Math 140A

Office Hours

How to construct IR from Q (as in appendix) Defn: A set a EQ is a cut if: DØ ta tQ 2 If pea and geQ gcp then gea 3 If pea then treat rp Intuition: A cut is a set of the form The construction will identify x with ~ IR will be lefter as the set of all cuts.

Question related to Piazza post Orighal Q: IF 6>1 and Ocy21 does there exist real r with 6'<y $b' < y \iff b' > \frac{1}{y}$ Clami If by and yell then Inel bry Hint for proving claim! Modify proof of Thm. 1.20(a) For 7(f): Claim: If x, y e R and x < y then bx < by (for b>1) This is proven in G(w)

 $HW 2 \pm 6(d)$

If you change the definition to $B(x) = \{b^t : t \in \mathbb{Q}, t \le x\}$

then you can show when $x, y \in \mathbb{R} \setminus \mathbb{R}$ and $x + y \in \mathbb{R}$ $\forall x, y \in \mathbb{R}$ $B(x) \cdot B(y) \neq B(x + y)$ ξz·w:zeBlx), weBly)3 Want to prove b. by = bxty meaning (sup B(x)) · (sup B(x)) = sup B(x+y) Strategy: Check that (sup B(x)). (sup B(y)) Scutisfies the two conditions for being sup Blacky) Check: (sup B(x)). (sup B(y)) is upper bound to B(X+y). Hint: Use B(X+y) = B(X)·B(y) Check: Anything less than (sup B(x)). (sup B(y)) is not upperbound to B(x+x).

Continuel -Show $B(x+y) \subseteq B(x) \cdot B(y)$ Consider bteB(X+y). SoteR, t<X+y Want to find the B(x), btz e B(y), titz=t Want to find ti, tz EQ, t, +tz=t, t, <x, tz <y Hint: Since t < x+y we have t-y < x think about this

 $HW2 \pm 7(ab)$ (q) <u>Hint</u>: Use the identity h terms $b^{n} - a^{n} = (b - a)(b^{n-1} + ab^{n-2} + \dots + a^{n-2}b + a^{n-1})$ When b > 1 and a = 1 we have $a \cdot b^{n-k-1} \ge 1$ (k=0,1,..,n-1)(b) Replace the bin (a) with b" Check: when b>1, b'h >1 as well

A, $B \leq (0, +\infty)$ nonempty bandled cleare. Prove (sup A)(sup B) = sup {ab : acA, be B3 Pf: Set a = aup A, B = sup B (exist by lub property). IFaEA and beB then a = or and b=B So ab = orb = orb (shoe or B, a, b=0) So orb is upperbound to sup Zob' and, beBZ. Notice Atto so ZaEA and aro, thus ~= a>0 Similarly B>0. Now consider X < ~ B. Then $\overleftarrow{\beta} < a$ so there is act with $\overleftarrow{\beta} < a$. We have $\overleftarrow{\alpha} < \beta$ so there is be B with $\overleftarrow{\alpha} < b$. Hence x < ab. So x is not an upperbound to ZadiaGA BEBZ We conclude SB = Sup ZabiaGA, bEBZ

HW 3 Problem A

X= Ef: IN > N | fis mjective 3 Let $F \subseteq X$ be countably infinite. We can write $F = \frac{2}{5}f_0, f_1, f_2, \dots, \frac{2}{5}$. Inductively define $g: |N \rightarrow |N|$ by setting $g(o) = f_0(o) + 1$ and once $g(o), \dots, g(n-1)$ are defined, set We defined, set $g(n) = \max(g(0), g(1), \dots, g(n-1), f_n(n)) + 1$. It is char from the induction that $\forall k < n = g(h) \neq g(k)$ (since $g(n) \ge g(k) + 1$). So g is an injection here $g \in X$. But for every ne (N) we have $g(n) \ge f_n(n) + 1$. here $g(n) \neq f_n(n)$ and $g \neq f_n$. So $g \in X \times F$. Thus $F \neq X$. We conclude X is uncantable. \square Sketch Easier proof ! Define $\phi: {\cite{20,13}}^N \to X by$ $<math>\phi(f)(n) = 2n+f(n)$ for $f: N \to {\cite{20,13}}^n$ and $n \in IN -$ Check: ϕ is an injection. Then ϕ is by early with its image $\gamma = \phi(\xi_{q_1}\xi_{q_1}^{(N)})$. We leaned 20,13^N is uncantable, so Y is uncantable. Since Y SX, up conclude X is uncountable (Thm. 2.8) \square Notation: Y^{X} is the set of all functions $f: X \rightarrow Y$

Practice Midtern B #3

Let Y = X be countably infinite. Then we $(2n \in B \Leftrightarrow 2n \& A_n) and (2n + | \in B \Leftrightarrow 2n + | \& A_n)$ Since precessly one of 2n, 2n+1, are in An but not both, we have that precessely one of 2n, 2n+1 are in B but not buth. This halds for every nerv SO BEX. But for every nelly we have ! BEA, Since 2n is an element of precisily one of the sols B, A, Shee UnGIN BE(An, we have BEY, meaning BEXLY. Thus Y = X. We conclude that X is in countable I

Ch. 3 # 8. Assume I an converges, (Sn) mono, and banded. Prove Zanton converges

PI1: Since (b,) is mono. & bancled, it converges to some $\beta \in \mathbb{R}$. Notice $\Sigma a_n b_n$ converges iff $\Sigma a_n(-b_n)$ converges. So by replacing (b_n) with $(-b_n)$ if necessary we can assume (b_n) is mono. decreasing. Set $b'_n = b'_n - \beta$. Then $b'_0 = b'_1 = \dots = 0$, $\lim_{n \to \infty} b'_n = 0$.

Since Lan converges, its partial sums are bounded. By Thm 3.42, Zanb, converges. Also EanB converges to B. Ean. (Thm 3.47) Since and = and + anB, il follows that Earth converges to Eanbi + B. Ean. D

P12: Set
$$A_n = \sum_{k=0}^{n} a_k$$
 for $n \ge 0$, set $A_{-1} = 0$.
Since Σ an converges, the partial sums A_n are bandled.
So there is $M \ge 0$ with $\forall n |A_n| \le M$.
Let $\varepsilon > 0$. Since (ba) is more a grandled, it converges
hence is Cauchy. So there is N , with
 $|b_n = bm| \le 3M$ for all $m \ge n \ge N$. Say time $b_n \ge b_n$
and $\Sigma a_n = A = \lim_{n \ge \infty} A_n$ By Theorem 3.3.
 $A_n = b_n \Rightarrow Ab$ and $A_{n-1} = b_n \Rightarrow Ab$. So those are
 N_2 with $|A_n|_h = Ab| \le \sqrt{2}$ for all $n \ge N_2$ and
 N_3 with $|A_n = h \ge max(N_1, N_2, N_3)$ we have
 $\left|\sum_{k=n}^{m} a_k b_k\right| = \left|\sum_{k=n}^{m} A_n (b_n = b_{n+1}) + A_n = b_n = A_{n-1} = b_n\right|$
 $\le \sum_{k=n}^{m-1} |A_n| \cdot |b_n = b_{n+1}| + |A_m = b_n = A_{n-1} = b_n|$
 $= M \cdot |b_n = b_{n+1}| + |A_m = A_{n-1} = b_n|$
 $\le \frac{2}{3} + |A_m = b_n| + |A_m = A_{n-1} = b_n|$
 $\le \frac{2}{3} + \frac{2}{3} + \frac{2}{3} = \varepsilon$.
Thus Σ and converges by Cauchy with D .

Pf af ∈: Define $b_n = \begin{cases} 1 & \text{if } Ce_n \ge 0 \\ -1 & \text{if } Ce_n < 0 \end{cases}$ Then $\forall n \ a_n b_n = |a_n|$. The scq. (bn) is becauled so by coscumption $Z \ a_n b_n = Z |a_n|$ converges. Thus $Z \ a_n$ converges absolutely. \square For all bandled seg's (bn) prove that Earth converges => I an converges absolutely.

Musings on series in other fields (not related to our course)

 $S = |+2+4+8+\cdots \in \mathbb{R}$ 2S+1 = SS = -1False

S=1+2+4+8+... EF (Forme field) Supposing F has a "nice" notion of convergence and assuming the series converges then it is true that 25+1=S S=-1 A additive inverse of multiplication i letty in F.

Say 2"= O (in F). Then $S = |+2+4+8+\dots+2^{n-1} = 2^n - | = -1$