Dec. 15 11:30 AM -2:30 PM
- Tuesday Dec. 15 11:30 PM - Wednesday Dec. 16 2:30 AM

Deft: If f is not continuous at x and x is in the domain of f we say that f is discontinuous at x
Deft: Suppress f is a real-valued function de fined on (a, b).

- For $a \leq x<b$ we write $f(x+)=q$ or $\lim _{t \rightarrow x^{+}} f(t)=q$ if

$$
\begin{gathered}
\forall \varepsilon>0 \quad \exists 8>0 \quad \forall t \in(x, x+\delta) \quad|f(t)-q|<\varepsilon) \\
\subseteq(6, b)
\end{gathered}
$$

- For $a<x \leq b$ we write $f(x-)=q$ or $\lim _{t \rightarrow x}-f(t)=q$ if $\begin{aligned} & \forall \varepsilon>0 \geq \delta>0 \quad \forall t \in(x-\delta, x) \\ & \subseteq(a, b)\end{aligned} \quad|f(t)-q|<\varepsilon$
Obs: These definitions are equivalent to ones stated using limits of sequences just as in Theorem 4.2
Obs: $\lim _{t \rightarrow x} f(t)$ exists iff $f(x+)=f(x-)$ and when this occurs $\lim _{t \rightarrow x} f(x)$ is equal to $f(x+)=f(x-)$
Deft If f is discontinuous at x and both $f(x+)$ and $f(x-)$ exist then we say f has a discontinuity of the $1^{\text {st }} k$ ind at or simple discontinuity at x, Otherwise the discontinuity is board to be of the $2^{\text {nd }}$ kind

$$
\text { both } f(x+) \text { ard } f(x-) \text { exist and }
$$

Obs: Simple discontinuity if either $f(x+) \neq f(x-)$
or $f(x+)=f(x-)$ buts $f(x) \neq f(x+)=f(x-)$
Ex: $f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}$
has discontinuity of $2^{\text {nd }}$ kind at all points
Since $f(x-$) and $f(x+)$ don't exist

- $f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}$
f is cont. at $x=0$ discontinuity of $2^{\text {nd }}$ kind at all other point's
- $f(x)=\left\{\begin{array}{lll}x+2 & \text { if }-3 \leq x<-2 \\ -x-2 & \text { if }-2 \leq x<0 \\ x+2 & \text { if } 0 \leq x \leq 1\end{array} \quad f:[-3,1] \rightarrow \mathbb{R}\right.$
f is continuous on $[-3,1] \backslash\{0\}$
simple discontimity at O
(assume we know what sin is and its properties)
- $f(x)=\left\{\begin{array}{cl}\sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { otherwise }\end{array}\right.$
f is continues on $\mathbb{R} \backslash\{03$
Discontinuity of $2^{\text {nd }}$ kind at O
Defy: A function $f:(\infty, b) \rightarrow \mathbb{R}$ is monotone increasing if;
wherever $a<x<y<b$ we have $f(x) \leqslant f(y)$.
Similarly f is monotone decreasing if whenever $a<x<y<b$ we have $f(x) \geq f(y)$

Thu 4.29 Let $f:(a, b) \rightarrow \mathbb{R}$ de monotone increasing. Then for every $x \in(a, b), f(x-)$ and $f(x+)$ exist and

$$
\sup _{a<t<x} f^{\prime}(t)=f(x-) \leq f(x) \leqslant f(x+)=\inf _{x<t<b} f(t) \text {. }
$$

Further mono, if $a<x \times y<b$ then $f(x+) \leq f(y-)$.
Obs: Similar property hade when f monotone decreasing
Pf: $\{f(t)$: $a<t<x\}$ is bounded above by $f(x)$.
So $A=\sup _{a<t x x} f(t)$ exists and $A \in f(x)$.
Fix $\varepsilon>0$. Since $A-\varepsilon$ is not an upperbound to $\{f(t): a<t<x z$, there is $\delta>0$ with $A-\varepsilon<f(x-\delta) \leq A$. So for any $t \in(x-\delta, x)$

$$
A-\varepsilon<f(x-\delta) \leqslant f(t) \leqslant A \text { so }|f(t)-A|<\varepsilon .
$$

Thus $f(x-)=A$, A siwilla angunneut shans $f(x+)=\operatorname{linf}_{x \lll b} f(\phi)$ and $f(x+) \geqslant f(x)$

Now Suppose $a<x<y<b$. Pick any c with $x<c<y$. Then

$$
f(x+)=\inf _{x<t<b} f(t) \leqslant f(c) \leqslant \sup _{a<t<y} f(t)=f\left(y^{-}\right)
$$

Cor: Monotone functions have no discontinuities of the $2^{\text {nd }}$ kind.

The 4.30 If f is monotone $\operatorname{On}(\varepsilon, b)$ then it only has countably many dis continuities on (a, b).
Pf: Say f is increasing. Let E be set of discontinuities in (a, b). For each $x \in E$ pick $r(x) \in \mathbb{Q}$ satisfying $f(x-)<r(x)<f(x+)$.
Then $r: E \rightarrow \mathbb{Q}$ is an injection because if $x_{1}<x_{2}$ then by previous theorem

$$
r\left(x_{1}\right)<f\left(x_{1}+\right) \leqslant f\left(x_{2}-\right)<r\left(x_{2}\right)
$$

So $r\left(x_{1}\right) \notin r\left(x_{2}\right)$ Since © is catbl it follows E is cutbl

Ex: Given any catbl set $E \subseteq(a, b)$ there is a monotone increasing function $f:(a, b) \rightarrow \mathbb{R}$ such that E is the set of discontinuities of f.

More explanation next time...

Lecture $26 \operatorname{Dec} 9$
How 9 due Friday
Final Exam at two times:

- Tuesday Dec. 15 11:30 AM -2:30 PM
- Tuesday Dec. 15 11:30 PM - Wednesday Dec. 16 2:30 AM

Ex: Given any countable set $E \subseteq(a, b)$ there is a monotone increasing function $f:(a, b) \rightarrow \mathbb{R}$ such that E is the set of discontinuities of f.

Say $E=\left\{e_{1}, e_{2}, e_{3}, \cdots\right.$, . Fix seq (c_{n}) of positive real numbers with $\sum_{n=1}^{\infty} c_{n}$ convergent. Define for $x \in(a, b)$

$$
\begin{aligned}
& I_{x}=\left\{n: e_{n}<x\right\} \\
& I_{x}^{+}=\left\{\begin{array}{l}
\left.n: e_{n} \leq x\right\}
\end{array}\right.
\end{aligned}
$$

Define $f(x)=\sum_{n \in I_{x}} c_{n}$ (this converges because $\sum_{n=1}^{\infty} c_{n}$ cowerges absolutely
Then (1) f is mono. increasing
(2) $f\left(e_{n} t\right)-f\left(e_{n}-\right)=c_{n}>0$
(3) f is cont. on $(a, b) \backslash E$
(1) holds since $x<t \Rightarrow I_{x} \subseteq I_{t} \Rightarrow f(x) \leqslant f(t)$

For (2) and (3) it suffices to show that for all $x \in(a, b)$

$$
f(x-)=f(x) \text { and } f(x+)=\sum_{n \in I_{x}^{+}} c_{n}
$$

sure then $f\left(e_{k}+\right)-f\left(e_{k}-\right)=\sum_{n \in I_{e_{n}}^{+} \backslash I_{e_{n}}} C_{n}=C_{k}$
and for $x \in(q, b) \backslash E$ we have $I_{x}=I_{x}^{+}$
and thus $f(x-)=f(x+)$ so f is cont. at x

We want to shays that for $x \in(a, b)$
$f(x-)=f(x)$ and $f(x+)=\sum$ ar
$f(x-)=f(x)$ and $f(x+)=\sum_{n \in I_{x}^{+}} c_{n}$
Note that when $t<x$

$$
\begin{aligned}
{[t, x) \cap\left\{e_{1}, e_{2}, \cdots, e_{N}\right\}=\varnothing } & \Rightarrow \forall 1 \leq i \leqslant N\left(e_{i}^{\prime}<t \Leftrightarrow e_{i}<x\right) \\
& \Rightarrow I_{x} \backslash I_{t} \leq\left\{e_{N+1}, e_{N+2}, \cdots \xi\right. \\
& \Rightarrow 0 \leqslant f(x)-f(t) \leq \sum_{n>N} c_{n}
\end{aligned}
$$

And when $x<t$

$$
\begin{aligned}
(x, t) \cap\left\{e_{1}, e_{2}, \cdots, e_{N}\right\}=\varnothing & \Rightarrow \forall \leqslant i \leqslant N\left(e_{i} \leqslant x \Leftrightarrow e_{i}<t .\right) \\
& \Rightarrow I_{t} \backslash I+x \subseteq\left\{e_{N+1}, e_{N+2}, \cdots\right\} \\
& \Rightarrow O \leq f(t)-\sum_{n \in I_{x}^{+}} c_{n} \leqslant \sum_{n>N} c_{n}
\end{aligned}
$$

So given $\varepsilon>0$ and $x \in(q, b)$ pick N wroth $\sum_{n>N} c_{n}<\varepsilon$ ad choose $\delta>0$ small enough so
'that $(x-\delta, x)$ acc $(x, x+\delta)$ are disjoint with $\left\{\begin{array}{l}e_{1}, e_{2}, \cdots, e_{N} z^{3} \text {. Above observations show }\end{array}\right.$

$$
\begin{aligned}
& t \in(x-\delta, x) \Rightarrow|f(t)-f(x)|<\varepsilon \\
& t \in(x, x+\delta) \Rightarrow\left|f(t)-\sum_{n \in I_{x}+} c_{n}\right|<\varepsilon .
\end{aligned}
$$

Thus $f(x-)=f(x)$ and $f(x+)=\sum_{n \in I_{x}^{+}} c_{n}$.

Recall: A set $U \subseteq \mathbb{R}$ is a neighborhood of $x \in \mathbb{R}$ if U is open and $x \in U$.
Defn: A neighborhood of $+\infty$ is a set of the form $(M,+\infty), M \in \mathbb{R}$.

A neighborhood of $-\infty$ is a set of the form $(-\infty, M), M \in \mathbb{R}$
Defn: Let $E \subseteq \mathbb{R}$ and $f: E \rightarrow \mathbb{R}$. For $x, y \in \mathbb{R} \cup\{-\infty,+\infty\}$ we write $\lim _{t \rightarrow x} f(t)=y$ or $f(t) \rightarrow y$ as $t \rightarrow x$ if:

- either $x \in E^{\prime}$
or E is not bounded above and $x=+\infty$
or E is not banded below and $x=-\infty$
- and for every nih V of y there is a nbhd W of x such that

$$
\forall t \in E \quad x \neq t \in U \Rightarrow f(t) \in V
$$

Obs: When $x, y \in \mathbb{R}$ this notion coincides with the defmitton of limit that we learned before (start of (h.4)

Tum 4.34: Let $E \subseteq \mathbb{R}$ and let $f, g: E \rightarrow \mathbb{R}$.
Suppose $x, A, B \in \mathbb{R} \cup\{-\infty,+\infty\}, \quad \lim _{t \rightarrow x} f(t)=A, \lim _{t \rightarrow \times \times} g(t)=B$.
Then (1) if ${ }_{n}^{1 / m \times x} f(t)=A^{\prime}$ then $A^{\prime}=A$
(2) $\lim _{t \rightarrow x}(f+g)(t)=A+B$
(3) $\lim _{t \rightarrow x}(f g)(t)=A B$
(4) $\lim _{t \rightarrow x}\left(\frac{f}{g} f(t)=\frac{A}{B}\right.$
provided the right-hand side is define $\left(+\infty+(-\infty), 0 . \infty, \frac{\infty}{\infty}, \frac{A}{0}\right.$ are not define)

Pf Sketch:
(1). Suppose towards contradiction $A \neq A^{\prime}$. Say $A<A^{\prime}$ (other case is similar). Then there is $r \in \mathbb{R}$
with $A<r<A^{\prime}$. Then $V=(-\infty, r)$ ad $V^{\prime}=(r,+\infty)$ are n bids of A ard A^{\prime} respectively, So there are nbhos u, l ' of x such that

$$
\begin{array}{rl}
\forall t \in E & x \neq t \in U \\
x \neq t \in U^{\prime} & \Rightarrow f(t) \in U \\
& \Rightarrow(t) \in U^{\prime} .
\end{array}
$$

Un U' is nhl of x so we can find $t \in f$ with $x \neq t \in U n u^{\prime}$. Then

$$
f(b) \in \cup \cap U^{\prime}=(-\infty, r) \cap(r,+\infty)=\varnothing \text {, }
$$

a contradiction. So $A=A^{\prime}$.
Rect are exercise.

Lecture 27 Dec 11
Hew 9 due today
Final Exam at two times:

- Tuesday Dec. 15 11:30 AM -2:30 PM
- Tuesday Dec. 15 11:30 PM - Wednesday Dec. 16 2:30 AM

Practice finals on Canvas page Solutions to pray cilice finals will be released later today
Office Hows next week:

- Vats: Mon. $9-11$ AM
- Bracken: Mon. 8-10 PM

Review
Material from Ch, 4
(Computing) limits of functions
Verifying continuity / disconthuity
Cha a aterization of continuity vial apo
Cha acterization of continuity vial open/closed sets Connections be tween continuity and limits
Continuity \& connectivity, IU UT
Cont, images of compact sets are compact (closed, cont, functions achieve their max/min on compact sets Cont, bije ctions on con put sets have continues inverses Cont. functions on compact sots are unif. cont,
Verifying uniform continuity
Types of discontinuities
Discontinuities of monotone functions
Neighborhoolb of extended real numbers
Limits at $\pm \infty$
Limits with value $\pm \infty$
$f: x \rightarrow y$
f continuous at p means

$$
\forall q>0 \quad \exists \delta>0 \quad \forall q \in X \quad d_{x}(p, q)<\delta \Rightarrow d_{y}(f(p), f(q))<\varepsilon
$$

f continuous (on its domain) meas
$\forall p \in X \quad \forall \varepsilon>0 \quad \exists \delta>0 \quad \forall q \in X \quad d_{x}(p, q)<\delta \Rightarrow d_{y}(f(p), f(q))<\varepsilon$
f uniformly continuous means
$\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall p \in X \quad \forall q \in X \quad d(p, q)<\delta \Rightarrow d_{y}(f(p), f(q))<\varepsilon$

1. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be wifi. cont.
(a) Prove $f+g$ is uni. cont.
(b) Assume f, g are bouncled. Prove $f g$ is unit. cont.
2. Let $A \subseteq \mathbb{R}$ be nonempty, bounded above. Set Assume $\alpha=$ sup A Define $f![0,+\infty) \rightarrow \mathbb{R}$ by $f(t)=\sup A \cap(-\infty, \alpha-t I$. Prove that $\lim _{t \rightarrow 0} f(t)=\alpha$.
3. Let $\left(x_{n}\right)_{n \in \mathcal{T}_{+}}$de seq. in \mathbb{R} satisfying $x_{n+1}-x_{n} \geq \frac{1}{n}$. Prove $\lim _{n \rightarrow \infty} x_{n}=+\infty$.
4. let $\left(s_{n}\right)_{v \in \mathbb{N}}$ be $s a q, i n \mathbb{R}$ Prove $\left(s_{n}\right)$ has a subseq. limit in $\mathbb{R} \cup\{-\infty,+\infty\}$.
5. Let $\left(s_{n}\right)_{n \in \mathbb{N}}$ be bonded seq, in \mathbb{R}, and let $t \in \mathbb{R}$ Prove if the staternect " $\lim _{n \rightarrow \infty} s_{n}=t^{\prime \prime}$ is false then there is a convergent subseq. (ont) with $\lim _{i \rightarrow \infty} s_{n_{i}} \neq t$.
6. Let $A \subseteq \mathbb{R}$ be nonempty, bounded above, Set $\alpha=$ sup A. Define $f![0,+\infty) \rightarrow \mathbb{R}$ by $f(t)=\sup A \cap(-\infty, \alpha-t]$.
Prove that $\lim _{t \rightarrow 0} f(t)=\alpha$!
Pf: Let $\varepsilon>0$. Since $\alpha-\varepsilon$ is not on upperbound to A, we can fix $a \in A$ with $a>\alpha-\varepsilon$. Since $\alpha \notin A$, we have $a \neq \alpha$. Then $\delta=\frac{\alpha-a}{2}>0$.
Now suppose $t \equiv 0$ and $|t-0|<\delta$. Then $0 \leqslant t<\delta$ so

$$
a \in A \cap(-\infty, \alpha-\delta] \subseteq A \cap\left(-\infty, \alpha-t_{i}\right)
$$

$$
\text { So } f(t)=\sup A \cap(-\infty, \alpha, t] \geq a>\alpha-q \text {. }
$$

Also $f(t) \leq \alpha$ since $A \cap(-\infty, \alpha-t] \subseteq A$. Thus $|f(t)-\alpha|<\varepsilon$. We conclude $\lim _{t \rightarrow 0} f(t)=\alpha$.

1. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be wifi, cont.
(a) Prove ftg is unif. cont.
(b) Assume f, g are bounded. Prove $f g$ is unit. cont.

Pf: (a). Let $\varepsilon>0$. Since f, g are unify cant, there are $\delta_{f}, \delta_{g}>0$ such that for all $x, t \in \mathbb{R}$

$$
\begin{aligned}
& |x-t|<\delta_{f} \Rightarrow|f(x)-f(t)|<\varepsilon / 2 \\
& |x-t|<\delta_{g} \Rightarrow|g(x)-g(t)|<\varepsilon / 2,
\end{aligned}
$$

Set $\delta=\min \left(\delta_{f}, \delta_{g}\right)>0$. If $x, t \in \mathbb{R}$ satisfy
$|x-t|<\delta$ then $|x-t|<\delta_{f}$ and $|x-t|<\delta g$ $|x-t|<\delta$ then $|x-t|<\delta_{f}$ and $|x-b|<\delta g$
hence

$$
\begin{aligned}
&|f(x)+g(x)-(f(t)+g(t))| \\
&=|(f(x)-f(t))+| g(x)-g(t)) \mid \leqslant|f(x)-f(t)|+|g(x)-g(t)| \\
&<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Thus $f+g$ is enif. cent.
(b). Let $\varepsilon>0$. Since f, g are boundeil there are $M_{f}, M_{g}>0$ such that

$$
\forall x \in \mathbb{R} \quad|f(x)| \leqslant M_{f},|g(x)| \leqslant M_{g}
$$

Since f, g whf. cont, there are $\delta_{f}, \delta_{g}>0$ such that
$\forall x, t \in \mathbb{R}$

$$
\begin{aligned}
& |x-t|<\delta_{f} \Rightarrow|f(x)-f(t)|<\frac{\varepsilon}{2 M_{g}} \\
& |x-t|<\delta_{g} \Rightarrow|g(x)-g(t)|<\frac{\varepsilon}{2 M f} .
\end{aligned}
$$

$\delta=\min \left(\delta_{f}, \delta_{g}\right)>0$. Then for $x, t \in \mathbb{R}$ with $|x-t|<\delta$
we have $|f(x) g(x)-f(t) g(t)|=|f(x) g(x)-f(t) g(x)+f(t) g(x)-f(t) g(t)|$

$$
\begin{aligned}
& \leq|f(x)-f(t)| \cdot|g(x)|+|f(t)| \cdot|g(x)-g(f)| \\
& \leq M_{g}|f(x)-f(t)|+M_{f} \cdot|g(x)-g(t)| \\
& <M_{g} \cdot \frac{\varepsilon}{2 M_{g}}+M_{f} \cdot \frac{\varepsilon}{2 M_{f}}=\varepsilon
\end{aligned}
$$

Thus $f g$ is wifi, cont,

