
UNIQUENESS OF R AND CONTAINMENT OF Q

As I mentioned in lecture, we will unfortunately not be able to go over the proof
of Theorem 1.19 in lecture. Also, the version I stated is a bit different from the
version in the book. The version I presented in lecture is:

Theorem 1.19. There exists a unique ordered field having the least upperbound
property. Moreover, this field contains Q (up to isomorphism).

In the book there is an appendix to Chapter 1 that proves existence. The purpose
of this post is to discuss uniqueness and also containment of Q.

Note. This is long so its fairly likely I made a few typos in what I wrote. If a detail
seems wrong then it might be – feel free to ask in the comments.

Proof of containment. Let F be an ordered field (not necessarily having the least
upperbound property). To avoid ambiguity, let’s denote the multiplicative identity
of F by 1F and we will let 1 denote the number 1 ∈ Q. Similarly let 0F denote the
additive identify of F .

Define 2F = 1F + 1F , 3F = 2F + 1F , etc. Also let −1F denote the additive
inverse of 1F , let −2F = −1F +−1F denote the additive inverse of 2F , etc.

Step 1. Check that nF + kF = (n+ k)F for all n, k ∈ Z.

Notice that for every integer n ∈ Z we have nF +0F = nF and nF +1F = (n+1)F .
Now let k ≥ 1 be an integer and inductively assume that nF + kF = (n + k)F for
every n ∈ Z. Then for every n ∈ Z we have

nF + (k + 1)F = nF + kF + 1F = (n+ k)F + 1F = (n+ k + 1)F .

By induction, it follows that nF + kF = (n + k)F for all n ∈ Z and all integers
k ≥ 0.

Let k < 0 be an integer and let n ∈ Z. By the previous paragraph, (n + k)F +
(−k)F = nF . Adding kF to both sides and using the fact that (−k)F +kF = 0F , we
obtain (n+k)F = nF +kF . Thus for all integers n, k ∈ Z we have nF +kF = (n+k)F .

Step 2. Check that nF · kF = (n · k)F for all n, k ∈ Z.

Since 1F is the multiplicative identity we have nF · 1F = nf = (n · 1)F for all
n ∈ Z. Now inductively assume that k ≥ 1 is an integer with the property that
nF · kF = (n · k)F for all n ∈ Z. Then for every n ∈ Z we can apply the conclusion
of Step 1 to obtain

nF ·(k+1)F = nF ·(kF +1F ) = nF ·kF +nF ·1F = (n·k)F +nF = (n·k+n)F = (n·(k+1))F .

By induction we conclude that nF · kF = (n · k)F for every n ∈ Z and k ∈ N.
Since 0F is the additive identity we have nF · 0F = 0F = (n · 0)F for all n ∈ Z

by Prop. 1.16(a).
From Step 1 it is immediate that −nF = (−n)F for all n ∈ Z. So if k ≥ 1 is an

integer and n ∈ Z then we can apply Prop. 1.16(d) and the previous paragraph to
obtain

nF · (−k)F = nF · (−(kF )) = −(nF · kF ) = −(n · k)F = (−n · k)F = (n · (−k))F .
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We conclude that nF · kF = (n · k)F for all n, k ∈ Z.

Step 3. Check that if m > k are integers then mF > kF . In particular, mF 6= kF .

By Prop. 1.18(d) we have 1F > 0F . Adding 1F to both sides, we obtain
2F > 1F > 0F by Definition 1.17(i). In general, if n ∈ N and nF > 0F then by
adding 1F to both sides we obtain (n + 1)F > 1F > 0F . It follows from induction
that nF > 0F for all n ∈ N. Finally, if m > k are integers then m − k ∈ N so the
previous sentence implies mF − kF = (m− k)F > 0F and thus mF > kF .

Step 4. Let a, b, n,m ∈ Z with b 6= 0 6= m. Check that if a
b = n

m then aF

bF
= nF

mF
.

From Step 3 we know that bF 6= 0F 6= mF and thus the multiplicative inverses
1F
bF

and 1F
mF

exist. From a
b = n

m we obtain a ·m = n · b. So step 2 tells us that

aF ·mF = (a ·m)F = (n · b)F = nF · bF .

By looking at the left-most and right-most terms of this equation and dividing
everything by bF ·mF we obtain aF

bF
= nF

mF
as desired.

Step 5. Define an injection φ : Q → F that respects addition, multiplication, and
is order-preserving.

For p ∈ Q pick a, b ∈ Z satisfying p = a
b and define φ(p) = aF

bF
. By Step 4, the

value of φ(p) does not depend upon the choice of a and b.
We check φ is an injection. Suppose that φ(p) = φ(q). Pick a, b, n,m ∈ Z

satisfying p = a
b and q = n

m . Then

aF
bF

= φ(p) = φ(q) =
nF
mF

.

From clearing denominators and moving everything to the left side we obtain aF ·
mF − nF · bF = 0F . Using Steps 1 and 2 we obtain

(a ·m− n · b)F = (a ·m)F − (n · b)F = aF ·mF − nF · bF = 0F .

From Step 3 we conclude that a ·m− n · b = 0 and hence p = a
b = n

m = q. So φ is
injective.

We check that φ is order-preserving. Suppose p < q. Again, pick integers
a, b, n,m with p = a

b , q = n
m , and b,m ≥ 1. From p < q we multiply both sides by

the positive quantity b ·m to get a ·m < n · b. From Steps 2 and 3 we obtain

aF ·mF = (a ·m)F < (n · b)F = nF · bF .

Also Step 3 tells us that bF ,mF > 0F , and thus the multiplicative inverses of bF
and mF are positive by Prop. 1.18(e). So from the above inequality we can divide
by bF ·mF to obtain

φ(p) =
aF
bF

<
nF
mF

= φ(q).

We conclude that φ is order-preserving.
We check that φ respects addition. Let p, q ∈ Q. By choosing a common

denominator for p and q, we can find a, b, n ∈ Z with p = a
b and q = n

b . Then

p+ q = a+n
b . Applying Step 1 we obtain

φ(p) + φ(q) =
aF
bF

+
nF
bF

=
aF + nF
bF

=
(a+ n)F

bF
= φ(p+ q).
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We check that φ respects multiplication. Let p, q ∈ Q and let a, b, n,m be integers
with p = a

b and q = n
m . Then p · q = a·n

b·m . Using Step 2 we obtain

φ(p) · φ(q) =
aF
bF
· nF
mF

=
aF · nF
bF ·mF

=
(a · n)F
(b ·m)F

= φ(p · q).

We conclude that F contains Q up to isomorphism. �

Tip. If you want to understand the construction in the Appendix to Chapter 1 but
are having difficulty with the intuition, read the first seven paragraphs of the proof
below while using your intuitive conception of the real numbers for the field F .

Proof of Uniqueness. Let F be an ordered field having the least upperbound prop-
erty. By the above, we can assume that Q is contained in F (up to isomorphism).
It suffices to show that F is isomorphic to the ordered field that is constructed in
the book in the appendix to Chapter 1. Notice that Theorem 1.20 applies to ev-
ery ordered field having the least upperbound property; in particular, this theorem
applies to F .

Let R be the set of cuts of Q as defined in the appendix. Define φ : F → R by
setting φ(x) = {p ∈ Q : p < x} for x ∈ F . For this defintion to make sense, we
need to check that φ(x) ⊆ Q is a cut for every x ∈ F . So fix x ∈ X. We will check
properties (I), (II), and (III) for being a cut.

(I). Since 1 > 0 we can apply Theorem 1.20(a) to find n ∈ N with n > x. Then
n ∈ Q but n 6∈ φ(x), so φ(x) 6= Q. By the same reasoning we can find m ∈ N with
m > −x and hence −m < x. Then −m ∈ φ(x) so φ(x) 6= ∅.

(II). This is obvious.
(III). This follows immediately from Theorem 1.20(b).
Thus φ indeed maps F into R as desired. Moreover, if x < y ∈ F then by

Theorem 1.20(b) there is p ∈ Q with x < p < y and hence p ∈ φ(y) but p ∈ φ(x).
This shows that φ(x) 6= φ(y) whenever x 6= y. Thus φ is injective.

To see that φ is surjective, let α ∈ R be a cut. Then α ⊆ Q. Viewing α as
a subset of F , we see that α is nonempty and bounded above (indeed, it has an
upperbound in Q ⊆ F ) and therefore x = supα ∈ F exists since F has the least
upperbound property. We claim that φ(x) = α. By definition of supremum and
condition (III) of being a cut, every p ∈ α satisfies p < x. Thus α ⊆ φ(x). On the
other hand, if p ∈ φ(x) then p < x. Since x is the least upperbound to α, it must
be that p is not an upperbound to α. So there is q > p with q ∈ α. It follows from
clause (II) of being a cut that p ∈ α. Thus φ(x) = α and φ is a bijection.

From the definition of the ordering on R given in Step 2 in the Appendix, it is
easily seen that φ is order-preserving.

We check that φ respects addition. Recall (as defined in Step 4 in the Appendix)
that

φ(x) + φ(y) = {p+ q : p ∈ φ(x), q ∈ φ(y)}.

Clearly if p ∈ φ(x) and q ∈ φ(y) then p < x and q < y and hence p + q < x + y,
implying p+ q ∈ φ(x+ y). Thus φ(x) + φ(y) ⊆ φ(x+ y). For the reverse inclusion,
consider t ∈ φ(x + y). Then t < x + y so t − y < x. By Theorem 1.20(b) there is
a rational number p with t − y < p < x. Notice that p ∈ φ(x). From t − y < p
we obtain t − p < y. Setting q = t − p we have that q is rational and q ∈ φ(y).
Therefore t = p+ q ∈ φ(x) + φ(y). We conclude that φ(x+ y) = φ(x) + φ(y).
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We check that φ respects multiplication. When x, y ∈ F are positive, we can
repeat the same argument from the previous paragraph, but replacing addition with
multiplication throughout, to obtain φ(x · y) = φ(x) · φ(y).

Notice that φ(−x) = {p ∈ Q : p < −x} = {p ∈ Q : −p > x}. From Theorem
1.20(b) it can be seen that the condition −p > x is equivalent to the condition that
there is positive r ∈ Q with −p−r ≥ x, or equivalently −p−r 6∈ φ(x). We therefore
see that φ(−x) = −φ(x) (see Step 4(A5) in the Appendix).

Combining the two above paragraphs with Step 7 in the Appendix and Prop.
1.16(c)(d) we see that φ(x · y) = φ(x) · φ(y) for all x, y ∈ F . Thus φ respects
multiplication.

We conclude that φ is an isomorphism of ordered fields. Moreover, from our
definition of φ and Steps 8 and 9 in the Appendix, we see that φ identifies the
copy of Q in F with the copy of Q in R. We conclude that every ordered field
with the least upperbound property is isomorphic to R (in a manner preserving the
respective copies of Q). �


