UNIQUENESS OF R AND CONTAINMENT OF Q

As I mentioned in lecture, we will unfortunately not be able to go over the proof
of Theorem 1.19 in lecture. Also, the version I stated is a bit different from the
version in the book. The version I presented in lecture is:

Theorem 1.19. There exists a unique ordered field having the least upperbound
property. Moreover, this field contains Q (up to isomorphism).

In the book there is an appendix to Chapter 1 that proves existence. The purpose
of this post is to discuss uniqueness and also containment of Q.

Note. This is long so its fairly likely I made a few typos in what I wrote. If a detail
seems wrong then it might be — feel free to ask in the comments.

Proof of containment. Let F be an ordered field (not necessarily having the least
upperbound property). To avoid ambiguity, let’s denote the multiplicative identity
of F' by 1p and we will let 1 denote the number 1 € Q. Similarly let Or denote the
additive identify of F.

Define 2r = 1p + 1p, 3 = 2p + 1p, etc. Also let —1p denote the additive
inverse of 1p, let —2p = —1p + —1p denote the additive inverse of 2, etc.

Step 1. Check that np + krp = (n+ k)p for all n,k € Z.

Notice that for every integer n € Z we have np+0p = np and np+1p = (n+1)p.
Now let £ > 1 be an integer and inductively assume that ng + kp = (n + k) for
every n € Z. Then for every n € Z we have

npt+(k+)p=np+krt+lp=Mn+kr+lp=n+k+1)p.

By induction, it follows that ngp + kr = (n + k)p for all n € Z and all integers
k>0.

Let k < 0 be an integer and let n € Z. By the previous paragraph, (n + k)p +
(=k)r = np. Adding kr to both sides and using the fact that (—k)p+kr = 0p, we
obtain (n+k)r = np+kp. Thus for all integers n, k € Z we have np+kr = (n+k)p.

Step 2. Check that ng - kp = (n-k)p for alln,k € Z.

Since 1 is the multiplicative identity we have ng -1p = ny = (n-1)p for all
n € Z. Now inductively assume that k£ > 1 is an integer with the property that
ng-kp = (n-k)p for all n € Z. Then for every n € Z we can apply the conclusion
of Step 1 to obtain
nF-(k+1)F = nF~(k;F+1F) =npkpt+np-lp = (nk)p-i-np = (le‘—i—n)p = (n(k‘—i—l))p
By induction we conclude that ng - kp = (n - k) for every n € Z and k € N.

Since O is the additive identity we have np -0 = 0p = (n-0)p for alln € Z
by Prop. 1.16(a).

From Step 1 it is immediate that —ngp = (—n)p for all n € Z. So if k > 1 is an

integer and n € Z then we can apply Prop. 1.16(d) and the previous paragraph to
obtain

ng - (=k)r=nr-(=(kr)) = —(np -kr)=—(n-k)r=(-n-k)p=(n-(-k))p.
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We conclude that ng - kg = (n - k)p for all n, k € Z.
Step 3. Check that if m > k are integers then mp > kp. In particular, mp # kp.

By Prop. 1.18(d) we have 1p > Op. Adding 1p to both sides, we obtain
2p > 1p > O by Definition 1.17(i). In general, if n € N and np > 0p then by
adding 1F to both sides we obtain (n + 1)F > 1 > Op. It follows from induction
that np > O for all n € N. Finally, if m > k are integers then m — k € N so the
previous sentence implies mp — krp = (m — k)p > Op and thus mp > kp.

Step 4. Let a,b,n,m € Z with b # 0 # m. Check that if = ;- then % = e

mp "’

From Step 3 we know that bp # Op # mp and thus the multiplicative inverses

i—F and £ exist. From % = 7 we obtain a-m =n-b. So step 2 tells us that
F mpg m

aF~mF:(a-m)F:(n~b)F:nF-bF.

By looking at the left-most and right-most terms of this equation and dividing
everything by br - mp we obtain ‘Z—; = :l—‘; as desired.

Step 5. Define an injection ¢ : Q — F that respects addition, multiplication, and
is order-preserving.

For p € Q pick a,b € Z satisfying p = § and define ¢(p) = 3=. By Step 4, the
value of ¢(p) does not depend upon the choice of a and b.
We check ¢ is an injection. Suppose that ¢(p) = ¢(¢). Pick a,b,n,m € Z
satisfying p = ¢ and ¢ = ;-. Then
a

2E — (p) = d(q) = =

br mp’

From clearing denominators and moving everything to the left side we obtain ap -
mp —np-bp = 0p. Using Steps 1 and 2 we obtain

(a-m—-n-b)p=(a-m)p—(n-b)p=ar -mp—np- -bp =0p.

From Step 3 we conclude that a-m —mn-b =0 and hence p= 7 = = =¢. So ¢ is

injective. "

We check that ¢ is order-preserving. Suppose p < ¢. Again, pick integers
a,b,n,m with p = ¢, ¢ = 7, and b,m > 1. From p < ¢ we multiply both sides by
the positive quantity b-m to get a-m < n-b. From Steps 2 and 3 we obtain

ap-mp=(a-m)p <(n-b)p =np-bp.

Also Step 3 tells us that bp,mp > Op, and thus the multiplicative inverses of bp
and mp are positive by Prop. 1.18(e). So from the above inequality we can divide
by bp - mp to obtain
ap nr
¢(p) = e e b(q)-
We conclude that ¢ is order-preserving.
We check that ¢ respects addition. Let p,q € Q. By choosing a common

denominator for p and ¢, we can find a,b,n € Z with p = ¢ and ¢ = 2. Then

b b
p+q =" Applying Step 1 we obtain

ap  mp _ ap+np (a+n)p

¢(p)+¢(q):bF e =¢(p+q).
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We check that ¢ respects multiplication. Let p,q € Q and let a, b, n, m be integers

with p= ¢ and ¢ = . Then p-q = 7. Using Step 2 we obtain
_ar np _ap-np _ (an)p
o)) =3 = T b m)r o(p-q).
We conclude that F' contains Q up to isomorphism. ([

Tip. If you want to understand the construction in the Appendix to Chapter 1 but
are having difficulty with the intuition, read the first seven paragraphs of the proof
below while using your intuitive conception of the real numbers for the field F'.

Proof of Uniqueness. Let F be an ordered field having the least upperbound prop-
erty. By the above, we can assume that Q is contained in F' (up to isomorphism).
It suffices to show that F' is isomorphic to the ordered field that is constructed in
the book in the appendix to Chapter 1. Notice that Theorem 1.20 applies to ev-
ery ordered field having the least upperbound property; in particular, this theorem
applies to F'.

Let R be the set of cuts of Q as defined in the appendix. Define ¢ : F' — R by
setting ¢(z) = {p € Q : p < z} for x € F. For this defintion to make sense, we
need to check that ¢(z) C Q is a cut for every € F. So fix x € X. We will check
properties (I), (II), and (III) for being a cut.

(I). Since 1 > 0 we can apply Theorem 1.20(a) to find n € N with n > 2. Then
n € Q but n &€ ¢(x), so ¢p(x) # Q. By the same reasoning we can find m € N with
m > —z and hence —m < x. Then —m € ¢(x) so ¢(z) # @.

(IT). This is obvious.

(III). This follows immediately from Theorem 1.20(b).

Thus ¢ indeed maps F' into R as desired. Moreover, if x < y € F then by
Theorem 1.20(b) there is p € Q with z < p < y and hence p € ¢(y) but p € ¢(x).
This shows that ¢(z) # ¢(y) whenever x # y. Thus ¢ is injective.

To see that ¢ is surjective, let @« € R be a cut. Then o C Q. Viewing « as
a subset of F', we see that « is nonempty and bounded above (indeed, it has an
upperbound in Q C F) and therefore x = supa € F exists since F' has the least
upperbound property. We claim that ¢(z) = «. By definition of supremum and
condition (III) of being a cut, every p € « satisfies p < z. Thus o C ¢(x). On the
other hand, if p € ¢(x) then p < x. Since z is the least upperbound to «, it must
be that p is not an upperbound to a. So there is ¢ > p with g € «. It follows from
clause (II) of being a cut that p € a. Thus ¢(x) = « and ¢ is a bijection.

From the definition of the ordering on R given in Step 2 in the Appendix, it is
easily seen that ¢ is order-preserving.

We check that ¢ respects addition. Recall (as defined in Step 4 in the Appendix)
that

o(x)+o(y) ={p+aq:pc o), qgc d(y)}.

Clearly if p € ¢(x) and g € ¢(y) then p < z and ¢ < y and hence p + ¢ < z + y,
implying p+ g € ¢(z +y). Thus ¢(x) + ¢(y) C ¢(x + y). For the reverse inclusion,
consider t € ¢(z +y). Then t < z +y sot—y < xz. By Theorem 1.20(b) there is
a rational number p with ¢ — y < p < x. Notice that p € ¢(z). From ¢t —y < p
we obtain ¢ — p < y. Setting ¢ = t — p we have that ¢ is rational and ¢ € ¢(y).
Therefore t = p+ q € ¢(x) + ¢(y). We conclude that ¢(z + y) = () + ¢(y).



4 UNIQUENESS OF R AND CONTAINMENT OF Q

We check that ¢ respects multiplication. When x,y € F are positive, we can
repeat the same argument from the previous paragraph, but replacing addition with
multiplication throughout, to obtain ¢(z - y) = ¢(x) - d(y).

Notice that ¢(—2) ={p € Q:p < —z} = {p € Q : —p > z}. From Theorem
1.20(Db) it can be seen that the condition —p > z is equivalent to the condition that
there is positive r € Q with —p—r > x, or equivalently —p—1r ¢ ¢(x). We therefore
see that ¢(—x) = —¢(z) (see Step 4(A5) in the Appendix).

Combining the two above paragraphs with Step 7 in the Appendix and Prop.
1.16(c)(d) we see that ¢(z - y) = é(x) - ¢(y) for all z,y € F. Thus ¢ respects
multiplication.

We conclude that ¢ is an isomorphism of ordered fields. Moreover, from our
definition of ¢ and Steps 8 and 9 in the Appendix, we see that ¢ identifies the
copy of Q in F with the copy of Q in R. We conclude that every ordered field
with the least upperbound property is isomorphic to R (in a manner preserving the
respective copies of Q). O



