Math 140 A

$$
+x
$$

$$
-\quad \div
$$

Office Hours

How to construct \mathbb{R} from \mathbb{Q} (as in appendix)
Defn: A set $\alpha \subseteq \mathbb{Q}$ is a cat if:
(1) $\varnothing \neq \alpha \neq \mathbb{Q}$
(3) If $p \in \alpha$ and $q \in \mathbb{Q}, q c p$ then $q \in \alpha$
(3) If $p \in \alpha$ then \# $r \in \alpha r>p$

Intuition: A cut is a set of the form

$$
\alpha=(-\infty, x) \cap \mathbb{Q}
$$

The construction will identify
x with α
\mathbb{R} will be leftnel as the set of all cuts.

Question related to Piazza post
Orighal Q:
$b>1$ ard $O<y<1$ does there exist neal r with $b^{r}<y$

$$
b^{n}<y \Leftrightarrow b^{-r}>\frac{1}{y}
$$

Clam: If $b>1$ and $y \in \mathbb{R}$ then $\Xi n \in \mathbb{N} \quad b^{n}>y$ Hint for proving claim: Modify proof of The. 1.20(a)

For $7(f)$:
Claim: If $x, y \in \mathbb{R}$ (for $b>1) \quad x<y$ then $b^{x}<b y$ This is prover in $6(\omega)$

HO $2 * G(d)$
If you change the clefrition to

$$
B(x)=\left\{b^{t}: t \in \mathbb{Q}, t \leq x\right\}
$$

then you can show when $x, y \in \mathbb{R} \backslash \mathbb{Q}$ and $x+y \in \mathbb{Q}$

$$
\begin{aligned}
\forall x, y \in \mathbb{R} \quad & B(x) \cdot B(y) \ngtr B(x+y) \\
& \{z \cdot w: z \in B(x), w \in B(y)\}
\end{aligned}
$$

Want to prove $b^{x} \cdot b^{y}=b^{x+y}$,
meaning $(\sup B(x)) \cdot(\sup B(y))=\sup B(x+y)$
Strategy: Check that $(\sup B(x)) \cdot(\sup B(y))$ Satisfies the two conditions for being sup B(xay) Check: $(\sup B(x)) \cdot(\sup B(y))$ is upperboond to $B(x+y)$. Hint: Use $B(x+y) \subseteq B(x) \cdot B(y)$
Check: Anything less than $(\sup B(x)) \cdot(\sup B(y))$ is not upperbounl to $B(x+y)$.

Continued
Show $B(x+y) \subseteq B(x) \cdot B(y)$
Consider $b^{t} \in B(x+y)$. So $t \in \mathbb{Q}, t<x+y$
Wont to find $b^{t_{1}} \in B(x), b^{t_{2}} \in B(y), \quad t_{1}+t_{2}=t$
Want to find $t_{1}, t_{2} \in \mathbb{Q}, t_{1}+t_{2}=t, t_{1}<x, t_{2}<y$
Hint: Since $t<x+y$ we have $\frac{t-y<x}{\text { t think about his }}$

$$
H w 2 \# 7(a b)
$$

(q) Hint: Use the identity $\overbrace{(b-a)\left(b^{n-1}+a b^{n-2}+\cdots+a^{n-2} b+a^{n-1}\right)}^{n \text { terms }}$

$$
b^{n}-a^{n}=(b-a b l
$$

When $b>1$ and $a=1$ we have $a^{k} b^{n-k-1} \geqslant 1$

$$
(k=0,1, \cdots, n,-1)
$$

(b) Replace the b in (a) with $b^{1 / n}$

Check: when $b>1, b^{1 / n} \times 1$ as well
$A, B \leqslant(0,+\infty)$ nonernpty bandeud chowe.
Prove $(\sup A)(\sup B)=\sup \{a b: a \in A, b \in B\}$
Pf: Set $\alpha=\sup A, \beta=\sup B$ (exist by hub property).
If $a \in A$ and $b \in B$ then $a \leq \alpha$ and $b \leq \beta$
So $a b \leqslant \alpha b \leqslant \alpha \beta \quad$ (since $\alpha, \beta, a, b \geq 0)$
So $\alpha \beta$ is upperbond to sup $\left\{a b: a \in A, b \in B T_{i}\right.$
Notice $A \neq \varnothing$ so $\exists a \in A$ and $a>0$, thus $\alpha \geq a>0$ Similarly $\beta>0$.
Now cons dor $x<\alpha \beta$.
Then $\frac{x}{\beta}<\alpha$ so there is $a \in A$ with $\frac{x}{\beta}<a$. We have $\frac{x}{a}<\beta$ so there is $b \in B$ with $\frac{x}{a}<b$. Hence $x<a b$.
So x is not an upperbound to $\{a b ;, a G A, b \in B\}$ we con cluile $\alpha \beta=\sup \{a b: a \notin A, b \in B\}$

HF 3 Problem A
$X=\{f: \mathbb{N} \rightarrow \mathbb{N} \mid f$ is ejective $\}$
Let $F \subseteq X$ be countably infinite. We con write $F=\left\{f_{0}, f_{1}, f_{2}, \cdots\right\}_{0}$. Inductively define $g: \mathbb{N} \rightarrow \mathbb{N}$ by setting $g(0)=f_{0}(0)+1$ and once $g(0), \cdots, g(n-1)$ are defined, set

$$
g(n)=\max \left(g(0), g(1), \cdots, g(n-1), f_{n}(n)\right)+1
$$

It is dear from the induction that $\forall k<n g(n) \neq g(k)$ (since $g(n) \geqslant g(k)+1)$. So g is an injection, hence $g \in X$. But for every $n \in \mathbb{N}$ we have $g(n) \geqslant f_{n}(n)+1 / F$ hence $g(n) \neq f_{n}(n)$ and $g \neq f_{n}$. So $g \in x<F$.
Thus $F \neq X$. We conclude X is uncountable.
Sketch Easier proof: Define $\phi: \xi_{0}, 1 \xi^{\mathbb{N}} \rightarrow X$ by
$\phi(f)(n)=2 n+f(n)$ for $f: \mathbb{N} \rightarrow\{0,1\}$ and $n \in \mathbb{N}$.
Check: ϕ is an injection.
Then ϕ is bize chive with its image $Y=\phi\left(\left\{01\left(Z^{1 N}\right)\right.\right.$.
We leaneil $\{0$, BiN is uncountable,
so Y is uncoutcoble Since $Y \subseteq X$, we conchecle X is uncountable (Tho. 2.8)
Notation: Y^{X} is the set of all functions $f: X \rightarrow Y$

Practice Midterm B \#3
Lat $Y \subseteq X$ be countably infhite. Then we can write Y as $Y=\left\{A_{0}, A_{1}, A_{2}, \cdots\right\}$.
Deform $B \subseteq \mathbb{N}$ by declaring for each $n \in \mathbb{N}$:

$$
\left(2 n \in B \Leftrightarrow 2 n \in A_{n}\right) \text { add }\left(2 n+1 \in B \Leftrightarrow 2 n+1 \notin A_{n}\right)
$$

Since precisely one of $2 n, 2 n+1$ are in An but not both, we have that precresely one of $2 n, 2 n+1$ are in B but not both. This ho QS for every $n \in \mathbb{N}$ So $B \in X$. But for every $n \in \mathbb{N}$ we have $B \neq A_{n}$ since $2 n$ is an lelenert of precisely one of the sots B, A_{n}. Since $\forall_{n} \in \mathbb{N} B \neq\left(A_{n}\right.$, we have $B \notin Y$, meaning $B \in X \backslash Y$. Thus $Y \neq X$. We conclude that X is in constable.

Ch. $3^{ \pm} 8$. Assume $E a_{n}$ converges, $\left(b_{n}\right)$ mono and banded
Prove $\sum a_{n} b_{n}$ converges
Pf 1: Since $\left(b_{n}\right)$ is mono. \& banclecl, it converges to some $\beta \in \mathbb{R}$. Notice $\sum a_{n} b_{n}$ converges if $\sum a_{n}\left(-b_{n}\right)$ converges. So by replacing $\left(b_{n}\right)$ with $\left(-b_{n}\right)$ if necessary, we can asslune (b_{n}) is mono clecreasing. Set $b_{n}^{\prime}=b_{n}-\beta$. Then $b_{0}^{\prime} \geq b_{1}^{\prime} \geq \cdots \geq 0, \lim _{n \rightarrow \infty} b_{n}^{\prime}=0$,

Since Ear converges, its partial suns are bounded By Thy 3.42, $\sum a_{n} b_{n}^{\prime}$ converges.
Also $\sum a_{n} \beta$ converges to $\beta \cdot \sum a_{n}$. (Tim 3.47)
Since $a_{n} b_{n}=a_{n} b_{n}^{\prime}+a_{n} \beta$, is follows that $\sum a n b_{n}$ converges to $\sum a_{n} b_{n}^{\prime}+\beta \sum a_{n}$.

Pf 2: Set $A_{n}=\sum_{k=0}^{n} a_{k}$ for $n \geqslant 0$, set $A_{-1}=0$.
Since \sum an converges, the partial suns A_{n} are bounded.
So there is $M>O$ with $\forall n\left|A_{n}\right|<M$.
Let $\varepsilon>0$. Since (b_{n}) is mono. s banded, it converges hence is Cruadny. So there is N. with
$\left|b_{n}-b_{m}\right|<\varepsilon / 3 M$ for all $m \geq n \geq N$. Say $\lim _{n \rightarrow \infty} b_{n}=b_{\text {, }}$
and $\sum a_{n}=A=\lim _{n \rightarrow \infty} A_{n}$. By Theorem 3.3,
$A_{n} b_{n} \rightarrow A b$ and $A_{n-1} b_{n} \rightarrow A b$. So there are
N_{2} with $\left|A_{n} b_{n}-A b\right|<\varepsilon / 3$ for all $n \geq N_{2}$ and
N_{3} with $\left|A_{n-1}, b_{n}-A b\right|<\varepsilon / 3$ for all $n \geq N_{3}$.
So when ever $n \geqslant n \triangleq \max \left(N_{1}, N_{2}, N_{3}\right)$ we have

$$
\begin{aligned}
\left|\sum_{k=n}^{m} a_{k} b_{k}\right| & =\left|\sum_{k=n}^{m-1} A_{n}\left(b_{n}-b_{n+1}\right)+A_{n} b_{m}-A_{n-1} b_{n}\right| \\
& \leq \sum_{k=n}^{m-1}\left|A_{n}\right| \cdot\left|b_{n}-b_{n+1}\right|+\left|A_{m} b_{m}-A_{n-1} b_{n}\right| \\
& <M \cdot\left(\sum_{k=n}^{n-1}\left|b_{n}-b_{n+1}\right|\right)+\left|A_{m} b_{m}-A_{n-1} b_{n}\right| \\
& =M \cdot\left|b_{n}-b_{m}\right|+\left|A_{m} b_{m}-A_{n-1} b_{n}\right| \\
& <\frac{\varepsilon}{3}+\left|A_{n} b_{m}-A b\right|+\left|A b-A_{n-1} b_{n}\right| \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

Thus $\sum a_{m} b_{n}$ converges by Cauchy criterion.

HO 7 Problem B.
$\sum a_{n}$ converges wosaluilly $\Leftrightarrow \forall$ banded $\left(b_{n}\right) \sum a_{n} b_{n}$ converges
Pf of \Leftarrow : Define

$$
b_{n}=\left\{\begin{array}{cl}
1 & \text { if } a_{n} \geq 0 \\
-1 & \text { if } a_{n}<0
\end{array}\right.
$$

Then $\forall_{n} a_{n} b_{n}=\left|a_{n}\right|$.
The seq. (bn) is boculed so by cos sumption $\sum a_{n} b_{n}=\sum \mid a n l$ converges. The $\sum a_{n}$ converges absolutely.
Wrong'~ For all bounded seq's (bn) prove that Eanbr converges $\Rightarrow \sum$ an converges absolutely.

Musings on series in other fields (not related to our course)

$$
\begin{array}{ll}
S=1+2+4+8+\cdots & \in \mathbb{R} \\
2 S+1=S & \\
S=-1 & \text { False } \\
S=1+2+4+8+\cdots \in F & (\text { F some field })
\end{array}
$$

Supposing F hat a "nice" notion of convergence and assuming the series converges then it is true that

$$
\begin{aligned}
2 S+1 & =S \\
\text { so } \quad S & =-1
\end{aligned}
$$

廿 additive reverse of multiplicative identity in F.

Say $2^{n}=0(\ln F)$. Then

$$
S=1+2+4+8+\cdots+2^{n-1}=2^{n}-1=-1
$$

