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ERRATA AND ADDENDA TO CHAPTERS 1-7 OF RUDIN’S
PRINCIPLES OF MATHEMATICAL ANALYSIS, 3rd Edition (noted as of December, 2006)

For additional errata to earlier printings , see last page of these sheets.

Note: If you don’t want to write corrections into your text, you might put them on PostIts (or
slivers of paper cut from PostIts) and insert these at the page in question.

P.4, line 4: Change this line to ‘‘(ii) If γ ∈S is an upper bound of E, then γ ≥ α’’ for greater clarity.
P.4, 6th line of Example 1.9: ‘‘lasgest’’ should be ‘‘largest’’
P.4, 3rd line of Definition 1.10: A clearer statement would be, ‘‘Every subset E ⊂ S which is nonempty
and bounded above has a supremum sup E in S.’’
P.5, last 5 lines of proof of Theorem 1.11 : Change these lines to:

If α were not a lower bound of B, there would be some x∈B satisfying x<α . This x would be
an upper bound of L (by the preceding paragraph), contradicting our assumption that α is the least
upper bound of L. So α is a lower bound of B. Now if y is any lower bound of B, then y∈L, so
y ≤ sup L = α ; this shows that α is the greatest lower bound of B.
P.6, Proposition 1.14: Add

( e) – (x+y) = (–x) + (–y).
Can you see how to prove this? I will either discuss it in class, or make it an exercise.
P.12, definitions of operations on the extended real numbers: Rudin should have noted the convention that
x+ (+ ∞ ) and x+ (–∞ ) may be abbreviated x+ ∞ and x–∞ respectively, and mentioned that addition
and multiplication are understood to be commutative on the extended reals, so that the definitions he gives
also imply further cases like + ∞ + x = + ∞ . Finally, the three equations in (a), instead of having the
common condition ‘‘If x is real’’, should be preceded by the respective conditions, ‘‘If x is real or
+ ∞ ’’, ‘‘If x is real or –∞ ’’, and only in the last case simply ‘‘If x is real’’.
P.16, Theorem 1.37: Add one more part:

(g) Assuming k > 0 , there exists a vector u with | u | = 1 such that u · x = | x | .
Proof: If x ≠ 0 let u = |x |–1x ; if x = 0 let u be any vector with | u | = 1.
P.19, middle: The author refers to the archimedean property of Q. This is not a consequence of
Theorem 1.20(a); that would be circular reasoning. Rather, it is an elementary property of Q : Given x,
y∈Q with x > 0, we need to find an n > y ⁄ x. If y ⁄ x < 0, take n = 1; otherwise, write y ⁄ x as a
fraction with positive denominator, and take for n any integer greater than its numerator.
P.29, second line after display (17): Change ‘‘Hence there is a subset’’ to ‘‘Hence we cannot say that the
map sending the natural number n to the nth term of this sequence is a one-to-one correspondence; but
clearly there is a subset’’.
P.31, Definition 2.17: In defining ‘‘the segment (a, b)’’, ‘‘the interval [a, b]’’, etc., Rudin doesn’t say
whether a and b are real numbers or extended real numbers. In at least one place, namely exercise 29
to this chapter (p.45), one must understand them to be extended real numbers, so that, for instance, R can
be considered as the segment (–∞, ∞). (I haven’t had time to examine whether this interpretation is
consistent with all Rudin’s uses of these terms.) In any case, the definition of ‘‘segment’’ should contain
the assumption ‘‘a < b’’ (otherwise the empty set would be a segment, which is not desired), while the
definition of ‘‘interval’’ should contain the assumption ‘‘a ≤ b’’. The possibility of equality is assumed in
the display in the proof of Theorem 2.38; again I’m not sure whether Rudin is consistent about this.
P.35, Proof of Theorem 2.27(a): Change this to, ‘‘We must show that any limit point p of E lies in E.
Now any neighborhood N of p contains some q∈E. Since N is open, N contains some
neighborhood M of q, and since q∈E, M contains some r∈E. Thus r∈M ⊆ N, so every
neighborhood N of p contains a point r∈E, so p∈E.’’
P.36: After finishing the section of metric spaces, you might find the following discussion enlightening;
but it is not required reading.
What is topology? Chapter 2 of Rudin is entitled ‘‘Basic Topology’’, but the chapter is about metric
spaces, and the word ‘‘topology’’ does not appear in that chapter, nor in the index. What does it refer to?

Topology is a field of mathematics that includes the study of metric spaces as a special case. The key
to the connection between metric spaces and the more general concept of a topological space is
Theorem 2.24, parts (a) and (c) (p.34), which show that if we write T for the set of all open sets in a
metric space, then the union of any family of members of T, and the intersection of any finite family of
members of T, are also open sets. Families of sets with these properties come up in other contexts as
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well; so one makes
Definition. A topological space X means a pair (X, T ), where X is a set, and T is a set of subsets of
X which satisfies
(i) For any collection {Gα } with all Gα ∈T one has ∪α Gα ∈T.
(ii) For any finite collection {Gα } with all Gα ∈T one has ∩α Gα ∈T.
(iii) ∅∈T and X∈T.

When T has been specified, and there is no danger of ambiguity, one simply speaks of ‘‘the
topological space X ’’. The sets in T are called the open sets of X.

(Remark : Condition (iii) can be omitted from this definition if one interprets conditions (i) and (ii)
appropriately, since ∅ can be regarded as the union of the empty family of members of T, and if one
interprets ∩ to refer to intersection as subsets of X, then X can likewise be regarded as the
intersection of the empty family of members of T.)

Most of the concepts developed in Chapter 2 can be expressed in terms of open sets, hence also make
sense in a general topological space. For instance, a closed set G can be defined as a set whose
complement Gc is open. (Under this definition, parts (c) and (d) of Theorem 2.24 clearly hold in any
topological space.) A limit point of E can be defined as a point p∈X such that every open subset of X
which contains p contains a point of E other than p (cf. exercise 2.2:4 in the exercise packet). In
terms of limit points, one can define isolated point and perfect set. (One can also check that Rudin’s
definition of ‘‘closed set’’ in terms of ‘‘limit point’’ yields, in this context, the class of sets we just defined
to be closed.) One can define the interior Eo of a subset E to be the union of all open sets contained in
E, and interior point to be a point of Eo. Rudin’s definition of compact set (given at the beginning of
the next section) will be stated in terms of open sets, so it, too, makes sense in this context.

Of the main concepts defined for general metric spaces in Chapter 2, there are two that don’t have
analogs in the general theory of topological spaces: those of ‘‘neighborhood’’ and of ‘‘bounded subset’’;
these are among the features that distinguish the theory of metric spaces from the general theory of
topological spaces. (Actually, topologists define a ‘‘neighborhood’’ of a point p∈X to be any subset
E ⊂ X having p in its interior. In current usage, what Rudin calls a ‘‘neighborhood’’ is called an ‘‘open
ball’’, so in modern language, it is the concept of ‘‘open ball’’ that is meaningful for metric spaces but not
for general topological spaces.)

Why is it useful to study general topological spaces, and not just metric spaces? There are two reasons.
One is that there are examples of topological spaces that don’t arise from a metric. For instance, if X is
any infinite set, one can take T to consist of all subsets G ⊂ X such that either G = ∅ or X – G is
finite; this is a topology on X having properties that a topology arising from a metric can never have.

The other reason is that different metrics can correspond to the same topology, and it is sometimes
important to realize that certain spaces are ‘‘topologically the same’’ even though they look different as
metric spaces. As a trivial example, if d is any metric on a set X, then the metric d ʹ given by
d ʹ(x, y) = d(x, y) ⁄ 2 determines the same topology as d. For a less trivial example, let d be the ordinary
metric on the segment (–1,1) ⊂ R, and let d ʹ ʹ be the metric defined by d ʹ ʹ(x, y) =
| (tan πx ⁄ 2) – (tan πy ⁄ 2) |. Since the function tan πx ⁄ 2 ‘‘stretches’’ the segment (–1,1) to fill up the
whole real line, d ʹ ʹ can be thought of as the metric on (–1,1) induced by the ordinary metric on the
‘‘stretched’’ segment, the whole line. It is easy to show that the open subsets are the same under both
metrics, namely the sets that can be written as unions of open intervals (in Rudin’s language, as unions of
segments); so we are talking about the same topology on our set (–1,1); but under one metric, the set is
bounded, and under the other, unbounded. (Similar ‘‘stretching’’ can change other commonplace shapes
into very ‘‘different-looking’’ ones; in particular, there is a ‘‘stretching’’ that leads to the familiar quip that
a topologist is a person who doesn’t know the difference between a donut and a coffee-cup.)

A well-written standard introduction to topology is General Topology by John Kelley, Van Nostrand,
1955. (Kelley was a faculty member here at Berkeley.)
P.36, end of Definition 2.31: Add, ‘‘If {Gα } is an open cover of E, then by a subcover we mean a
subset of {Gα } which is also a cover of E.’’
P.41, next-to-last paragraph of proof of Theorem 2.43: Replace this with the following three paragraphs,
leaving the rest of the proof unchanged:

Starting with V1, we shall construct recursively a sequence of neighborhoods Vn with the
following properties: (in ) Vn ∩ P is not empty, (iin ) If n > 1, then Vn ⊂ Vn–1 , (iiin ) If n > 1,
then xn–1 ∈ Vn .

Suppose inductively that Vn has been constructed. We claim that it contains a point y∈P other
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than xn . Indeed, by (in ) it contains some point z∈P, and if z ≠ xn we are done. If z = xn , note
that since Vn is open, it contains some neighborhood U of z , and because P is perfect, U
contains some point y∈P other than z . So let y be so chosen.

Now, because Vn is open, it also contains a neighborhood of y , say of radius r. Let us take for
Vn+1 any neighborhood of y whose radius is both < r and < d(xn ,y). From the first of these
conditions one can deduce that (iin+1) holds and from the second that (iiin+1) holds. Finally, the fact
that y∈Vn+1 gives (in+1), as required.

P.42, top paragraph: An easier way to see that P (the Cantor set) contains no segment is to note that En
contains no segment of length > 3– n. (If you keep his argument, delete ‘‘positive’’ on line 3.)
P.45, exercises 22, 23, 25, 26 and 28: Some minor corrections to these are noted in the exercise packet.
P.48, Theorem 3.2: Add: ( e) If limn→∞ pn = p, and pn∈E for all n, then p∈E

_
.

P.49, Theorem 3.3(b): any number should be any complex number.
P.49, Theorem 3.3: Add part ( e): If sn ≤ tn for all n, then limn→∞ sn ≤ limn→∞ tn . This is
proved by noting that limn→∞ (tn – sn ) is a limit of elements of [0,∞), hence belongs to that closed setby Theorem 3.2( e).
P.51, first display in Proof : αJ should be αj .
P.53, Theorem 3.10: The sets E and Kn must be assumed nonempty.
P.54, two lines before Def. 3.12: ‘‘(Theorem 2.41)’’ should be ‘‘(Theorem 2.41 and Theorem 3.10(a))’’.
P.54, two lines after Definition 3.12: Change ‘‘Theorem 3.11 implies also’’ to ‘‘Definition 3.12 implies’’.
P.56 Theorem 3.17(b): Change ‘‘If x > s*’’ to ‘‘For every real number x > s*’’. (In particular, x does
not stand for a member of E, as it does earlier on the page.)
P.56 6th from last line: Change ‘‘In that case, there is a number y∈E such that’’ to ‘‘These form a
subsequence of {sn } consisting of numbers ≥ x. Some subsequence of that subsequence approaches a
value y in the extended real numbers, and this y belongs to E and satisfies’’.
P.57, line 5: ( – 1 n) should be ( – 1) n.
P.59, line after 2nd display: Change ‘‘For {sn }’’ to ‘‘For the limit of the sequence {sn }, if this exists,’’.
P.63, start of line 3: Change ‘‘{1 ⁄ n log n} increases’’ to ‘‘for p ≥ 0, {1 ⁄ (n (log n) p)} increases’’.
P.66, First line of Theorem 3.34: Change ‘‘The series Σ an ’’ to ‘‘A series Σ an of nonzero terms’’.
P.67, third line: n ≥ N should be n >N .
P.67, middle bank of equations, third equation (the one ending with 1 ⁄ 2 ): The superscript in the
should be 2n+1 rather than 2n.
P.70, Theorem 3.42: Change the first word, ‘‘Suppose’’, to ‘‘Let {an }, {bn }, {An } be as in
Theorem 3.41, and suppose’’.
P.73, 3rd line of Example 3.49: Change the initial word ‘‘and’’ to ‘‘where cn is defined as in
Definition 3.48, and if’’.
P.77, 3rd line after (25): after ‘‘αn < βn ,’’ add ‘‘αn–1 < βn ,’’.
P.84: On the first line, change ‘‘if there is a point p∈Y ’’ to ‘‘if p∈Y is a point’’. On the first line of
the proof of Theorem 4.2, change ‘‘Choose’’ to ‘‘Consider any’’.
P.94, 2nd display: Change ‘‘= limt→x f (t)’’ to ‘‘and when this holds, limt→x f (t) is their common value’’.
P.98, line 7: Change ‘‘is not empty’’ to ‘‘has points other than x’’.
P.98, first line of Theorem 4.34: Change ‘‘be defined ’’ to ‘‘be real functions defined ’’.
P.104, third line above Theorem 5.3: Change ‘‘isolated’’ to ‘‘single’’.
P.105, proof of Theorem 5.5: In the line after (5), before ‘‘Let’’ add: ‘‘We also define u(x) = 0 and
(y) = 0; thus u is continuous at x, and at y.’’ Then change the last two lines of the proof to ‘‘By
Theorem 4.7 the right-hand side of (6) is continuous at t = x, where it has value g ʹ( y) f ʹ(x), hence the
left-hand side approaches this value as t→ x, which gives (3).’’

(Rudin’s proof skirts the point that makes proving the Chain Rule difficult: that f (t) may take on the
value f (x) infinitely often in the neighborhood of x.)
P.108, title ‘‘THE CONTINUITY OF DERIVATIVES’’: Change to ‘‘A RESTRICTION ON
DISCONTINUITIES OF DERIVATIVES’’.
P.109, display (13): Between ‘‘A’’ and ‘‘as’’ insert ‘‘(a real number or ±∞)’’.
P.109, add as a footnote to (18): ‘‘Note that by assumption, g ʹ is nowhere 0 on (a, b). Hence by the
Mean Value Theorem, g(x) – g(y) is nonzero for distinct x, y∈(a, b).’’
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P.113, Theorem 5.19: For a simpler proof, use Theorem 1.37(g) (given in the note to p.16 above) to
choose u so that u · (f(b) – f(a)) = | f(b) – f(a) |, and apply the Mean Value Theorem to u · f(t).
P.115, Exercise 13, display defining f (x) : xa should be |x| a.
P.118, first display: Change ‘‘12’’ to ‘‘1−2’’.
P.123, Definition 6.3: All these partitions should be understood to be of a fixed interval [a, b ].
P.126 (17): i– should be i= .
P.128 Theorem 6.12: In (a), in the 3rd and 5th lines, change f (without subscript) to f1 (three
occurrences). In (b), add the assumption that f1, f2 ∈ (α).
P.129 line after (21): One must assume that the second statement of part (a) (about the integral of cf )
has been proved before the first statement, and use that with c = –1.
P.130 last line of proof of Theorem 6.15: ‘‘x2 → s’’ should be ‘‘x1 and ‘‘x2 → s’’.
P.130 first line of Theorem 6.16: ‘‘ for 1, 2, 3, ...’’ should be ‘‘for n = 1, 2, 3, ...’’.
P.135: The inequality (40) of Theorem 6.25, like Theorem 5.19 (note to p.113 above) can be proved more
easily using Theorem 1.37(g). Do you see how? Also, in the proof as Rudin gives it, in the next-to-last
display on this page, yi

2 should be yj
2, and later in that line, yJ should be yj .)

P.141, 4th line from bottom: Change [0, 2π] to (0, 2π].
P.150, 4th line of proof of Theorem 7.13, ‘‘(Theorem 4.8)’’: Better, the Corollary to that theorem.
P.155, Example 7.20: Rudin asserts nonexistence of a pointwise convergent subsequence of (sin n x),
calling on a result in Chapter 11. An elegant direct proof is given in exercise 7.6:2 in the exercise packet.
P.158, first line of proof of statement (b): Change ‘‘a countable’’ to ‘‘an at most countable’’.
P.161, last line: change ‘‘Theorem 2.27’’ to the more precise ‘‘Theorem 2.27(a)’’.
P.165, last word of Theorem 7.33: After ‘‘dense’’ add ‘‘in’’.
P.166, line following first display: After ‘‘converges’’ add ‘‘on [0,1]’’.

(I’ve only taught through Ch.7, but here are two for Ch.8, noted by a student who read further:)
P.179, display (28): under both limit-signs, ‘‘h= 0’’ should be ‘‘h→ 0’’.
P.185, line 3: change ‘‘> µ ’’ to ‘‘> µ +1’’. (Needed to be sure µ = inf |P(z) | implies µ = inf|z|< R0

|P(z) |.)
P.336, line 3: Change ‘‘Pure Mathematics’’ to ‘‘A Course of Pure Mathematics’’.

ADDITIONAL CORRECTIONS TO MAKE IF YOU HAVE AN EARLIER PRINTING
OF RUDIN’S PRINCIPLES OF MATHEMATICAL ANALYSIS

(To tell whether you do, just see whether the first of the items below has been fixed in your copy.)

P.3, Definition 1.5, condition (ii): Change ‘‘and y < x’’ to ‘‘and y < z ’’.
P.10, 2nd line of Theorem 1.21: Change ‘‘one real y’’ to ‘‘one positive real y’’.
P.10, 5th line of Proof: Change ‘‘tn < t’’ to ‘‘tn ≤ t’’; and two lines later change ‘‘tn > t’’ to ‘‘tn ≥ t’’.
P.17, Step 1, item (I): Change the comma to the word ‘‘and’’.
P.32, 4th line: After ‘‘d(p, q) < r’’, add ‘‘for some r > 0’’.
P.33, under Examples 2.21, description of (c): Change ‘‘finite set’’ to ‘‘finite nonempty set’’.
P.48, 3rd line of Theorem 3.2: Change ‘‘all but finitely many of the terms of {pn }’’ to ‘‘pn for all but finitely many
n’’.
P.52, 3rd line from bottom: Change ‘‘subset’’ to ‘‘nonempty subset’’.
P.54, 5 lines above Definition 3.12: Change ‘‘{xn }’’ (with italic x) to ‘‘{xn }’’ (with boldface x), as on next line.
P.57, Example 3.18(b): Change ‘‘(–1 n’’ to ‘‘(–1) n’’.
P.66, Theorem 3.34(b): Change ‘‘for n’’ to ‘‘for all n’’.
P.67, center of page, last of the four displayed lines beginning ‘‘lim sup’’: Change 3

−2
n
to 1

−2
3
−2
n
.

P.72: Change equation under second Σ from ‘‘n =k’’ to ‘‘k =n’’ (as under first Σ).
P.75, 3rd line from bottom: Change ‘‘J to J ’’ to ‘‘J onto J ’’.
P.82, beginning of 4th line: Change ‘‘and bounded’’ to ‘‘nonempty and bounded’’.
P.84, five lines above Theorem 4.2: Change ‘‘appropriate norms’’ to ‘‘norms of differences’’.
P.98, first line of Definition 4.33 and first line of Theorem 4.34: Change ‘‘E ’’ to ‘‘E ⊂ R ’’.
P.123, line following first display: Change ‘‘are the same’’ to ‘‘mean the same thing’’.
P.158, 5th line after display (44): Change ‘‘| f (x) | <’’ to ‘‘| fn (x) | <’’.
P.162, line 2: Change ‘‘distincts point’’ to ‘‘distinct points’’.


