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Part 1

Math 140A





CHAPTER 1

Ordered Sets, Ordered Fields, and Completeness

1. Lecture 1: January 5, 2016

• N, Z, Q, R, C.
• R is the “Réal numbers”. There is nothing real about them! That is the first, most impor-

tant lesson to learn in this class. We will encounter many “obvious” statements that are,
in fact, false. We will also see some counterintuitive statements that turn out to be true.
• Mathematicians roughly split into two groups: analysts and algebraists. (There’s lots of

overlap, though.) Roughly speaking, algebraists are largely concerned about equalities,
while analysts are largely concerned about inequalities.

DEFINITION 1.1. A total order is a binary relation < on a set S which satisfies:
1. transitive: if x, y, z ∈ S, x < y, and y < z, then x < z.
2. ordered: given any x, y ∈ S, exactly one of the following is true: x < y, x = y, or y < x.

The usual order relation on Q (and its subsets Z and N) is a total order. As usual, we write
x > y to mean y < x, and x ≤ y to mean “x < y or x = y”.

DEFINITION 1.2. Let (S,<) be a totally ordered set. Let E ⊆ S. A lower bound for E is an
element α ∈ S with the property that α ≤ x for each x ∈ E. A upper bound for E is an element
β ∈ S with the property that x ≤ β for each x ∈ E. If E possesses an upper bound, we say E is
bounded above; if it possesses a lower bound, it is bounded below.

For example, the set N is bounded below in Z, but it is not bounded above. Any set that has a
maximal element is bounded above by its maximum; similarly, any set with a minimal element is
bounded below by its minimum.

DEFINITION 1.3. Let (S,<) be a totally ordered set, and let E ⊆ S be bounded above. The
least upper bound or supremum of E, should it exist, is

supE ≡ min{β ∈ S : β is an upper bound of E}.

Similarly, if F is bounded below, the greatest lower bound or infimum of F , should it exsit, is

inf F ⊆ S ≡ max{α ∈ S : α is a lower bound of F}.

To work with the definition (of sup, say), we rewrite it slightly. A number σ ∈ S is the
supremum of E if the following two properties hold:

1. σ is an upper bound of E.
2. Given any s ∈ S with s < σ, s is not an upper bound of E; i.e. there exists some x ∈ E

with s < x ≤ σ.

EXAMPLE 1.4. Consider the set E = { 1
n

: n ∈ N} ⊂ Q. This set has a maximal element:
1. So 1 is an upper bound. Moreover, if s ∈ Q is < 1, then s is not an upper bound of E (since
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8 1. ORDERED SETS, ORDERED FIELDS, AND COMPLETENESS

1 ∈ E). Thus, 1 = supE. (This argument shows in general that, if E has a maximal element, then
maxE = supE.)

On the other hand, E has no minimal element. But note that all elements of E are positive,
so 0 is a lower bound for E. If s is any rational number > 0, there is certainly some n ∈ N with
0 < 1

n
< s (this is the Archimedean property of the rational field). Hence, no such s is a lower

bound for E. This shows that 0 is the greatest lower bound: 0 = inf E.

EXAMPLE 1.5. It is well known that
√

2 is not rational: in other words, there is no rational
number p satisfying p2 = 2. You probably saw this proof in high school. Suppose, for a contradic-
tion, that p2 = 2. Since p is rational, we can write it in lowest terms as p = m/n for m,n ∈ Z. So
we have m2

n2 = 2, or m2 = 2n2. Thus m2 is even, which means that m is even (since the square of
an odd integer is odd). So m = 2k for some k ∈ Z, meaning m2 = 4k2, and so 4k2 = 2n2, from
which it follows that n2 = 2k2 is even. As before, this imples that n is even. But then both m and
n are divisible by 2, which means they are not relatively prime. This contradicts the assumption
that p = m/n is in lowest terms.

A finer analysis of this situation shows that Q has “holes”. Let

A = {r ∈ Q : r > 0, r2 < 2}, and B = {r ∈ Q : r > 0, r2 > 2}.
The set A is bounded above: if q ≥ 3

2
then q2 ≥ 9

4
> 2, meaning that q /∈ A; the contrapositive is

that if q ∈ A then q < 3
2
, so 3

2
is an upper bound for A. In fact, take any positive rational number

r; then r2 > 0 is also rational. By the total order relation, exactrly one of the following three
statements is true: r2 < 2, r2 = 2, or r2 > 2. In other words, Q>0 = A t {r ∈ Q : r > 0, r2 =
2} tB. We just showed that the middle set is empty, so

Q>0 = A tB.
• Every element b ∈ B is an upper bound for A. Indeed, if a ∈ A and b ∈ B, then
a2 < 2 < b2 so 0 < b2−a2 = (b−a)(b+a), and dividing through by the positive number
b + a shows b − a > 0 so a < b. (This also shows that every element a ∈ A is a lower
bound for B.)
• On the other hand, if a ∈ A, then a is not an upper bound for A; i.e. given a ∈ A, there

exists a′ ∈ A with a < a′. To see this, we can just take

a′ = a+
2− a2

2 + a
=

2a+ 2

a+ 2
.

Since a ∈ A, we know a2 < 2 so 2 − a2 > 0, and the denominator 2 + a > 2 > 0, so
a′ > a. But we also have

2− (a′)2 =
2(a+ 2)2 − (2a+ 2)2

(a+ 2)2
=

2a2 + 8a+ 8− 4a2 − 8a− 4

(a+ 2)2
=

2(2− a2)

(a+ 2)2
> 0,

showing that a′ ∈ A, as claimed.
Thus, B is equal to the set of upper bounds of A in Q>0, and similarly A is equal to the set of lower
bounds of B in Q>0.

But then we have the following strange situation. The set A of lower bounds of B has no
greatest element: we just showed that, given any a ∈ A, there is an a′ ∈ A with a′ > a. Hence, B
has no greatest lower bound: inf B does not exist in Q>0. Similarly, supA does not exists in Q>0.

Example 1.5 viscerally demonstrates that there is a “hole” in Q: the fact that r2 = 2 has no
solution in Q forces the ordered set to be disconnected into two pieces, each of which is very
incomplete: not only does each fail to possess a max/min, they also fail to possess a sup/inf.
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2. Lecture 2: January 7, 2016

We now set the stage for the formal study of the real numbers: it is the (unique) complete
ordered field. To understand these words, we begin with fields.

DEFINITION 1.6. A field is a set F equipped with two binary operations +, · : F × F → F,
called addition and multiplication, satisfying the following properties.

(1) Commutativity: ∀a, b ∈ F, a+ b = b+ a and a · b = b · a.
(2) Associativity: ∀a, b, c ∈ F, (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c).
(3) Identity: there exists elements 0, 1 ∈ F s.t. ∀a ∈ F, 0 + a = a = 1 · a.
(4) Inverse: for any a ∈ F, there is an element denoted −a ∈ F with the property that

a + (−a) = 0. For any a ∈ F \ {0}, there is an element denoted a−1 with the property
that a · a−1 = 1.

(5) Distributivity: ∀a, b, c ∈ F, a · (b+ c) = (a · b) + (a · c).

EXAMPLE 1.7. Here are some examples of fields.
1. The field Zp = {[0], [1], . . . , [p−1]} for any prime p, where the + and · are the usual ones

inherited from the + and · on Z (namely [a] + [b] = [a + b] and [a] · [b] = [a · b] – you
studied this field in Math 109). All finite fields have this form.

2. Q is a field.
3. Z is not a field: it fails item (4), lacking multiplicative inverses of all elements other than
±1.

4. Let Q(t) denote the set of rational functions of a single variable t with coefficients in Q:

Q(t) =

{
p(t)

q(t)
: p(t), q(t) are polynomials with coefficients in Q and q(t) is not identically 0

}
.

With the usual addition and multiplication of functions, Q(t) is a field. For example,(
p(t)
q(t)

)−1

= q(t)
p(t)

, which exists so long as p(t) is not identically 0 – i.e. as long as the

original rational function p(t)
q(t)

is not the 0 function.

Fields are the kinds of number systems that behave the way you’ve grown up believing numbers
behave, as summarized in the following lemma.

LEMMA 1.8. Let F be a field. The following properties hold.
(1) Cancellation: ∀a, b, c ∈ F, if a+ b = a+ c then b = c. If a 6= 0, if a · b = a · c then b = c.
(2) Hungry Zero: ∀a ∈ F, 0 · a = 0.
(3) No Zero Divisors: ∀a, b ∈ F, if a · b = 0, then either a = 0 or b = 0.
(4) Negatives: ∀a, b ∈ F, (−a)b = −(ab), −(−a) = a, and (−a)(−b) = ab.

PROOF. We’ll just prove (2), leaving the others to the reader. For any a ∈ F, note that

0 · a+ a = 0 · a+ 1 · a = (0 + 1) · a = 1 · a = a = 0 + a.

Hence, by (1) (cancellation), it follows that 0 · a = 0. �

EXAMPLE 1.9. As in Example 1.7.1, we can consider Zn for any positive integer n. This
satisfies all of the properties of Definition 1.6 except (4): inverses don’t always exist. For example,
if n can be factored as n = km for two positive integers k,m > 1, then we have two nonzero
elements [k], [m] ∈ Zn such that [k] · [m] = [km] = [n] = [0], which contradicts Lemma 1.8(3) –
there are zero divisors. So Zn is not a field when n is composite.
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Now, we combine fields with ordered sets.

DEFINITION 1.10. An ordered field is a field F which is an ordered set (F, <), where the order
relation also satisfies the following two properties:

(1) ∀a, b, c ∈ F, if a < b then a+ c < b+ c.
(2) ∀a, b ∈ F, if a > 0 and b > 0, then a · b > 0.

From here, all the usual properties mixing the order relation and the field operations follow.
For example:

LEMMA 1.11. Let (F, <) be an ordered field. Then
(1) ∀a ∈ F, a > 0 iff −a < 0.
(2) ∀a ∈ F \ {0}, a2 > 0. In particular, 1 = 12 > 0.
(3) ∀a, b ∈ F, if a > 0 and b < 0, then a · b < 0.
(4) ∀a ∈ F, if a > 0 then a−1 > 0.

PROOF. For (1), simply add −a to both sides of the inequality. Note, by the properties of <,
this means F is the union of three disjoint subsets: the positive elements a > 0, the negative ele-
ments a < 0, and the zero element a = 0; and the operation of multiplication by −1 interchanges
the positive and negative elements. So, for (2), we note that our given a 6= 0 must be either positive
or negative; if a > 0 then a2 = a ·a > 0 by Definition 1.10(2), while if a < 0 then a2 = (−a)2 > 0
by the same argument. For (3), we then have a > 0 and −b > 0, so −(ab) = a · (−b) > 0, which
means that ab < 0. Finally, for (4), suppose a−1 < 0. then by (3) we would have 1 = a · a−1 < 0;
but by (2) we know 1 > 0. This contradiction shows that a−1 > 0. �

EXAMPLE 1.12. 1. Q is an ordered field, with its usual order: m1

n1
< m2

n2
iff m1n2 <

m2n1. In fact, this is the unique total order on the set Q which makes Q into an ordered
field.

2. Zp is not an ordered field for any prime p. For suppose it were; then by Lemma 1.11(2)
we know that [1] > [0]. Then [2] = [1] + [1] > [1] + [0] = [1], and so by transitivity
[2] > [0]. Continuing this way by induction, we get to [p − 1] > [0]. But we also have
[0] = [1] + [p− 1] > [0] + [p− 1] = [p− 1]. This is a contradiction.

3. Let F be an ordered field. Denote by Fc the following set of 2× 2 matrices over F:

Fc =

{[
a −b
b a

]
: a, b ∈ F

}
.

The determinant of such a matrix is a2 + b2. In an ordered field, we know that a2 > 0 if
a 6= 0, and thus we have the usual property that a2 + b2 = 0 iff a = b = 0. It follows that
all nonzero matrices in Fc are invertible: we can easily verify that

(a2 + b2)−1

[
a b
−b a

] [
a −b
b a

]
=

[
1 0
0 1

]
.

If we define

I =

[
1 0
0 1

]
, J =

[
0 −1
1 0

]
then Fc = {aI+bJ : a, b ∈ F}. Note that J2 = −I . It is now an easy exercise to show that
Fc is a field, with +, · being given by matrix addition and multiplication, where I is the
multiplicative identity and the additive identity is the 2× 2 zero matrix. (Note: this is not
generally true if F is not an ordered field. For example, in Z2 we have 12 + (−1)2 = 0,
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and as a result the matrix with a = b = 1 is not invertible in this case.) Fc is the
complexification of F. We will later construct the complex numbers C as C = Rc.

3.5 If F is any ordered field, then Fc cannot be ordered – there is no order relation that makes
Fc into an ordered field. This is actually what Problem 4 on HW1 asks you to prove.

Item 2 above noted that the finite fields Zp are not ordered fields. In fact, ordered fields must
be infinite. The next results shows why this is true.

LEMMA 1.13. Let (F, <) be an ordered field. Then, for any n ∈ Z \ {0}, n · 1F 6= 0F.

Here n · 1F = 1F + 1F + · · ·+ 1F. Note that this property is not automatic for fields: for example,
in Zp, p · [1] = [0].

PROOF. First, 1 · 1F = 1F > 0F by Lemma 1.11(2). Proceeding by induction, suppose we’ve
shown that n ·1F 6= 0F. Then (n+1) ·1F = n ·1F +1F > 0+1F = 1F > 0F. Thus, for every n > 0,
n · 1F > 0F, meaning it is 6= 0. If, on the other hand, n < 0 in Z, then n · 1F = −(−n · 1F) < 0F,
so also it is 6= 0F. �

COROLLARY 1.14. Let F be an ordered field. The map ϕ : Q→ F given by ϕ(m
n

) = (m · 1F) ·
(n · 1F)−1 is an injective ordered field homomorphism.

An ordered field homomorphism is a function which preserves the field operations: ϕ(a + b) =
ϕ(a) + ϕ(b), ϕ(a · b) = ϕ(a) · ϕ(b), and ϕ(0) = 0 and ϕ(1) = 1; and preserves the order relation:
if a < b then ϕ(a) < ϕ(b). An injective ordered field homomorphism should be thought of as an
embedding: we realize Q as a subset of F, in a way that respects all the ordered field structure.

PROOF. First we must check that ϕ is well defined: if m1

n1
= m2

n2
, then m1n2 = m2n1. It then

follows (by an easy induction) that (m1 · 1F) · (n2 · 1F) = (m2 · 1F) · (n1 · 1F). Dividing out on both
sides then shows that (m1 · 1F)(n1 · 1F)−1 = (m2 · 1F) · (n2 · 1F)−1. Thus, ϕ is well-defined. It is
similar and routine to verify that it is an ordered field homomorphism. Finally, to show it is one-
to-one, suppose that ϕ(q1) = ϕ(q2) for q1, q2 ∈ Q. Using the homomorphism property, this means
ϕ(q1−q2) = ϕ(q1)−ϕ(q2) = 0. Let q1−q2 = m

n
; thus, we have ϕ(m

n
) = (m ·1F) · (n ·1F)−1 = 0F.

But then, multiplying through by the non-zero (by Lemma 1.13) element n·1F, we havem·1F = 0F,
and again by Lemma 1.13, it follows that m = 0. but this means q1 − q2 = m

n
= 0, so q1 = q2.

Thus, ϕ is injective. �

Thus, we will from now on think if Q as a subset of any ordered field.

In Lecture 1, we saw that Q “has holes”. In example 1.5, we found two subsets A,B ⊂ Q with
the property that B = the set of upper bounds of A, A = the set of lower bounds of B, and A has
no maximal element, while B has no minimal element. Thus, supA and inf B do not exist. This
turns out to be a serious obstacle to doing the kind of analysis we’re used to in calculus, so we’d
like to fill in these holes. This motivates our next definition.
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3. Lecture 3: January 11, 2016

DEFINITION 1.15. An ordered set (S,<) is called complete if every nonempty subset ∅ 6=
E ⊆ S that is bounded above possesses a supremum supE ∈ S. We also denote this by saying
that (S,<) has the least upper bound property.

We could also formulate things in terms of inf, with the greatest lower bound property. Exam-
ple 1.5 demonstrates how these two are typically related. In fact, they are equivalent.

PROPOSITION 1.16. An ordered set (S,<) has the least upper bound property if and only if,
for every nonempty subset ∅ 6= F ⊆ S that is bounded below, inf F ∈ S exists.

PROOF. We will argue the forward implication: the least upper bound property implies the
greatest lower bound property. The converse is very similar.

Let F 6= ∅ be bounded below; then L ≡ {lower bounds for F} is a nonempty subset of S. If
x ∈ L and y ∈ F , then x ≤ y, which shows that every y ∈ F is an upper bound for L. Thus, L is
bounded above and nonempty; by the least upper bound property of S, σ = supL ∈ S exists. By
definition of supremum, if x < σ then x is not an upper bound for L; since every element of F is
an upper bound for L, this means that such x is not in F . Taking contrapositives, this says that if
z ∈ F then x ≥ σ. So σ is a lower bound for F – i.e. σ ∈ L. This shows that σ = maxL: i.e. σ is
the greatest lower bound of F : σ = inf F . So inf F exists, as claimed. �

Let us now prove some important properties that complete ordered fields possess – properties
that are critical for doing all of analysis.

THEOREM 1.17. Let F be a complete ordered field.
(1) (Archimedean) Let x, y ∈ F with x > 0. Then there exists n ∈ N so that nx > y.
(2) (Density of Q) Let x, y ∈ F, with x < y. Then there exists r ∈ Q so that x < r < y.

A field with property (1) is called Archimedean. It tells us (by setting x = 1) that the set N is
not bounded above in the field: there is no y ∈ F that is ≥ every integer. It also tells us (by setting
y = 1) that there are no “infinitesimals” – that is, no matter how small a positive number x is, there
is always a positive integer n such that 0 < 1

n
< x. This is an absolutely crucial property for a field

to have if we want to talk about limits. And it does not hold in every ordered field.

EXAMPLE 1.18. In the field Q(t) of rational functions with rational coefficients, it is always
possible to uniquely express a function f(t) ∈ Q(t) in the form f(t) = λ · p(t)

q(t)
where λ ∈ Q and

p(t), q(t) are monic polynomials: their highest order terms have coefficient 1. This allows us to
define an order on Q(t): say f(t) < g(t) iff g(t) − f(t) = λp(t)

q(t)
where p(t), q(t) are monic and

λ > 0. (This is the same as insisting that the leading coefficients of the numerator and denominator
of f(t) − g(t) have the same sign.) For example t2−25t+7

t4−1023
> 0 while −t

2−25t+7
t4−1023

< 0. Then it is
easy but laborious to check that this makes Q(t) into an ordered field. Note: t − n = 1 · t−n

1
> 0

for any integer n; this means that, in the ordered field Q(t), the element t is greater than every
integer. I.e. the set Z ⊂ Q(t) actually has an upper bound (e.g. t) in Q(t). This means Q(t) is a
non-Archimedean field. In particular, by Theorem 1.17, Q(t) is not a complete ordered field.

PROOF OF THEOREM 1.17. (1) Suppose, for a contradiction, there there is no such n: that is,
nx ≤ y for every n ∈ N. Let E = {nx : n ∈ N}. Then our assumption is that y is an upper bound
for E, so E is bounded above. It is also non-empty (it contains x, for example). Thus, since F is
complete, it follows that α = supE exists. In particular, since α− x < α, this means that α− x is
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not an upper bound for E, so there is some element e ∈ E with α − x < e. There is some integer
m ∈ N so that e = mx, so we have α − x < mx. But then α < (m + 1)x, and (m + 1)x ∈ E.
This contradicts α = supE being an upper bound. This contradiction proves the claim.

(2) Since y − x > 0, by (1) there is an n ∈ N so that n(y − x) > 1. Now, letting y = ±nx and
applying (1) again, we can find two positive integersm1,m2 ∈ N so thatm1 > nx andm2 > −nx;
in other words

−m2 < nx < m1.

This shows that the set {k ∈ Z : nx < k ≤ m1} is finite: it is contained in the finite set {−m2 +
1,−m2 + 2, . . . ,m1}. So, let m = min{k ∈ Z : nx < k}. Then since m− 1 ∈ Z and m− 1 < m,
we must have m− 1 ≤ nx.

Thus, we have two inequalities:

n(y − x) > 1, m− 1 ≤ nx < m.

Combining these gives us
nx < m ≤ nx+ 1 < ny.

Dividing through by (the positive) n shows that x < m
n
< y, so setting r = m

n
completes the

proof. �

Here is another extremely important property that holds in ordered fields; this is crucial for
doing calculus.

PROPOSITION 1.19. Let F be a complete ordered field. For each n ∈ N, let an, bn ∈ F satisfy

a1 ≤ a2 ≤ · · · ≤ an ≤ · · · ≤ bn ≤ · · · ≤ b2 ≤ b1.

Further, suppose that bn − an < 1
n

. Then
⋂
n∈N[an, bn] is nonempty, and consists of exactly one

point.

This is sometimes called the nested intervals property. It is actually equivalent to the least
upper bound property. On HW2, you will prove the converse.

PROOF. By construction, b1 is an upper bound for {an : n ∈ N}, which is a nonempty set.
Thus, by completeness, α = sup an exists in F. Since α is an upper bound for {an}, we have
an ≤ α for every n. On the other hand, since bm ≥ an for every m,n, bm is an upper bound for
{an}, and since α is the least upper bound, it follows that α ≤ bm as well. Thus α ∈ [an, bn] for
every n, and so it is in the intersection.

Now, suppose β ∈
⋂
n[an, bn]. Then either α < β, α > β, or α = β. Suppose, for the moment,

that α < β. Then we have an ≤ α < β ≤ bn for every n, and since bn − an <
1
n

, it follows
that 0 < β − α < 1

n
for every n. But this violates the Archimedean property of F. A similar

contradiction arises if we assume α > β. Thus α = β, and so α is the unique element of the
intersection. �

Note: in the setup of the lemma, it is similar to see that the intersection consists of infn bn; so
supn an = infn bn.
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4. Lecture 4: January 14, 2014

We have now seen several properties possessed by complete ordered fields. We would hope to
find some examples as well. Here comes the big punchline.

THEOREM 1.20. There exists exactly one complete ordered field. We call this field R, the Real
numbers.

We will talk about the proof of Theorem 1.20 as we proceed in the course. The textbook rele-
gates an existence proof to the end of Chapter 1, through Dedekind cuts. This is an old-fashioned
proof, and not very intuitive. We are not going to discuss it presently. Once we have developed a
little more technology, we will prove the existence claim of the theorem using Cauchy’s construc-
tion of R (through sequences).

We can, however, prove the uniqueness claim. To be precise, here is what uniqueness means
in this case: suppose F and G are two complete ordered fields. Then there exists an ordered field
isomorphism ϕ : F→ G. That means ϕ is an ordered field homomorphism that is also a bijection.
So, from the point of view of ordered fields, F and G are indistinguishable.

The first question is: given two complete ordered fields F and G, how do we define ϕ : F→ G?
By Corollary 1.14, Q embeds in each of F and G via Q · 1F and Q · 1G. So we can define ϕ as a
partial function by its action on Q:

ϕ(r1F) = r1G, r ∈ Q.

The question is: how should we define ϕ on elements of F that are not necessarily in Q · 1F? Well,
let x ∈ F \Q. By Theorem 1.17(2), there are rationals an, bn ∈ Q such that

x− 1

2n
1F < an1F < x < bn1F < x+

1

2n
1F.

In particular, bn − an < 1
n

. We should do this carefully and also make sure that a1 ≤ a2 ≤
· · · ≤ b2 ≤ b1 – this can be achieved by choosing the an and bn successively, increasing the an
or decreasing the bn each step as needed. It follows from Proposition 1.19 that

⋂
n[an1G, bn1G]

contains exactly one point, α = supn(an1G) = infn(bn1G). So we define

ϕ(x) = α.

Note: if x ∈ Q, then x · 1G is the unique element in the intersection, meaning that we can take the
above nested intervals definition as the formula for ϕ on all of F, not just the irrational elements.
This will be our starting point.

THEOREM 1.21. If F and G are two complete ordered fields, then there exists an ordered field
isomorphism ϕ : F→ G.

PROOF. Following our outline from above, we define ϕ as follows. To begin, using the dense-
ness of Q in F, select a1, b1 ∈ Q so that

x− 1

2
1F < a11F < x < b11F < x+

1

2
1F.

Now proceed inductively: once we’ve constructed a1, . . . , an−1 and b1, . . . , bn−1, choose an and bn
so that

max

{
x− 1

2n
1F, an−1

}
< an1F < x < bn1F < min

{
x+

1

2n
1F, bn−1

}
. (1.1)
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Then we have a1 < a2 < · · · < an < · · · < bn < · · · < b2 < b1, and also

bn − an <
(
x+

1

2n
1F

)
−
(
x− 1

2n
1F

)
=

1

n
.

So by the nested intervals property Proposition 1.19 applied in the field G, we have⋂
n∈N

[an1G, bn1G] = {α}

where α = supn an1G = infn bn1G. We thus define ϕ(x) = α.
Now we must verify that:
• ϕ is well-defined: if a′n, b

′
n are some other rational elements satisfying (1.1) then supn an1G =

supn a
′
n1G. In fact, this follows because we also then have the mixed inequalities

x− 1

2n
1F < a′n1F < x < bn1F < x+

1

2n
1F

and, as above, we have supn a
′
n1G = infn bn1G = supn an1G.

• ϕ is an ordered field homomorphism. This is laborious. Let’s check one of the field
homomorphism properties: preservation of addition. Let x, y ∈ F, and let an < x < bn
and cn < y < dn where bn − an < 1

2n
< 1

n
and dn − cn < 1

2n
< 1

n
. Then ϕ(x) = supn an

and ϕ(y) = supn cn. Now, on the other hand, we have

an+cn < x+y < bn+dn, and (bn+dn)−(an+cn) = (bn−an)+(dn−cn) <
1

2n
+

1

2n
=

1

n
.

It follows that ϕ(x + y) = sup(an + cn). So, to see that ϕ(x + y) = ϕ(x) + ϕ(y), it
suffices to show that

if an ↑ & cn ↑ then sup
n

(an + cn) = sup
n
an + sup

n
cn.

This is also on HW2. The other ordered field homomorphism properties are verified
similarly.
• ϕ is a bijection. First, suppose that x 6= y ∈ F. Then either x < y or x > y; wlog x < y.

Since ϕ is an ordered field homomorphism, it follows that ϕ(x) < ϕ(y). In particular,
ϕ(x) 6= ϕ(y). A similar argument in the case x > y shows that ϕ is one-to-one.

Now, fix y ∈ G. For each n, choose an, bn ∈ Q nested so that bn − an < 1
n

and
an1G < y < bn1G. Mirroring the above arguments, we know that a = supn an1F ∈⋂
n[an1F, bn1F]. Since an1F < a < bn1F, we have an1G = ϕ(an1F) < ϕ(a) < ϕ(bn1F) =

bn1G. Thus ϕ(a) ∈
⋂
n[an1G, bn1G], and this intersection consists of the singleton element

y, by Proposition 1.19. Hence, ϕ(a) = y, and so ϕ is onto.
�

So, we see that there can be only one complete ordered field. (They’re like Highlanders.) A
priori, that doesn’t preclude the possibility that there aren’t any at all. To prove that R exists, we
need to first start talking about convergence properties of sequences. That will be our next task.

Before proceeding, let’s return to our motivation for studying sup and inf and introducing
completeness: we wanted to fill the “hole” in Q where

√
2 should be. To see that we’ve filled

at least that hole, the next result shows that R (the complete ordered field) contains square roots,
and in fact nth roots, of all positive numbers. First, let’s state some standard results on “absolute
value”.
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LEMMA 1.22. Let F be an ordered field. For x ∈ F, define (as usual)

|x| =

{
x, if x ≥ 0

−x, if x < 0
.

Then we have the following properties.
(1) For all x ∈ F, |x| ≥ 0, and |x| = 0 iff x = 0.
(2) For all x, y ∈ F, |x+ y| ≤ |x|+ |y|.
(3) For all x, y ∈ F, |xy| = |x||y|.

All of these properties are straightforward but annoying to prove in cases. We will use the
absolute value frequently in all that follows.

THEOREM 1.23. Let n ∈ N, n ≥ 1. For any x ∈ R, x > 0, there is a unique y ∈ R, y > 0, so
that yn = x. We denote it by y = x1/n.

PROOF OF THEOREM 1.23. First, for uniqueness: let y1 6= y2 be two positive real numbers,
wlog y1 < y2. Then y2

1 = y1y1 < y1y2 < y2y2 = y2
2; continuing by induction, we see that yn1 < yn2 .

That is: the function y 7→ yn is strictly increasing. In particular, it is one-to-one. It follows that
there can be at most one y with yn = x.

Now for existence. Let E = {y ∈ R : y > 0, yn < x}.
• E 6= ∅: note that t = x

x+1
∈ (0, 1). This means that 0 < tn < t, and so since x

x+1
< x,

we have 0 < tn < x, meaning that t ∈ E.
• E is bounded above: let s = 1 + x. Then s > 1, and so sn > s > x. Thus, if y ∈ E, then
yn < x < sn, and so 0 < sn − yn = (s − y)(sn−1 + sn−2y + · · · + yn−1). The sum of
terms is strictly positive, so we can divide out and find that s− y > 0. Thus s is an upper
bound for E.

Hence, by completeness of R, α = supE exists. Since α is the least upper bound, it follows that,
for each k, there is an element yk ∈ E such that yk > α− 1

k
. Since ynk < x, we therefore have(

α− 1

k

)n
< ynk < x, for all k ∈ N.

But we can expand(
α− 1

k

)n
=

n∑
j=0

(
n

j

)
αn−j

(
−1

k

)−j
= αn − 1

k

n∑
j=1

(
n

j

)
αn−j

(
−1

k

)j−1

.

Thus, we have

αn < x+
1

k

n∑
j=1

(
n

j

)
αn−j

(
−1

k

)j−1

and so, applying the triangle inequality – Lemma 1.22(2) – repeatedly, we have

αn < x+
1

k

∣∣∣∣∣
n∑
j=1

(
n

j

)
αn−j

(
−1

k

)j−1
∣∣∣∣∣ ≤ x+

1

k
·

n∑
j=1

(
n

j

)
αn−k

(
1

k

)j−1

.

Note that n is fixed, and 1
k
≤ 1, so for k ≥ 1 we have

(
1
k

)j−1 ≤ 1. Let M =
∑n

k=1

(
n
j

)
αn−k; then

we have

∀k ∈ N αn < x+
M

k
; i.e. αn − x < M

k
.
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By the Archimedean property, it follows that αn − x ≤ 0; thus, we have shown that αn ≤ x.
On the other hand, let y ∈ E. Then for any k ∈ N we have, by similar calculations,(

y +
1

k

)n
= yn +

1

k

n∑
j=1

(
n

k

)
yn−j

(
1

k

)j−1

≤ yn +
1

k
·

n∑
j=1

(
n

j

)
yn−j.

Since y ∈ E, we know yn < x, so ε = x − yn > 0. Let L =
∑n

j=1

(
n
j

)
yn−j , which is a positive

constant; by the Archimedean property, there is some k ∈ N so that 1
k
· L < ε. Thus, for such k,(

y +
1

k

)n
≤ yn +

L

k
< yn + ε = x.

That is: y + 1
k
∈ E. But y + 1

k
> y. That is, for any y ∈ E, there is y′ > y with y ∈ E. So E has

no maximal element. This shows that α /∈ E, and hence αn ≥ x.
In conclusion: we’ve shown that αn ≤ x and x ≤ αn. It follows that αn = x. �

On Homework 2, you will flesh out extending this argument to defining xr for x > 0 in R and
r ∈ Q, and then extending this further to define xy for x > 0 and y ∈ R. One can use similar
arguments to define logb(x) for x, b > 0. We will wait a little while until we have a firm grounding
in sequences and limits before rigorously developing the calculus of these well-known functions.





CHAPTER 2

Sequences and Limits

1. Lecture 5: January 19, 2016

DEFINITION 2.1. Let X be a set. A sequence in X is a function a : N → X . Instead of the
usual notation a(n) for the value of the function at n ∈ N, we usually use the notation an = a(n);
accordingly, we often refer to the function as (an)n∈N or {an}n∈N, or (when being sloppy) simply
(an) or {an}.

In ordered fields, we can talk about limits of sequences. The following definition took half a
century to finalize; its invention (by Weierstraß) is one of the greatest achievements of analysis.

DEFINITION 2.2. Let F be an ordered field, and let (an) be a sequence in F. Let a ∈ F. Say
that an converges to a, written an → a or limn→∞ an = a, if the following holds true:

∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N |an − a| < ε.

Let’s decode the three-quantifier sentence here. What this say is, no matter how small a toler-
ance ε > 0 you want, there is some time N after which all the terms an (for n ≥ N ) are within ε
of a. Some convenient language for this is:

Given any ε > 0, we have |an − a| < ε for almost all n.
Here we colloquially say that a set S ⊆ N contains almost all positive integers if the complement
N \ S is finite. This is equivalent to saying that, after some N , all n ≥ N are in S. So, the limit
definition is that, for any positive tolerance, no matter how small, almost all of the terms are within
that tolerance of the limit.

If (an) is a sequence and there exists a so that an → a, we say that (an) converges; if there is
no such a, we say that (an) diverges. Here are some examples.

EXAMPLE 2.3. Consider each of the following sequences in an Archimedean field.
(1) an = 1 converges to 1. More generally, if (an) is equal to a constant a for almost all n,

then an → a.
(2) an = 1

n
converges to 0.

(3) an = n+ 1
n

diverges.
(4) an = (−1)n diverges.
(5) an = 1 + 1

n
(−1)n converges to 1.

(6) an = 4n+1
7n−4

(defined for n ≥ 1) converges to 4
7
.

In all these examples, we proved convergence (when the sequences converged) to a given value.
However, a priori, it is not clear whether it might also have been possible to prove convergence to
a different value as well. This is not the case: limits are unique.

LEMMA 2.4. Let F be an ordered field, and let (an) be a sequence in F. Suppose a, b ∈ F and
an → a and an → b. Then a = b.

19
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PROOF. Fix ε > 0. We know that there is N1 so that |an − a| < ε
2

for all n > N1, and there is
N2 so that |an − b| < ε

2
for all n > N2. Thus, for any n > max{N1, N2}, we have

|a− b| = |a− an + an − b| ≤ |a− an|+ |an − b| <
ε

2
+
ε

2
= ε.

Now, suppose that a 6= b. Thus a−b 6= 0, which means that |a−b| > 0. So we can take ε = |a−b|
above, and we find that |a− b| < |a− b| – a contradiction. Hence, it must be true that a = b. �

REMARK 2.5. Note, in an Archimedean field, we are free to restrict ε = 1
k

for some k ∈ N;
that is, an equivalent statement of an → a is

Given any k ∈ N, we have |an − a| < 1
k

for almost all n.
In non-Archimedean fields, this does not suffice. For example, in the field Q(t), to show an(t) →
a(t) it does not suffice to show that, for any k ∈ N, |an(t) − a(t)| < 1

k
for all sufficiently large n.

Indeed, what if an(t)− a(t) = 1
t
? This does not go to 0, but it is < 1

k
for all k ∈ N. Similarly, the

sequence an = 1
n

diverges in a non-Archimedean field.
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2. Lecture 6: January 21, 2016

PROPOSITION 2.6. Let F be a complete ordered field. Let (an) be a sequence in F, and suppose
an ↑ (i.e. an ≤ an+1 for all n) and bounded above. Let α = sup{an}. Then an → α. Similarly, if
bn ↓ and bounded below, then β = inf{bn} exists and bn → β.

PROOF. Since F is a complete field, α = sup{an} exists in F. Let ε > 0. Then α − ε < α,
and so by definition there exists some element aN ∈ {an} so that α− ε < aN ≤ α. Now, suppose
n ≥ N ; then an ≤ α of course, but also since an ↑ we have an ≥ aN > α − ε. Thus, we have
shown that |an − α| = α− an < ε for all n ≥ N , which is to say that an → α.

The decreasing case is similar; alternatively, one can look at an = −bn, which is increasing
and bounded above; then we have by the first part that −bn = an → α where α = sup{−bn} =
− inf{an} = −β. It follows that bn → −β, using the limit theorems below.

�

In the proposition, we needed (an) to be bounded (above or below); indeed, the sequence
an = n is increasing, but not convergent. This is generally true: for any sequence to be conver-
gent, it must be bounded (above and below). A sequence that is either increasing or decreasing is
called monotone. So the proposition shows that monotone sequences either converge, or grow (in
absolute value) without bound.

This gives us a new perspective on the motivating example that began our discussion of sup and
inf. Consider, again, the sets A = {r ∈ Q : r > 0, r2 < 2} and B = {r ∈ Q : r > 0, r2 > 2}. We
saw that the set of positive rationals is equal to A t B, and therefore supA and inf B do not exist
in Q. Note that the sequence 1, 1.4, 1.41, 1.414, 1.4142, 1.42431, . . . is in the set A. We recognize
the terms as the decimal approximations to

√
2. This sequence looks like it’s going somewhere;

but in fact the only place it can go is stuck in between A and B, which is not in Q. The question
is: why does it look like it’s going somewhere?

DEFINITION 2.7. A sequence (an) in an ordered set is called Cauchy, or is said to be a Cauchy
sequence, if

∀ε > 0 ∃N ∈ N s.t. ∀n,m ≥ N |an − am| < ε.

That is: a sequence is Cauchy if its terms get and stay close to each other. That is: for any
given tolerance ε > 0, there is some time N after which all the terms are within distance ε of aN .
This notion is very close to convergence. Indeed:

LEMMA 2.8. Any convergent sequence is Cauchy.

PROOF. Let (an) be a convergent sequence, with limit a. Fix ε > 0, and choose N large
enough so that |an − a| < ε

2
for n > N . Then for any n,m > N ,

|an − am| = |an − a+ a− am| ≤ |an − a|+ |am − a| <
ε

2
+
ε

2
= ε.

Hence, (an) is Cauchy. �

But the converse need not be true.

EXAMPLE 2.9. In Q, the sequence 1, 1.4, 1.41, 1.414, 1.4142, 1.42431, . . . is Cauchy. Indeed,
by the definition of decimal expansion, if an is the n-decimal expansion of a number, then an+1

and an agree on the first n digits. This means exactly that |am − an| < 1
10n

for any m > n. So,
fix ε > 0. We can certainly find N so that 1

10N
< ε (since, for example, 1

10N
< 1

N
). Thus, for

n,m > N , we have |an − am| < 1
10min{m,n} <

1
10N

< ε.
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Here are some more important facts about Cauchy sequences. Note that, by Lemma 2.8, any
fact about Cauchy sequences is also a fact about convergent sequences.

PROPOSITION 2.10. Let (an) be a Cauchy sequences. Then (an) is bounded: there is a constant
M > 0 so that |an| ≤M for all n.

PROOF. Taking ε = 1, it follows from the definition of Cauchy that there is some N ∈ N so
that |an − am| < 1 for all n,m > N . In particular, this shows that |an − aN+1| < 1 for all n > N ,
which is to say that aN+1 − 1 < an < aN+1 + 1. Hence |an| < max{|aN+1 − 1|, |aN+1 + 1|}
for n > N . So, define M = max{|a1|, . . . , |aN |, |aN+1 − 1|, |aN+1 + 1|}. If n ≤ N, then
|an| ≤ M since |an| appears in this list we maximize over; if n > N then, as just shown, |an| <
max{|aN+1 − 1|, |aN+1 + 1|} ≤M . The result follows. �

Another useful concept when working with sequences is subsequences.

DEFINITION 2.11. Let {nk : k ∈ N} be a set of positive integers with the property that nk <
nk+1 for all k; that is nk is an increasing sequence in N. Let (an) be a sequence. The function
k 7→ ank is called a subsequence of (an), usually denoted (ank).

EXAMPLE 2.12. (a) Let an = 1
n

. Then a2n = 1
2n

and a2n = 1
2n

are subsequences. How-
ever

bn =

{
an if n is odd
an/2 if n is even

is not a subsequence of (an). Indeed, bk = ank where (nk)
∞
k=1 = (1, 1, 3, 2, 5, 3, 7, 4, 9, 5, . . .),

and this is not an increasing sequence of integers.
(b) Let an = (−1)n. Then a2n = 1 and a2n+1 = −1 are subsequences.

Here is an extremely useful fact about the indices of subsequences: if (nk) is an increasing
sequence in N, then nk ≥ k for every k. (This follows by a simple induction.)

PROPOSITION 2.13. Let (an) be a sequence in an ordered set, and (ank) a subsequence.

(1) If (an) is Cauchy, then (ank) is Cauchy.
(2) If (an) is convergent with limit a, then (ank) is convergent with limit a.
(3) If (an) is Cauchy, and (ank) is convergent with limit a, then (an) is convergent with limit

a.

PROOF. For (1): fix ε > 0 and let N ∈ N be chosen so that |an− am| < ε for n,m > N . Then
whenever k, ` > N , we have nk ≥ k > N and n` ≥ ` > N , so by definition |ank − an`| < ε. Thus
(an) is Cauchy. The proof of (2) is very similar. Item (3) is on HW3. �

Before proceeding with the theory of Cauchy sequences, here are some useful facts about
convergent sequences sequences.

THEOREM 2.14. Let (an) and (bn) be convergent sequences in an ordered field F.

(1) If an ≤ bn for all sufficiently large n, then limn an ≤ limn bn.
(2) (Squeeze Theorem) Suppose also that limn an = limn bn. If (cn) is another sequence, and

an ≤ cn ≤ bn for all sufficiently large n, then (cn) is convergent, and limn cn = limn an =
limn bn.
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PROOF. Let a = limn an and b = limn bn. For (1), fix ε > 0. There is Na ∈ N so that
|an − a| < ε

2
for n > Na, and there is Nb ∈ N so that |bn − b| < ε

2
for n > Nb. Thus, letting

N = max{Na, Nb}, we have an − a > − ε
2

and bn − b < ε
2

for n > N . But then

an − bn > a− ε

2
− b− ε

2
= a− b− ε.

Since an ≤ bn for all large n, we therefore have 0 ≥ an − bn > a− b− ε for such n, and therefore
a− b− ε < 0. This is true for any ε > 0, and therefore a− b ≤ 0, as claimed.

For (2), we have a = b. Choosing Na, Nb, and N as above, we have − ε
2
< an − a ≤ cn − a ≤

bn − a < ε
2

for all n ≥ N . That is: |cn − a| < ε
2
< ε for all n ≥ N . This shows cn → a, as

claimed. �

Cauchy sequences give us a way of talking about completeness that is not so wrapped up in the
order properties. As discussed in Example 2.9 last lecture, the “hole” in Q where

√
2 should be is

the limit of a sequence in Q which is Cauchy, but does not converge in Q. Instead of filling in the
holes by demanding bounded nonempty sets have suprema, we could instead demand that Cauchy
sequences have limits.

DEFINITION 2.15. Let S be an ordered set. Call S Cauchy complete if every Cauchy sequence
in S actually converges in S.

Q is not Cauchy complete. But, as we will see, R is. In fact, Cauchy completeness is equivalent
to the least upper bound property in any Archimedean field. We can prove half of this assertion
now.
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3. Lecture 7: January 26, 2016

THEOREM 2.16. Let F be an Archimedean field. If F is Cauchy complete, then F has the nested
intervals property and hence is complete in the sense of Definition 1.15.

PROOF. That the nested intervals property implies the least upper bound property is the content
HW2 Exercise 3; so it suffices to verify that F has the nested intervals property. Let (an) and (bn)
be sequences in F with an ↑, bn ↓, an ≤ bn, and bn − an < 1

n
. Fix ε > 0, and let N ∈ N be large

enough that 1
N
< ε (here is where the Archimedean property is needed). Thus, for n ≥ N , we have

bn − an < 1
n
≤ 1

N
< ε. Then for m,n > N , wlog m ≥ n, we have

an ≤ am ≤ bn

and so it follows that |an − am| = am − an ≤ bn − an < ε. Thus (an) is a Cauchy sequence. By
the Cauchy completeness assumption on F, we conclude that a = limn an exists in F.

Now, fix n0, and note that since an ≥ an0 for n ≥ n0, Theorem 2.14(1) shows that a =
limn an ≥ an0 (thinking of an0 as the limit of the constant sequences (an0 , an0 , . . .)). Similarly,
since an ≤ bn0 for all n, it follows that a ≤ bn0 . Thus a ∈

⋂
n[an, bn], proving this intersection

is nonempty. As usual, it follows that the intersection consists only of {a}. Indeed, if x, y ∈⋂
n[an, bn], without loss of generality label them so that x ≤ y. Thus an ≤ x ≤ y ≤ bn for every

n. For given ε > 0, choose n so that bn − an < ε; then y − x < ε. So 0 ≤ y − x < ε for all ε > 0;
it follows that x = y. This concludes the proof of the nested intervals property for S. �

REMARK 2.17. The use of the Archimedean property is very subtle here. It is tempting to
think that we can do without it. This is true if we replace the nested intervals property by a slightly
weaker version: say an ordered S satisfies the weak nested intervals property if, given an ↑, bn ↓,
an ≤ bn, and bn − an → 0, then

⋂
n[an, bn] contains exactly one point. (This is weaker than the

nested intervals property, because the assumption is stronger: we’re assuming bn − an → 0 here,
while in the usual nested intervals property we assume that bn − an < 1

n
, which does not imply

bn − an → 0 in the non-Archimedean setting.) The trouble is: this weak nested intervals property
does not imply the least upper bound property in the absence of the Archimedean property. In
fact, there do exist non-Archimedean fields (which therefore do not have the least upper bound
property), but are Cauchy complete. (We may explore this a little later.) This is a prime example
of how counterintuitive analysis can be without the Archimedean property. Soon enough, we will
once-and-for-all demand that it holds true (in the Real numbers), and dispense with these weird
pathologies.

We would like to show the converse is true: that the least upper bound property implies Cauchy
completeness. (This turns out to be true in any ordered set: after all, the least upper bound prop-
erty implies the Archimedean property in an ordered field.) Then we could characterize the real
numbers as the unique Archimedean field that is Cauchy complete. To do this, we need to dig a
little deeper into the connection between limits and suprema / infima.

DEFINITION 2.18. Let S be an ordered set with the least upper bound property. Let (an) be a
bounded sequence in S. Define two new sequences from (an):

ak = sup{an : n ≥ k}, ak = inf{ak : n ≥ k}.
Since {an} is bounded above (and nonempty), by the least upper bound property ak exists for each
k. Similarly, by Proposition 1.16, ak exists for each k.

Note that {an : n ≥ k + 1} ⊆ {an : n ≥ k}. Thus ak is an upper bound for {an : n ≥ k + 1}.
It follows that ak is ≥ the least upper bound of {an : n ≥ k + 1}, which is defined to be ak+1.
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This means that ak ≥ ak+1: the sequence ak is monotone decreasing. Similarly, the sequence ak is
monotone increasing.

By assumption, {an} is bounded. Thus there is a lower bound an ≥ L for all n. Since
a1 ≥ ak ≥ ak ≥ L for all k, the sequence ak is also bounded. Similarly, the sequence ak is
bounded.

Thus, ak is a decreasing, bounded-below sequence. By Proposition 2.6, limk→∞ ak exists, and
is equal to inf{ak}. Similarly, limk→∞ ak exists, and is equal to sup{ak}. We define

lim sup
n→∞

an = lim
n→∞

an = lim
k→∞

sup{an : n ≥ k} = inf
k∈N

sup
n≥k

an

lim inf
n→∞

an = lim
n→∞

an = lim
k→∞

inf{an : n ≥ k} = sup
k∈N

inf
n≥k

an.

EXAMPLE 2.19. Let an = (−1)n. Note that −1 ≤ an ≤ 1 for all n. Now, for any k, there
is some k′ ≥ k so that bk′ = 1. Thus bk = supn≥k ak = 1. Similarly bk = −1 for all k. Thus
lim supn bn = 1 and lim inf bn = −1.

Here are a few more examples computing lim sup and lim inf.

EXAMPLE 2.20. (1) Let an = 1
n

. Since an ↓, ak = supn≥k an = ak = 1
k
. Thus

lim supn an = limk ak = 0. On the other hand, for any k, infk ak = 0 (by the Archimedean
property), and so lim infn an = limk 0 = 0. In this case, the lim sup and lim inf agree.

(2) Let bn = (−1)n

n
. Note that −1 ≤ bn ≤ 1 for all n, and more generally |bn| ≤ 1

n
. For

any k, we therefore have bk = sup{bn : n ≥ k} ≤ sup{|bn| : n ≥ k} = 1
k

and similarly
bk ≥ − 1

k
. Now, bk ≤ bk (the sup of any set is ≥ its inf). Thus

−1

k
≤ bk ≤ bk ≤

1

k
.

Since ± 1
k
→ 0, it follows from the Squeeze Theorem that limk bk = limk bk = 0. Thus

lim supn bn = lim infn bn = 0.
(3) The sequence (1, 2, 3, 1, 2, 3, 1, 2, 3, . . .) has lim sup = 3 and lim inf = 1.
(4) Let cn = n. This is not a bounded sequence, so it doesn’t fit the mold for lim sup and

lim inf. Indeed, for any k, supn≥k n does not exist for any k, and so lim supn cn does not
exist. On the other hand, infn≥k an = k does exists, but this sequence is unbounded and
has no limit, so lim inf cn does not exist. This highlights the fact that we need both and
upper and a lower bound in order for either lim sup or lim inf to exist.

In (1) and (2) in the example, lim sup and lim inf agree. This will always happen for a conver-
gent sequence.

PROPOSITION 2.21. Let (an) be a bounded sequence. Then limn an exists iff lim supn an =
lim infn an, in which case all three limits have the same value.

PROOF. Suppose that lim supn an = lim infn an. Thus ak and ak both converge to the same
value. Since ak ≤ ak ≤ ak for each k, by the Squeeze Theorem, ak also converges to this value, as
claimed. Conversely, suppose that limn an = a exists. Let ε > 0, and choose N ∈ N large enough
that |an − a| < ε for all n ≥ N . That is

a− ε < an < a+ ε, n ≥ N.

It follows that
a− ε ≤ inf

n≥k
an ≤ sup

n≥k
an ≤ a+ ε, k ≥ N
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which shows that both ak and ak are in [a− ε, a + ε] for k ≥ N . Thus they both converge to a, as
claimed. �

As with sup and inf, there is a useful trick for transforming statements about lim sup into
statements about lim inf.

PROPOSITION 2.22. Let (an) be a bounded sequence. Then lim infn(−an) = − lim supn an.

PROOF. Recall that, for any bounded set A, if −A = {−a : a ∈ A}, then sup(−A) = − inf A
and inf(−A) = − supA. Now, Let bn = −an. Then bk = inf{bn : n ≥ k} = inf{−an : n ≥ k} =
− sup{an : n ≥ k} = −ak. Thus

lim inf
n→∞

bn = sup{bk : k ∈ N} = sup{−ak : k ∈ N} = − inf{ak : k ∈ N} = − lim sup
n→∞

an.

�

Here is a useful characterization of lim sup and lim inf.

PROPOSITION 2.23. Let (an) be a bounded sequence in a complete ordered field. Denote
a = lim supn an and a = lim infn an. Then a and a are uniquely determined by the following
properties: for all ε > 0,

an ≤ a+ ε for all sufficiently large n, and
an ≥ a− ε for infinitely many n,

and

an ≤ a+ ε for infinitely many n, and
an ≥ a− ε for all sufficiently large n.

PROOF. This is an exercise on HW4. �

To put this into words: there are many “approximate eventual upper bounds” for the sequence:
numbers a large enough that the sequence eventually never gets much bigger than a. The lim sup,
a, is the smallest approximate eventual upper bound: it is the unique number that the sequence
eventually never strays far above, but also regularly gets close to from below. Similarly, the lim inf,
a, is the largest approximate eventual lower bound.



4. LECTURE 8: JANUARY 28, 2016 27

4. Lecture 8: January 28, 2016

This brings us to an important understanding of lim sup and lim inf: they are the maximal and
minimal subsequential limits.

THEOREM 2.24. Let (an) be a bounded sequence in a complete ordered field. There exists
a subsequence of (an) that converges to lim supn an, and there exists a subsequence of (an) that
converges to lim infn an. Moreover, if (bk) is any convergent subsequence of (an), then

lim inf
n→∞

an ≤ lim
k→∞

bk ≤ lim sup
n→∞

an.

PROOF. Let a = lim supn an. By Proposition 2.23, for any k ∈ N there are infinitely many n
so that an ≥ a− 1

k
. So, we proceed inductively: choose some n1 so that an1 ≥ a− 1. Then, since

there are infiniely many of them, we can find some n2 > n1 so that an2 ≥ a − 1
2
. Proceeding, we

find an increasing sequence n1 < n2 < · · · < nk < · · · so that ank ≥ a − 1
k

for each k ∈ N. We
therefore have

a− 1

k
≤ ank ≤ sup

m≥nk
am = ank . (2.1)

Note that (ank) is a subsequence of (an) which converges to a; thus, by Proposition 2.13, limk ank =
a. Hence, by (2.1) and the Squeeze Thoerem, it follows that ank → a, and we have constructed the
desired subsequence. The proof for lim inf is very similar; alternatively, it can be reasoned using
Proposition 2.22.

Now to prove the inequalities. Let (bk) be a subsequence, so bk = amk for some m1 < m2 <
m3 < · · · . Then

amk = inf
n≥mk

an ≤ bk ≤ sup
n≥mk

an = amk .

Thus, applying the Squeeze theorem, it follows that

lim inf
n→∞

an = lim
k→∞

amk ≤ lim
k→∞

bk ≤ lim
k→∞

amk = lim sup
n→∞

an

as desired. �

This allows us to immediately prove our first “named theorem” in Real Analysis: the Bolzano-
Weierstrass Theorem.

THEOREM 2.25 (Bolzano-Weierstrass). Let (an) be a bounded sequence in a complete ordered
field, with an ∈ [α, β] for all n. Then (an) possesses a convergent subsequence, with limit in [α, β].

PROOF. Let a = lim supn an. By Theorem 2.24, there is a subsequence (ank) of (an) that
converges to a. Note, then, since α ≤ ank ≤ β for all k, it follows from the Squeeze Theorem that
α ≤ limk ank = a ≤ β, concluding the proof. �

This finally leads us to the converse of Theorem 2.16.

THEOREM 2.26. Let F be a complete ordered field (i.e. possessing the least upper bound prop-
erty). Then F is Cauchy complete.

PROOF. Let (an) be a Cauchy sequence in F. By Proposition 2.10, (an) is bounded. Thus, by
the Bolzano-Weierstrass theorem, there is a subsequence ank that converges. It then follows from
Proposition 2.13 that (an) is convergent, concluding the proof. �
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To summarize: we now have three equivalent characterizations of the notion of “completeness”
in an Archimedean field:

least upper bound property ⇐⇒ nested intervals property ⇐⇒ Cauchy completeness.

We also know, by the half of Theorem 1.20 we’ve proved, that such a field is unique. So, to finally
prove the existence of R, it will suffice to give a construction of a Cauchy complete field that is
Archimedean. The supplementary notes “Construction of R” describe how this is done in gory
detail.

Henceforth, we will deal with the field R, which satisfies all of the three equivalent complete-
ness properties.

Now comfortably working in R, let us state a few more (standard) limit theorems.

THEOREM 2.27 (Limit Theorems). Let (an) and (bn) be convergent sequences in R, with an →
a and bn → b.

(1) The sequence cn = an + bn converges to a+ b.
(2) The sequence dn = anbn converges to ab.
(3) If b 6= 0, then bn 6= 0 for almost all n, and en = an

bn
converges to a

b
.

PROOF. For (1), choose Na, Nb ∈ N so that |an − a| < ε
2

if n ≥ Na and |bn − b| < ε
2

for
n ≥ Nb. For any n ≥ N = max{Na, Nb}, we then have |cn − (a+ b)| = |(an − a) + (bn − b)| ≤
|an − a|+ |bn − b| < ε

2
+ ε

2
= ε, proving that limn cn = a+ b.

For (2), we need to be slightly more clever. Note that

|dn − ab| = |anbn − ab| = |anbn − anb+ anb− ab| ≤ |an||bn − b|+ |an − a||b|.

By Proposition 2.10, there is some constant M > 0 so that |an| ≤ M for all n. So, for ε > 0, fix
N1 large enough that |bn− b| < ε

2M
for all n ≥ N1, and fix N2 large enough that |an− a| < ε

2|b| for
all n ≥ N2. (If b = 0, we can take N2 to be any number we like.) Then for N = max{N1, N2}, if
n ≥ N we have

|dn − ab| ≤ |an||bn − b|+ |an − a||b| < M · ε

2M
+

ε

2|b|
· |b| = ε,

proving that limn dn = ab.
For (3), first we need to show that (en) even makes sense. Note that en = an

bn
is not well-defined

for any n for which bn = 0. But we’re only concerned about tails of sequences for limit statements,
so once we’ve proven that bn 6= 0 for almost all n, we know that en is well-defined for all large
n. For this, we use the assumption that b 6= 0, and so |b| > 0. Since limn bn = b, there is an
N0 ∈ N so that, for n > N0, |bn − b| < |b|

2
; i.e. − |b|

2
< bn − b < |b|

2
, and so bn < b + |b|

2
and

also bn > b − |b|
2

. Now, b 6= 0 so either b < 0 or b > 0. If b < 0, then |b| = −b in which case
bn < b + |b|

2
= b − b

2
= b

2
< 0; that is, for n > N0, bn < 0. If, on the other hand, b > 0, then

|b| = b, and so bn > b − |b|
2

= b − b
2

= b
2
> 0; that is, for n > N0, bn > 0. Thus, in all cases,

bn 6= 0 for n > N0, proving the first claim.
For the limit statement, note that en = an · 1

bn
. So, by (2), it suffices to show that 1

bn
→ 1

b
.

Compute that ∣∣∣∣ 1

bn
− 1

b

∣∣∣∣ =
|bn − b|
|bn||b|

.
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As shown above, there is N0 so that, for n > N0, then bn > b
2

= |b|
2

if bn > 0 and bn < b
2

= − |b|
2

if
bn < 0; i.e. this means that |bn| > |b|

2
for n > N0. Hence, we have∣∣∣∣ 1

bn
− 1

b

∣∣∣∣ =
|bn − b|
|bn||b|

< 2
|bn − b|
|b|2

, n > N0.

By assumption, bn → b, and so we can choose N ′ large enough that |bn − b| < |b|2
2
ε for n > N ′.

Thus, letting N = max{N0, N
′}, we have∣∣∣∣ 1

bn
− 1

b

∣∣∣∣ < 2
|bn − b|
|b|2

<
2

|b|2
· |b|

2

2
ε = ε, n > N.

This proves that 1
bn
→ 1

b
as claimed. �

One might hope that Theorem 2.27 carries over to lim sup and lim inf; but this is not the case.

EXAMPLE 2.28. Consider the sequences an = (−1)n and bn = −an = (−1)n+1. Then
lim supn an = lim sup bn = 1, lim infn an = lim infn bn = −1, but an + bn = 0 so lim supn(an +
bn) = lim infn(an + bn) = 0. Hence, in this example we have

−2 = lim inf
n→∞

an+lim inf
n→∞

bn < lim inf
n→∞

(an+bn) = 0 = lim sup
n→∞

(an+bn) < lim sup
n→∞

an+lim sup
n→∞

bn = 2.

The inequalities in the example do turn out to be true in general.

PROPOSITION 2.29. Let (an) and (bn) be bounded sequences in R The following always hold
true.

lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn, and

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

If an ≥ 0 and bn ≥ 0 for all sufficiently large n, we also have the following.

lim inf
n→∞

(an · bn) ≥ lim inf
n→∞

an · lim inf
n→∞

bn, and

lim sup
n→∞

(an · bn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn.

PROOF. The proofs of the lim sup inequalities are exercises on HW4. Assuming these, the
lim inf statements follow from Proposition 2.22. For example, we have

lim inf
n→∞

(an + bn) = lim inf
n→∞

[−(−an − bn)] = − lim sup
n→∞

[(−an) + (−bn)].

Since lim supn[(−an) + (−bn)] ≤ lim supn(−an) + lim supn(−bn) by HW4, taking negatives
reverses the inequality, giving

− lim sup
n→∞

[(−an) + (−bn)] ≥ − lim sup
n→∞

(−an)− lim sup
n→∞

(−bn).

Now using Proposition 2.22 again on each term, we then have

lim inf
n→∞

(an + bn) ≥ − lim sup
n→∞

(−an)− lim sup
n→∞

(−bn) = lim inf
n→∞

an + lim inf
n→∞

bn

as claimed. The proof of the inequality for products is very similar. �

Let us close out our discussion (for now) of limits of real sequences with a rigorous treatment
of the following special kinds of sequences.
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PROPOSITION 2.30. Let p > 0 and α ∈ R.

(1) lim
n→∞

1

np
= 0.

(2) lim
n→∞

p1/n = 1.

(3) lim
n→∞

n1/n = 1.

(4) If p > 1 and α ∈ R, then lim
n→∞

nα

pn
= 0.

(5) If |p| < 1, then lim
n→∞

pn = 0.

PROOF. For (1): fix ε > 0, and choose N ∈ N large enough that 1
N
< ε1/p. Then for n ≥ N ,

1
n
≤ 1

N
< ε1/p, and so 0 < 1

np
=
(

1
n

)p
< ε. This shows that 1

np
→ 0 as claimed.

For (2): as above, in the case p = 1 the sequence is constant 11/n = 1 with limit 1. If p > 1,
put xn = p1/n − 1. Since p > 1 we have p1/n > 1 and so xn > 0. From the binomial theorem,
then,

(1 + xn)n =
n∑
k=0

(
n

k

)
xkn ≥ 1 + nxn.

By definition (1 + xn)n = p, and so

0 < xn <
(1 + xn)n − 1

n
=
p− 1

n
.

Knowing that p−1
n
→ 0, it now follows from the Squeeze Theorem that xn → 0. This proves the

limit in the case p > 1. If, on the other hand, 0 < p < 1, then r = 1
p
> 1, and p1/n =

(
1
r

)1/n
= 1

r1/n
.

We have just proved that r1/n → 1, and so it follows from Theorem 2.27(3) that p1/n → 1
1

= 1.
For (3): we follow a similar outline. Let xn = n1/n − 1, which is ≥ 0 (and > 0 for n > 1). We

use the binomial theorem again, this time estimating with the quadratic term:

n = (1 + xn)n =
n∑
k=1

(
n

k

)
xkn ≥

(
n

2

)
x2
n =

n(n− 1)

2
x2
n.

Thus, we have (for n ≥ 2)

0 ≤ xn ≤
√

2

n− 1
and by the Squeeze Theorem xn → 0.

For (4): Choose a positive integer ` > α. Let p = 1 + r, so r > 0. Applying the binomial
theorem again, when n > ` we have

pn = (1 + r)n =
n∑
k=0

(
n

k

)
rk >

(
n

`

)
r` =

n(n− 1) · · · (n− `+ 1)

`!
r`.

Now, if we choose n ≥ 2`, each term n− `+ j ≥ n
2

for 1 ≤ j ≤ `, and so in this range

pn >
1

`!

(n
2

)`
r`.

Hence, for n ≥ 2`, we have
nα

pn
< nα · `!2

`

n`r`
=
`!2`

r`
· nα−`.
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This is a constant `!2`

r`
times nα−`, where α − ` < 0; applying part (1) with p = α − ` proves the

result.
Finally, for (5): the special case of (4) with α = 0 yields 1

rn
→ 0 when r > 1. Thus, with

|p| < 1, setting r = 1
|p| gives us |pn| = |p|n → 0. The reader should prove (if they haven’t already)

that |an| → 0 iff an → 0, so it follows that pn → 0 as claimed. �





CHAPTER 3

Extensions of R (R and C)

1. Lecture 9: February 2, 2016

Now that we have a good understanding of real numbers, it is convenient to extend them a little
bit to give us language about certain kinds of divergent sequences.

DEFINITION 3.1. Let (an) be a sequence in R. Say that an diverges to +∞ or an → +∞ if

∀M > 0 ∃N ∈ N s.t.∀n ≥ N an > M.

That is: no matter how large a bound M we choose, it is a lower bound for an for all sufficiently
large n. Similarly, we say that an diverges to −∞ if −an → +∞; this is equivalent to

∀M > 0 ∃N ∈ N s.t.∀n ≥ N an < −M.

The expressions an → ±∞ are also sometimes written as lim
n→∞

an = ±∞, and accordingly it
is sometimes pronounced as an converges to ±∞.

EXAMPLE 3.2. The sequence an = np diverges to +∞ for any p > 0. Indeed, fix a large
M > 0. Then M1/p > 0, and by the Archimedean property there is an N ∈ N with N > M1/p.
Thus, for n ≥ N , n > M1/p, and so an = np > (M1/p)p = M , as desired.

On the other hand, the sequence (an) = (1, 0, 2, 0, 3, 0, 4, 0, . . .) does not diverge to +∞: no
matter how large N is, there is some integer n ≥ N with an = 0. (Indeed, we can either take
n = N or n = N + 1.) This sequence diverges, but it does not diverge to +∞.

This suggests the we include the symbols ±∞ in the field R. We must be careful how to do
this, however. We have already proved that R is the unique complete ordered field, so no matter
how we add ±∞, the resulting object cannot be a complete ordered field. In fact, it won’t be a
field at all, for we won’t always be able to do algebraic operations.

DEFINITION 3.3. Let R = R ∪ {−∞,+∞}. We make R into an ordered set as follows: given
x, y ∈ R, if in fact x, y ∈ R then we use the order relation from R to compare x, y. If one of the
two (say x) is in R, then we declare −∞ < x < +∞. Finally, we declare −∞ < +∞.

We make the following conventions. If a ∈ R with a > 0, then ±∞ · a = a · ±∞ = ±∞; if
a ∈ R with a < 0 then ±∞ · a = a · ±∞ = ∓∞. We also declare that a+ (±∞) = ±∞ for any
a ∈ R, and that (+∞) + (+∞) = +∞ while (−∞) + (−∞) = −∞. We leave all the following
expressions undefined:

(+∞) + (−∞), (−∞) + (∞),
∞
∞
, 0 · (±∞), and (±∞) · 0.

EXAMPLE 3.4. Let α, β ∈ R with α > 0, and let an = n while bn = −αn+ β. Then

lim
n→∞

(an + bn) =


+∞, if α < 1

β, if α = 1

−∞, if α > 1

.

33
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Hence the value of the limit of the sum depends on the value of α. However, Example 3.2 shows
that an → +∞ while a similar argument shows that bn → −∞ for any α, β. So we ought to have

lim
n→∞

an + lim
n→∞

bn“ = ”(+∞) + (−∞).

This highlights why it is important to leave such expressions undefined: there is no way to consis-
tently define them that respects the limit theorems.

We can also use these conventions to extend the notions of sup and inf to unbounded sets, and
the notions of lim sup and lim inf to unbounded sequences.

DEFINITION 3.5. Let E ⊆ R be any nonempty subset. If E is not bounded above, declare
supE = +∞; if E is not bounded below, declare inf E = −∞. We also make the convention that
sup(∅) = −∞ while inf(∅) = +∞. (Note: this means that, in the one special case E = ∅, it is
not true that inf E ≤ supE.)

Similarly, let (an) be any sequence in R. If (an) is not bounded above, declare lim supn an =
+∞; if (an) is not bounded below, declare lim infn an = −∞.

With these conventions, essentially all of the theorems involving limits extend to unbounded
sequences.

PROPOSITION 3.6. Using the preceding conventions, Lemma 2.4, Proposition 2.6, Proposition
2.13(2), Squeeze Theorem 2.14, Proposition 2.21, Proposition 2.22, and Theorem 2.24 all gener-
alize to the cases where the limits in the statements are allowed to be in R rather than just R.
Moreover, Theorem 2.27 and Proposition 2.29 also hold in this more general setting whenever the
statements make sense: i.e. excluding the cases when the involved expressions are undefined (like
(+∞) + (−∞)).

PROOF. It would take many pages to prove all of the special cases of all of these results remain
valid in the extended reals. Let us choose just one to illustrate: Theorem 2.27(1): if limn an = a
and limn bn = b, then limn(an + bn) = a + b. We already know this holds true when a, b ∈ R. If
a = +∞ and b = −∞, or a = −∞ and b = +∞, the sum a + b is undefined, and so we exclude
these cases from the statement of the theorem. So we only need to consider the cases that a ∈ R
and b = ±∞, a = ±∞ and b ∈ R, or a = b = ±∞.

• a ∈ R and b = +∞: Since (an) is convergent in R, it is bounded; thus say |an| ≤ L.
Then fix M > 0 and choose N so that bn > M + L for n ≥ N . Thus an + bn >
−L+ (M + L) = M for n ≥ N , and so an + bn → +∞. The argument is similar when
b = −∞.
• a = ±∞ and b ∈ R: this is the same as the previous case, just reverse the roles of an and
bn and a and b.
• a = b = +∞: let M > 0, and choose N1 so that an > M/2 for n ≥ N1; choose
N2 so that bn > M/2 for n ≥ N2. Thus, for n ≥ N = max{N1, N2}, it follows that
an + bn ≥ M/2 + M/2 = M , proving that an + bn → +∞ as required. The argument
when a = b = −∞ is very similar.

�

Now we turn to a very different extension of R: the Complex Numbers. We’ve already dis-
cussed them a little bit, in Example 1.12(3-3.5) and HW1.4, so we’ll start by reiterating that dis-
cussion. We will rely on our knowledge of linear algebra.
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DEFINITION 3.7. Let C denote the following set of 2× 2 matrices over R:

C =

{[
a −b
b a

]
: a, b ∈ R

}
.

Then C = spanR{I, J}, where

I =

[
1 0
0 1

]
, J =

[
0 −1
1 0

]
.

As is customary, we denote I = 1 and J = i. We can compute that J2 = −I , so i2 = −1. Every
complex number has the form a1 + bi for unique a, b ∈ R; we often suppress the 1 and write this
as a+ ib. We think of R ⊂ C via the identification a↔ a+ i0 (so a is the matrix aI).

It is convenient to construct C this way, since, as a collection of matrices, we already have
addition and multiplication built in; and we have all the tools of linear algebra to prove properties
of C.

PROPOSITION 3.8. Denote 1C = I and 0C the 2× 2 zero matrix. Define + and · on C by their
usual matrix definitions. Then C is a field.

PROOF. Most of the work is done for us, since + and · of matrices are associative and distribu-
tive, and + is commutative, and 1C and 0C are multiplicative and additive identities. All that we
are left to verify are the following three properties:

• C is closed under + and ·, i.e. we need to check that if z, w ∈ C then z + w ∈ C and
z · w ∈ C. Setting z = a+ ib and w = c+ id, we simply compute

z + w =

[
a −b
b a

]
+

[
c −d
d c

]
=

[
a+ c −b− d
b+ d a+ c

]
= (a+ c) + (b+ d)i ∈ C,

z · w =

[
a −b
b a

] [
c −d
d c

]
=

[
ac− bd −ad− bc
ad+ bc ac− bd

]
= (ac− bd) + (ad+ bc)i ∈ C.

• · is commutative: this follows from the computation above: if we exchange z ↔ w,
meaning a↔ c and b↔ d, the value of the product z · w is unaffected, so z · w = w · z.
• If z ∈ C \ {0C} then z−1 exists: here we use the criterion that a matrix z is invertible iff

det(z) 6= 0. We can readily compute that, for z ∈ C,

det(z) = det

[
a −b
b a

]
= a2 + b2

and this = 0 iff a = b = 0 meaning a+ ib = 0C.
�

Now more notation.

DEFINITION 3.9. Let z = a + ib ∈ C. We denote a = <(z) and b = =(z), the Real and
Imaginary parts of z. Define the modulus or absolute value of z to be

|z| =
√

det(z) =
√
a2 + b2 =

√
<(z)2 + =(z)2.

For z ∈ C, its complex conjugate z is the complex number z = <(z)−i=(z); in terms of matrices,
this is just the transpose z = z>.
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Note that z+z = 2<(z) and z−z = 2i=(z). Since i is invertible (indeed i−1 = −i), it follows
that

<(z) =
z + z

2
, =(z) =

z − z
2i

. (3.1)

Note that, if z ∈ C happens to be in R (meaning that =z = 0 so z = <(z)), then |z| =√
<(z)2 + 0 =

√
z2 = |z| corresponds to the absolute value in R; so the complex modulus

generalizes the familiar absolute value.
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2. Lecture 10: February 4, 2016

Here are some important properties of modulus and complex conjugate.

LEMMA 3.10. Let z, w ∈ C. Then we have the following.
(1) z = z.
(2) z + w = z + w and zw = z · w.
(3) zz = |z|2.
(4) |z| = |z|.
(5) |zw| = |z||w|, and so |zn| = |z|n for all n ∈ N.
(6) |<(z)| ≤ |z| and |=(z)| ≤ |z|.
(7) |z + w| ≤ |z|+ |w|.
(8) |z| = 0 iff z = 0.
(9) If z 6= 0 then z−1 (which we also write as 1

z
) is given by

z−1 =
z

|z|2
.

(10) If z 6= 0 then |z−1| = |z|−1, and so |zn| = |z|n for all n ∈ Z.

PROOF. (1) is the familiar linear algebra fact that (z>)> = z, and (2) follows similarly from
linear algebra (and the commutativity of · in C): z + w = (z + w)> = z> + w> = z + w, and
zw = (zw)> = w>z> = z>w> = zw. For (3), writing z = a+ ib we have

zz = (a+ ib)(a− ib) = a2 + b2 + (ab− ab)i = a2 + b2 = |z|2.
(4) then follows that from this and (1), and commutativity of complex multiplication: |z|2 =
zz = zz = zz = |z|2; taking square roots (using the fact that |z| ≥ 0) shows that |z| = |z|.
(Alternatively, for (4), we simply note that |z| = det(z>) = det(z) = |z|.)

(5) is a well-known property of determinants: |zw| = det(zw) = det(z) det(w) = |z||w|;
taking z = w and doing induction shows that |zn| = |z|n. (6) follows easily from the fact that
|z| =

√
|<(z)|2 + |=(z)|2. For (7), we have

|z +w|2 = (z +w)(z + w) = (z +w)(z +w) = zz + zw +wz +ww = |z|2 + zw +wz + |w|2.

The two middle terms can be written as zw +wz = zw + (zw) and, by (3.1), this equals 2<(zw).
Now, any real number x is ≤ |x|, and so

|z + w|2 = |z|2 + 2<(zw) + |w|2 ≤ |z|2 + 2|<(zw)|+ |w|2 ≤ |z|2 + 2|zw|2 + |w|2

where we have used (6). From (4) and (5), |zw| = |z||w| = |z||w|, and so finally we have

|z + w|2 ≤ |z|2 + 2|z||w|+ |w|2 = (|z|+ |w|)2.

Taking square roots proves the result.
For (8), it is immediate that |0| = 0; the converse was shown in the proof of Proposition 3.8:

|z| = det(z) = 0 iff (<(z))2 + (=(z))2 = 0 which happens only when <(z) = =(z) = 0, so
z = 0. Part (9) follows similarly from the matrix representation; alternatively we can simply check
from (3) that

z · z

|z|2
=

zz

|z|2
= 1

showing that z−1 = z
|z|2 . Finally, for (10), using (5) we have

|z−1||z| = |z−1z| = |1| = 1
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so |z|−1 = |z−1|. An induction argument combining this with (5) shows that |z|−n = |z−n| for
n ∈ N, and coupling this with the second statement of (5) concludes the proof. �

Items (7) and (8) of Lemma 3.10 show that the complex modulus behaves just like the real
absolute value: it satisfies the triangle inequality, and is only 0 at 0. These properties are all that
were necessary to make most of the technology of limits of sequences in R work, and so we can
now use the complex modulus to extend these notions to C.

DEFINITION 3.11. Let (zn) be a sequence in C. Given z ∈ C, say that lim
n→∞

zn = z iff

∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N |zn − z| < ε.

Say that (zn) is a Cauchy sequence if

∀ε > 0 ∃N ∈ N s.t. ∀n,m ≥ N |zn − zm| < ε.

Note that these are, symbolically, exactly the same as the definitions (6.1 and 2.7) of limits
and Cauchy sequences of real numbers; the only difference is, we now interpret |z| to mean the
modulus of the complex number z rather than the absolute value of a real number.

The properties of complex modulus mirroring those of real absolute value allow us to prove
the results of Lemmas 2.4 and 2.8, Propositions 2.10 and 2.13, and the Limit Theorems (Theorem
2.27) with nearly identical proofs. To summarize:

THEOREM 3.12. (1) Limits are unique: if zn → z and zn → w, then z = w.
(2) Every convergent sequence in C is Cauchy.
(3) Every Cauchy sequence in C is bounded.
(4) (a) If zn → z then any subsequence of (zn) converges to z.

(b) If (zn) is Cauchy then any subsequence of (zn) is Cauchy.
(c) If (zn) is Cauchy and has a convergent subsequence with limit z, then zn → z.

(5) If zn → z and wn → w, then zn + wn → z + w, znwn → zw, and if z 6= 0 then zn 6= 0
for sufficiently large n and 1

zn
→ 1

z
.

To illustrate how to handle complex modulus in these proofs, let us look at the analog of Proposi-
tion 2.10: that Cauchy sequences are bounded. As before, we set ε = 1 and let N be large enough
that |zn − zm| < 1 whenever n,m > N . Thus, taking m = N + 1, for any n > N we have
|zn − zN+1| < 1. Now, zn = (zn − zN+1) + zN+1, and so by the triangle inequality

|zn| = |(zn − zN+1) + zN+1| ≤ |zn − zN+1|+ |zN+1| < 1 + |zN+1|, ∀n > N.

So, as in the previous proof, if we set M = max{|z1|, |z2|, . . . , |zN |, 1 + |zN+1|} then |zn| ≤ M
for all n.

In fact, convergence and Cauchy-ness of complex sequences boils down to convergence and
Cauchy-ness of the real and imaginary parts separately.

PROPOSITION 3.13. Let (zn) be a sequence in C. Then (zn) is Cauchy iff the two real se-
quences (<(an)) and (=(bn)) are Cauchy, and zn → z iff <(zn)→ <(z) and =(zn)→ =(z).

PROOF. Let zn = an + ibn. Suppose (an) and (bn) are Cauchy. Fix ε > 0 and choose N1 large
enough that |an − am| < ε

2
for n,m > N1, and choose N2 large enough that |bn − bm| < ε

2
for
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n,m > N2. Then for n,m > N = max{N1, N2}, we have

|zn − zm| = |(an + ibn)− (am + ibm)| = |(an − am) + i(bn − bm)| ≤ |an − am|+ |i(bn − bm)|
= |an − am|+ |bn − bm|

<
ε

2
+
ε

2
= ε

where, in the second last step, we used the fact that |i(bn − bm)| = |i||bn − bm| and |i| = 1. Thus,
(zn) is Cauchy. For the converse, suppose that (zn) is Cauchy. Fix ε > 0, and choose N large
enough that |zn − zm| < ε for n,m > N . Then we also have

|<(zn)−<(zm)| = |<(zn − zm)| ≤ |zn − zm| < ε, and

|=(zn)−=(zm)| = |=(zn − zm)| ≤ |zn − zm| < ε

for n,m > N . Thus, both (<(zn)) and (=(zn)) are Cauchy, as claimed.
The proof of the limit statements is very similar, and is left as a homework exercise (on HW6).

�

Now, C is not an ordered field (you proved this on HW1), so it does not even make sense to
ask if it has the least upper bound property (and likewise we cannot talk about a Squeeze Theorem,
or lim sup and lim inf). This is one of the main reasons we gave an equivalent characterization of
the least upper bound property – Cauchy completeness – that does not explicitly require an order
relation.

THEOREM 3.14. The field C is Cauchy complete: any Cauchy sequence is convergent.

PROOF. Let (zn) be a Cauchy sequence in C. By Proposition 3.13, the two real sequences
(<(zn)) and (=(zn)) are both Cauchy. Since R is Cauchy complete, it follows that there are real
numbers a, b ∈ R so that <(zn) → a and =(zn) → b. It then follows, again by Proposition 3.13,
that zn → a+ ib. �

In R, we proved the Bolzano-Weierstrass theorem (that bounded sequences have convergent
subsequences) using the technology of lim sup and lim inf. As noted, since C is not ordered, there
is no way to talk about lim sup and lim inf for a complex sequence. Nevertheless, the Bolzano-
Weierstrass theorem holds true in C. We conclude our discussion of C (for now) with its proof.

THEOREM 3.15 (Bolzano-Weierstrass). Every bounded sequence in C contains a convergent
subsequence.

PROOF. Let (zn) be a bounded sequence. Letting zn = an + ibn, since |an| ≤ |zn| and |bn| ≤
|zn|, it follows that (an) and (bn) are bounded sequences in R. Now, by the Bolzano-Weierstrass
theorem for R, there is a subsequence ank of (an) that converges to some real number a. Consider
now the subsequence bnk of (bn). Since (bn) is bounded, so is (bnk), and so again applying the
Bolzano-Weierstrass theorem for R, there is a further subsequence (bnk` ) that converges to some
b ∈ R. The subsequence (ank` ) is a subsequence of the convergent sequence ank and hence also
converges to a. Thus, by Propostion 3.13, the subsequence znk` converges to a+ ib as `→∞. �

REMARK 3.16. This proof highlights an important technique with subsequences in higher di-
mensional spaces. We chose the second subsequence as a subsubsequence, not only a subsequence.
Had we tried to select the subsequences of the real and imaginary parts independently, we could not
have concluded anything about the two together. Indeed, the Bolzano-Weierstrass theorem gives
us a convergent subsequence ank and also gives us a convergent subsequence bmk . But we need to
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use the same index n for both an and bn, which might not be possible with independent choices
like this. A priori, the chosen convergent subsequence of an might have been (a1, a3, a5, . . .), while
from bn we might have chosen (b2, b4, b6, . . .), ne’er the ’tween shall meet.



CHAPTER 4

Series

1. Lecture 11: February 9, 2016

We now turn to a special class of sequences called series.

DEFINITION 4.1. Let (an) be a sequence in R or C. The series associated to (an) is the new
sequence (sn) given by

sn =
n∑
k=1

ak = a1 + a2 + · · ·+ an.

It is a bit of a misnomer to refer to series as special kinds of sequences; indeed, any sequence
is the series associated to some other sequence. For let (an) be a sequence. Define a new sequence
(bn) by

b1 = a1, bn = an − an−1 for n > 1.

Then a1 = b1 =
∑1

k=1 bk, and for n > 1 we compute that
n∑
k=1

bk = b1 + b2 + · · ·+ bk = a1 + (a2 − a1) + (a3 − a2) + · · ·+ (an − an−1) = an.

Thus, (an) (the arbitrary sequence we started with) is the series associated to the sequence (bn).
We will see, however, that the concept of convergence is quite different when applied to the

series associated to a sequence rather than the sequence itself.

DEFINITION 4.2. Let (an) be a sequence in R or C, and let sn =
∑n

k=1 ak be its series. We say
that the series converges if the sequence (sn) converges. If the limit is s = limn→∞ sn, we denote
it by

s =
∞∑
n=1

an = lim
n→∞

n∑
k=1

ak.

In this case, we will often use the cumbersome-but-standard notation “the series
∑∞

n=1 an con-
verges”.

EXAMPLE 4.3 (Geometric Series). Let r ∈ C, and consider the sequence an = rn (in this case
it is customary to start at n = 0). We can compute the terms in the series exactly, following a trick
purportedly invented by Gauss at age 10.

sn =
n∑
k=0

ak = 1 + r + r2 + · · ·+ rn.

∴ rsn = r + r2 + · · ·+ rn + rn+1.

So, subtracting the two lines, we have

(1− r)sn = sn − rsn = 1− rn+1.

41
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Now, if r = 1, this gives no information. In that degenerate case, we simply have sn = 1 + 1 +
· · ·+ 1 = n, and this series does not converge. In all other cases, we have the explicit formula

sn =
1− rn+1

1− r
.

Using the limit theorems, we can decide whether this converges, and to what, just looking at the
shifted sequence an+1 = rn+1. If |r| < 1, then this converges to 0. If |r| ≥ 1, this sequence does
not converge. (This is something you should work out.) Thus, we have

∞∑
n=0

rn =
1

1− r
, if |r| < 1

while the series diverges if |r| ≥ 1.

EXAMPLE 4.4. Consider the sequence an = 1
n(n+1)

. We can employ a trick here: the partial
fractions decomposition:

1

n(n+ 1)
=

1

n
− 1

n+ 1
.

Thus, taking the series sn =
∑n

k=1 an, we have

sn =
n∑
k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n
− 1

n+ 1

)
.

This is a telescoping sum: all terms except for the first and the last cancel in pairs. Thus, we have
a closed formula

sn = 1− 1

n+ 1
.

Hence, the series converges, and we have explicitly
∞∑
n=1

= lim
n→∞

sn = lim
n→∞

(
1− 1

n+ 1

)
= 1.

EXAMPLE 4.5 (Harmonic Series). Consider the series sn =
∑n

k=1
1
k
. That is

sn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

If you add up the first billion terms (i.e. s109) you get about 21.3. This seems to suggest conver-
gence; after all, the terms are getting arbitrarily small. However, this series does not converge. To
see why, look at terms sN with N = 2m + 2m−1 + · · ·+ 2 + 1 for some positive integer m. (By the
way, from the previous example, this could be written explicitly as N = 2m+1 − 1.) Then we can
group terms as

sN = (1) +

(
1

2
+

1

3

)
+

(
1

4
+

1

5
+

1

6
+

1

7

)
+ · · ·+

(
1

2m + 1
+

1

2m + 2
+ · · ·+ 1

2m+1 − 1

)
.

That is: we break up the sum into m+ 1 groups, the first group with 1 term, the second with 2, the
third with 4, up to the last with 2m terms. Now, 1 > 1

2
. In the sec ond group of terms, both 1

2
and 1

3
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are > 1
4
. In the next group, each of the four terms is > 1

8
. That is, we have

sN >

(
1

2

)
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·+

(
1

2m+1
+

1

2m+1
+ · · ·+ 1

2m+1

)
=

1

2
+

1

2
+

1

2
+ · · ·+ 1

2
=
m+ 1

2
.

Now, sn+1 = sn + 1
n+1
≥ sn, so (sn) is an increasing sequence. We’ve just shown that, for any

integer m, we can find some time N so that sN ≥ m+1
2

, and so it follows that for all larger n ≥ N ,
sn ≥ sN ≥ m+1

2
. Since m+1

2
is arbitrarily larger, we’ve just proved that sn → +∞ as n→∞. So

the series diverges.

In Example 4.3, we were able to compute the nth term in the series as a closed formula, and
compute the limit directly. It is rare that we can do this explicitly; more often, we will need to
make estimates like we did in Example 4.5. So we now begin to discuss some general tools for
attacking such limits.

PROPOSITION 4.6 (Cauchy Criterion). Let an be a sequence in R or C. Then the series∑∞
n=1 an converges if and only if: for every ε > 0, there is a natural number N ∈ N so that,

for all m ≥ n ≥ N , ∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣ < ε.

PROOF. This is just a restatement of the Cauchy completeness of R and C. Let sn =
∑n

k=1 ak.
Then

m∑
k=n+1

= an+1 + · · ·+ am = sm − sn.

Thus, having decided to always use m to denote the larger of m,n, the statement is that, for every
ε > 0 there is N ∈ N such that, for m ≥ n ≥ N , |sm − sn| < ε; this is precisely the statement that
(sn) is a Cauchy sequence. In R or C, this is equivalent to (sn) being convergent, as desired. �

COROLLARY 4.7. Let (an) be a sequence such that the series
∑∞

n=1 an converges. Then an →
0.

PROOF. By the Cauchy Criterion (Proposition 4.6), given ε > 0 we may find N ∈ N so that
(letting n = m− 1) for m > N ,

ε >

∣∣∣∣∣∣
m∑

k=(m−1)+1

ak

∣∣∣∣∣∣ = |am|.

This is precisely the statement that am → 0 as m→∞. �

As Example 4.5 points out, the converse to Corollary 4.7 is false: there are sequences, such as
an = 1

n
, that tend to 0, but for which the series

∑∞
n=1 an diverges.

It is often impossible to compute the exact value of the sum
∑∞

n=1 an of a convergent series.
More often, we use estimates to approximate the value. More basically, we use estimates to de-
termine whether the series converges or not, without any direct knowledge of the value if it does
converge. The most basic test for convergence is the comparison theorem.

THEOREM 4.8 (Comparison). Let (an) and (bn) be sequences in C.
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(1) If bn ≥ 0 and
∑

n bn converges, and if |an| ≤ bn for all sufficiently large n, then
∑

n an
converges, and |

∑
n an| ≤

∑
n bn.

(2) If an ≥ bn ≥ 0 for all sufficiently large n and
∑

n bn diverges, then
∑

n an diverges.

PROOF. For item 1: by assumption
∑

n bn converges, and so by the Cauchy criterion, for given
ε > 0 we can choose N0 ∈ N so that, for m ≥ n ≥ N0,

m∑
k=n+1

bk < ε

(here we have used the fact that bn ≥ 0 to drop the modulus). Now, let N1 be large enough that
|an| ≤ bn for n ≥ N1. Then for m ≥ n ≥ max{N0, N1}, we have∣∣∣∣∣

m∑
k=n+1

ak

∣∣∣∣∣ ≤
m∑

k=n+1

|ak| ≤
m∑

k=n+1

bk < ε.

So the series
∑

n an satisfies the Cauchy criterion, and therefore is convergent.
Item 2 follows from item 1 by contrapositive: if

∑
n an converges, then since bn = |bn| ≤ an

for all large n, we have just proven that
∑

n bn converges. Thus, if
∑

n bn diverges, so must∑
n an. �

EXAMPLE 4.9. The series
∑

n
1√
n

diverges, since 1√
n
≥ 1

n
and, by Example 4.5,

∑
n

1
n

di-
verges. On the other hand, note that

n2 =
1

2
n2 +

1

2
n2 ≥ 1

2
n2 +

1

2
n =

1

2
n(n+ 1)

for n ≥ 1. Thus 1
n2 ≤ 2

n(n+1)
. As we computed in Example 4.4,

∑∞
n=1

1
n(n+1)

= 1, so by the limit
theorems,

∑∞
n=1

2
n(n+1)

= 2. That is: this series converges. It follows from the comparison test
that

∑∞
n=1

1
n2 converges.

In showing that the harmonic series diverges, we broke the terms up into groups of exponen-
tially increasing size. This is an important trick known as the lacunary technique, and it works
well when the sequence of terms is positive and decreasing.

PROPOSITION 4.10 (Lacunary Series). Suppose (an) is a sequence of non-negative numbers
that is decreasing: an ≥ an+1 ≥ 0 for all n. Then

∑∞
n=1 an converges if and only if the series

∞∑
k=0

2ka2k = a1 + 2a2 + 4a4 + 8a8 + · · ·

converges.

PROOF. Since ak ≥ 0 for all k, the series of partial sums sn =
∑n

k=1 ak is monotone increas-
ing. Hence, convergence of sn is equivalent to the boundedness of (sn). Let tk = a1 + 2a2 + 4a4 +
· · ·+ 2kak. We will show that (sn) is bounded iff (tk) is bounded.

Note that 2k ≤ 2k+1 − 1, and so if n < 2k then n < 2k+1 − 1. Then we have for such n

sn = a1 + a2 + a3 + · · ·+ an ≤ a1 + a2 + a3 + · · ·+ a2k+1−1

= (a1) + (a2 + a3) + · · ·+ (a2k + · · ·+ a2k+1−1)

≤ a1 + 2a2 + · · ·+ 2ka2k = tk.
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(In the last inequality, we used the fact that an is decreasing.) This shows that if (tk) is bounded,
then so is (sn). For the converse, we just group terms slightly differently (exactly as we did in the
proof of the divergence of the harmonic series): if n > 2k, then

sn = a1 + a2 + a3 + · · ·+ an ≥ a1 + a2 + a3 + · · ·+ a2k

= (a1) + (a2) + (a3 + a4) + · · ·+ (a2k−1+1 + · · ·+ a2k)

≥ 1

2
a1 + a2 + 2a4 · · ·+ 2k−1a2k =

1

2
tk.

Thus tk ≤ 2sn whenever n > 2k. This shows that if (sn) is bounded then so is (tk), concluding the
proof. �

EXAMPLE 4.11. Let p ∈ R, and consider the series
∑∞

n=1
1
np

. We’ve already seen that this
series diverges when p = 1. If p < 1, then 1

np
≥ 1

n
; it follows by the comparison theorem that the

series
∑∞

n=1
1
np

diverges for p ≤ 1.
On the other hand, consider p > 1. Here the sequence of terms an = 1

np
is positive and

decreasing, so we may use the lacunary series test to determine whether the series converges.
Compute that

∞∑
k=0

2ka2k =
∞∑
k=0

2k
1

2kp
=
∞∑
k=0

2(1−p)k.

This is a geometric series, with base r = 21−p. So 0 < r < 1 provided that p > 1, in which
case the series converges. Hence, by Proposition 4.10, the series

∑∞
n=1

1
np

converges if and only if
p > 1.



46 4. SERIES

2. Lecture 12: February 11, 2016

Two generally effective tools for deciding convergence, that you already saw in your calculus
class, are the Root Test and the Ratio Test. Both of them are predicated on rough comparison with
a geometric series, cf. Example 4.3. If an = rn, then

∑
n an converges iff |r| < 1. Now, note for

this series that this important constant |r| can be computed either as |an|1/n or as |an+1

an
|. Even when

these quantities are not constant, they still can give a lot of information about the convergence of
the series.

THEOREM 4.12 (Root Test). Let (an) be a sequence in C. Define

α = lim sup
n→∞

|an|1/n.

If α < 1, then
∑

n an converges. If α > 1, then
∑

n an diverges.

REMARK 4.13. It is important to note that the theorem gives no information when α = 1.
Indeed, consider Examples 4.5 and 4.9, showing that

∑∞
n=1

1
n

diverges, while
∑∞

n=1
1
n2 converges.

But, in both cases, we have

lim
n→∞

(
1

n

)1/n

= lim
n→∞

(
1

n2

)1/n

= 1

(see Theorem 3.20(c) in Rudin). Thus, lim supn |an|1/n = 1 can happen whether
∑

n an converges
or diverges.

PROOF. Suppose α < 1. Then choose any r ∈ R with α < r < 1. That is, we have
lim supn |an|1/n < r. Let bn = |an|1/n; then the statement is that lim supn bn = limn bn < r. That
means that, for all sufficiently large n, bn < r, and so since bn ≤ bn, we have |an|1/n < r for all
sufficiently large n. That is: there is some N so that |an| < rn for n ≥ N . Since the series

∑
n r

n

converges (as 0 < r < 1), it now follows that
∑

n an converges by the comparison theorem.
Now, suppose α > 1. As above, let bn = |an|1/n. Since α = lim supn bn, from Theorem 2.24

there is a subsequence bnk that converges to α. (This is even true of α = +∞; in this case, it is
quite easy to see that the series diverges.) In particular, this means that bnk > 1 for all k, and so
|ank | = bnnk > 1 as well. It follows that an does not converge to 0, and so by Corollary 4.7,

∑
n an

diverges. �

The Ratio Test, which we state and prove below, is actually weaker than the Root Test. Its
proof is based on comparison with the Root Test, using the following result.

LEMMA 4.14. Let cn be a sequence of positive real numbers. Then

lim sup
n→∞

c1/n
n ≤ lim sup

n→∞

cn+1

cn
, and

lim inf
n→∞

c1/n
n ≥ lim inf

n→∞

cn+1

cn
.

PROOF. We prove the lim sup inequality, and leave the similar lim inf case as an exercise. Let
γ = lim supn

cn+1

cn
. If γ = +∞, there is nothing to prove, since every extended real number x

satisfies x ≤ +∞. So, assume γ ∈ R. Then we can choose some β > γ, and as in the proof of
the Root Test above, it follows that cn+1

cn
< β for all sufficiently large n, say n ≥ N . But then, by

induction, we have
cN+k

cN
=

cN+k

cN+k−1

cN+k−1

cN+k−2

· · · cN+1

cN
< βk.
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Thus, for n ≥ N , letting k = n−N , we have

cn = cN+k < CNβ
k = cNβ

n−N = (cNβ
−N) · βn

and so
c1/n
n < (cNβ

−N)1/n · β.
From the Squeeze Theorem, it follows that

lim sup
n→∞

c1/n
n ≤ lim sup

n→∞
(cNβ

−N)1/n · β = β · lim
n→∞

(cNβ
−N)1/n = β.

(Here we have used the fact that p = cNβ
−N is a positive constant, and limn p

1/n = 1 for any
p > 0; this last well-known limit can be found as Theorem 3.20(b) in Rudin.) Thus, for any β > γ,
we have lim supn c

1/n
n ≤ β. It follows that lim supn c

1/n
n ≤ γ, as claimed. �

THEOREM 4.15 (Ratio Test). Let (an) be a sequence in C.

(1) If lim supn→∞

∣∣∣an+1

an

∣∣∣ < 1, then
∑

n an converges.

(2) If lim infn→∞

∣∣∣an+1

an

∣∣∣ > 1, then
∑

n an diverges.

PROOF. For (1): from Lemma 4.14, lim supn |an|1/n ≤ lim supn
|an+1|
|an| < 1, and so by the

Root Test,
∑

n an converges. For (2): from Lemma 4.14, lim supn |an|1/n ≥ lim infn |an|1/n ≥
lim infn

|an+1|
|an| > 1, and so by the Root Test,

∑
n an diverges. �

REMARK 4.16. Once again, if the lim sup or lim inf of the ratio of successive terms = 1, the
test cannot give any information: letting an = 1

n
and bn = 1

n2 , in both cases we have limn |an+1

an
| =

limn | bn+1

bn
| = 1, and yet

∑
n an diverges while

∑
n bn converges.

EXAMPLE 4.17. Consider the sequence (an) = (1
2
, 1

3
, 1

22
, 1

32
, . . .). That is: a2n−1 = 1

2n
and

a2n = 1
3n

for n ≥ 1. Thus |a2n−1|1/(2n−1) =
(

1
2

)n/(2n−1) → 1√
2

while |a2n|1/2n =
(

1
3

)n/2n
= 1√

3
.

Thus lim supn |an|1/n = 1√
2
, and so by the Root Test, the series

∑
n an converges. But the Ratio

Test is no use here. Note that
a(2n−1)+1

a2n−1

=
1/3n

1/2n
=

(
2

3

)n
→ 0,

a2n+1

a2n

=
1/2n+1

1/3n
=

1

2

(
3

2

)n
→ +∞.

Thus lim supn
an+1

an
= +∞ > 1 while lim infn

an+1

an
= 0 < 1; so the Ratio Test gives no informa-

tion.

REMARK 4.18. You may remember the Ratio and Root Tests as being described as equivalent
in your calculus class. This is only true if you restrict to the case when limn |an+1

an
| exists. In

this case, the limit is equal to both the lim inf and the lim sup, and then Lemma 4.14 shows that
limn |an|1/n also exists. But this rules out series like the one above, that somehow “alternate”
between different kinds of terms, all of which are shrinking fast enough for the series to converge.

EXAMPLE 4.19 (The number e). Consider the series
∞∑
n=0

1

n!
.
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Note that the sequence of terms an satisfies an+1

an
= 1/(n+1)!

1/n!
= 1

n+1
→ 0 as n → ∞, and so

by the ratio test the series converges. Its exact value is called e. It is sometimes called Napier’s
constant, since it was first alluded to in a table of logarithms in an appendix of a book written
by the Scottish mathematician / natural philosopher John Napier, circa 1618. It was first directly
studied by Jacob Bernoulli, who used the letter b to denote it. But, like everything else from that
era, it was eventually Euler who proved much of what we know about it, and Euler called it e.

The approximate value is

e ≈ 2.71828182845904523536028747135266249775724709369995.

Fun fact: when Google went public in 2004, their IPO (initial public offering) was $2,718,281,828.
Nerrrrrrds.

LEMMA 4.20. The number e is given by e = lim
n→∞

(
1 +

1

n

)n
.

PROOF. Let sn =
∑n

k=0
1
k!

be the nth partial sum of the series defining e. Let tn = (1 + 1
n
)n.

Now, for fixed m, we can use the binomial theorem to expand(
1 +

1

n

)m
=

m∑
k=0

(
m

k

)
1

nk
=

m∑
k=0

m(m− 1) · · · (m− k + 1)

k!
· 1

nk
.

Write the kth term as
1

k!
· m
n
· m− 1

n
· · · m− k + 1

n
.

Thus, specializing to the case m = n, we have

tn =

(
1 +

1

n

)n
=

n∑
k=0

1

k!
· 1 · n− 1

n
· · · n− k + 1

n
<

n∑
k=0

1

k!
= sn.

We have yet to prove that limn→∞ tn exists, but since sn converges to the finite number e, it follows
from tn < sn that tn is bounded above, and so lim supn tn exists, and (by HW5)

lim sup
n→∞

tn ≤ lim sup
n→∞

sn = e.

Now, on the other hand, let m be fixed. Then for n ≥ m,

tn =
n∑
k=0

1

k!
· 1 · n− 1

n
· · · n− k + 1

n
≥

m∑
k=0

1

k!
· 1 · n− 1

n
· · · n− k + 1

n
≡ tmn .

So, for fixed m, the two sequences (tn) and (tmn ) are comparable: tn ≥ tmn . Again by HW5, and
using the limit theorems (for the finite sum with m terms), we have

lim inf
n→∞

tn ≥ lim inf
n→∞

tmn =
m∑
k=0

1

k!
lim
n→∞

n− 1

n
· · · n− k + 1

n
=

m∑
k=0

1

m!
= sm.

As this holds true for every m, it follows from the squeeze theorem that

lim inf
n→∞

tn ≥ lim
m→∞

sm = e.

Thus
e ≤ lim inf

n→∞
tn ≤ lim sup

n→∞
tn ≤ e

which implies that the lim sup and lim inf are both equal to e, as claimed. �
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The second form of e, as a limit, is (one of the) reason(s) it is so important: this shows that
e shows up in many problems related to compound interest or exponential decay. However, as a
means of approximating e, this limit is very slow: for example

t10 ≈ 2.5937 (4.6% error), t100 ≈ 2.7048 (0.50% error).

That is: you need 100 terms in order to get 2 digits of accuracy. On the other hand, s10 is within
10−8 of e, and s100 is so close to e my computer cannot compute the difference. But we can give a
bound on this tiny error as follows. First note that sn is increasing, so |e− sn| = e− sn. Now

e− sn =
∞∑
k=0

1

k!
−

n∑
k=0

1

k!
=

∞∑
k=n+1

1

k!
.

Now, we factor the terms (all of which have k ≥ n+ 1) as
1

k!
=

1

(n+ 1)!(n+ 2)(n+ 3) · · · k
=

1

(n+ 1)!
· 1

(n+ 2)(n+ 3) · · · k
<

1

(n+ 1)!
· 1

(n+ 1)k−n−1
.

Thus

e− sn <
1

(n+ 1)!

∞∑
k=n+1

1

(n+ 1)k−n−1
=

1

(n+ 1)!

∞∑
j=0

1

(n+ 1)j
.

This is a geometric series, and 0 < 1
n+1

< 1, so we know the sum is
∞∑
j=0

1

(n+ 1)j
=

1

1− 1
n+1

=
n+ 1

n
.

Thus, we have our estimate:

e− sn <
1

(n+ 1)!

n+ 1

n
=

1

n! · n
.

This is a tiny number. Since 10! = 3, 628, 800, this shows that e − s10 <
1

3×107
(and in fact it’s 3

times smaller than this). For n = 100, we have 100! · 100 ≈ 10160, so s100 differs from e only after
the 160th decimal digit!

This is one of the rare occasions where a perfectly practical question of error approximation
actually allows us to prove something entirely theoretical.

PROPOSITION 4.21. The number e is irrational.

PROOF. For a contradiction, let us suppose e ∈ Q. Since e > 0, this means there are positive
integers m,n so that e = m

n
. Now, from the above estimate, we have

0 < e− sn <
1

n! · n
, ∴ 0 < n!e− n!sn <

1

n
.

Now,

n!sn = n!
n∑
k=0

1

k!
=

n∑
k=0

n!

k!
=

n∑
k=0

n(n− 1) · · · (n− k + 1) ∈ N.

Also, by assumption e = m
n

, and so n!e = m · (n − 1)! ∈ N. Thus ` = n!e − n!sn ∈ N. But this
means 0 < ` < 1

n
for some n ∈ N, and that is a contradiction (there are no integers between 0 and

1
n

). �

Moving to our final topic on the subject of series, let us consider absolute convergence.
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DEFINITION 4.22. Let (an) be a sequence in C. We say that the series
∑∞

n=1 an converges
absolutely if, in fact,

∑∞
n=1 |an| converges.

LEMMA 4.23. If
∑∞

n=1 an converges absolutely, then it converges.

PROOF. This follows immediately from the Cauchy criterion. Fix ε > 0 and choose N ∈ N
large enough that, for m > n ≥ N ,

∑m
k=n+1 |ak| < ε. Then by the triangle inequality∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣ ≤
m∑

k=n+1

|ak| < ε

and so
∑∞

n=1 an converges. �
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3. Lecture 13: February 16, 2016

The converse of Lemma 4.23 is quite false. To see why, let us study one particular class of real
series known as alternating series.

PROPOSITION 4.24 (Alternating Series). Let an ≥ 0 be a monotone decreasing sequence with
limit an → 0. Then

∑∞
n=1(−1)n−1an = a1 − a2 + a3 − a4 + · · · converges.

PROOF. Fix m > n ∈ N and consider the tail sum

|(−1)nan+1 + (−1)n+1an+2 + (−1)m−1am| = |an+1 − an+2 + · · · ± am|.

We consider two cases: either m− n is even or odd. If it is even, then we can group the terms as

|(an+1 − an+2) + · · ·+ (am−1 − am)| = (an+1 − an+2) + · · ·+ (am−1 − am),

where we have used the fact that an ↓. On the other hand, we may group terms as

= an+1 − (an+2 − an+3)− (an+4 − an+5)− · · · − am ≤ an+1.

On the other hand, if n−m is odd, then by similar reasoning∣∣∣∣∣
m∑

k=n+1

(−1)k−1ak

∣∣∣∣∣ = (an+1 − an+2) + · · ·+ (am−2 − am−1) + am

and we may group this as

= an+1 − (an+2 − an+3)− · · · − (am−1 − am) ≤ an+1.

Hence, in all cases, we have ∣∣∣∣∣
m∑

k=n+1

(−1)k−1ak

∣∣∣∣∣ ≤ an+1.

Thus, fix ε > 0. Since an → 0, we may choose N ∈ N so that, for n ≥ N , an = |an| < ε. Since
an+1 ≤ an, we therefore have |

∑m
k=n+1(−1)k−1ak| ≤ an+1 < ε whenever m > n ≥ N , which

verifies the Cauchy criterion showing that
∑∞

n=1(−1)n−1an converges. �

EXAMPLE 4.25. The sequence an = 1
n

is positive, decreasing, and satisfies an → 0. Therefore,
by Proposition 4.24,

∞∑
n=1

an = 1− 1

2
+

1

3
− 1

4
+ · · ·

converges. (Remembering your calculus, it in fact converges to ln 2.) This is known as the alter-
nating harmonic series. Note that the absolute series

∑∞
n=1

1
n

diverges. So this is an example of a
series that is convergent but not absolutely convergent. These are sometimes called conditionally
convergent series.

Conditionally convergent series have strange properties, particularly with regard to rearrange-
ments. That is: suppose we reorder the terms. Continuing Example 4.25, rearrange the terms as
follows.

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+

1

7
− · · ·+ 1

2n− 1
− 1

4n− 2
− 1

4n
+ · · ·
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Each of the terms in the alternating harmonic series appears exactly once in this sum. It is no
longer alternating, so we cannot apply a theorem to tell whether it converges; but we can in fact
sum it as follows: in each three-term group, simplify

1

2n− 1
− 1

4n− 2
− 1

4n
=

(
1

2n− 1
− 1

4n− 2

)
− 1

4n
=

1

4n− 2
− 1

4n
=

1

2

(
1

2n− 1
− 1

2n

)
.

So, the sum of the whole rearranged series is

1

2

(
1− 1

2

)
+

1

2

(
1

3
− 1

4

)
+ · · ·+ 1

2

(
1

2n− 1
− 1

2n

)
+ · · · = 1

2

∞∑
n=1

(−1)n−1

n
=

1

2
ln 2.

That is: this rearrangement produces half the value of the original series!
This is always possible for a conditionally convergent series of real numbers. Riemann proved

this: if
∑∞

n=1 an is conditionally convergent and an ∈ R, then there is a rearrangement a′n of the
terms so that the sequence s′n =

∑n
k=1 a

′
n has any tail behavior possible: given any α, β with

−∞ ≤ α ≤ β ≤ +∞, one can find a rearrangement so that lim supn s
′
n = β and lim infn s

′
n = α.

(This is proved as Theorem 3.54 in Rudin.) Fortunately, this kind of craziness is not possible for
absolutely convergent series, as our final theorem in this section attests to.

THEOREM 4.26. Let (an) be a complex sequence such that
∑∞

n=1 |an| converges. Then for any
rearrangement a′n of an,

∑∞
n=1 a

′
n =

∑∞
n=1 an.

PROOF. Fix ε, and chooseN ∈ N so that
∑m

k=n=1 |ak| < ε form > n ≥ N . Let sn =
∑n

k=1 ak
and s′n =

∑n
k=1 a

′
k. The numbers 1, 2, . . . , N appear as indices in the rearranged sequence (a′n)

each exactly once, so there must be some finite p so that they all appear by time p in (a′n). Thus, for
m > n ≥ p, in the difference sm − s′m the N terms a1, . . . , aN cancel leaving only with (original)
indices > N . Thus, by the choice of N , this difference is ≤ |

∑m
k=N+1 ak| ≤

∑m
k=N+1 |ak| < ε.

This shows that the sequence sn − s′n converges to 0, and it follows, since we know sn converges
to
∑∞

n=1 an, that s′n also converges to the sum. �



CHAPTER 5

Metric Spaces

For the remainder of this course, we are going to generalize the concepts we’ve worked with
(notably convergence) beyond the case of R or C. The key to this generalization was already
discussed in the generalization from R to C: we replace the absolute value in R (defined in terms
of the order relation) with the complex modulus in C. For all of the same technology to work, only
a few basic properties of the absolute value / modulus were needed: that |x| ≥ 0, that |x| = 0 only
when x = 0, and finally the triangle inequality |x+ y| ≤ |x|+ |y|.

This last property requires a notion of addition, and we’d like to move beyond vector spaces.
The trick is that, in the notion of convergence, the absolute value / modulus only ever comes up as
a means of measuring distance between two elements: |x − y|. Thinking of it this way, what do
the three key properties say?

• For any two elements x, y, the distance |x− y| is ≥ 0.
• If the distance |x− y| is 0, then actually x = y.
• The triangle inequality: for any three elements x, y, z, the distance |x − z| is bounded

above by |x− y|+ |y− z|. (This is really why it’s called the triangle inequality: draw the
associated picture.) Indeed, we have

|x− z| = |(x− y) + (y − z)| ≤ |x− y|+ |y − z|.

Interpreted in this light, we don’t need a notion of addition: everything can be stated purely in
terms of the notion of distance (in this case given by (x, y) 7→ |x− y|). We generalize thus.

DEFINITION 5.1. Let X be a nonempty set. A function d : X ×X → R is called a metric if it
satisfies the following three properties.

(1) For any x, y ∈ X , d(x, y) = d(y, x) ≥ 0.
(2) For any x, y ∈ X , if d(x, y) = 0, then x = y.
(3) For any x, y, z ∈ X , d(x, z) ≤ d(x, y) + d(y, z).

The pair (X, d) is called a metric space.

EXAMPLE 5.2. (1) As above, if we let dC(x, y) = |x− y|, then (C, dC) is a metric space.
Same goes for R equipped with the restriction of dC to R.

(2) More generally, fix n, and consider the set Cn of n-tuples of real numbers. Define the
Euclidean norm on Cn as follows:

‖(x1, . . . , xn)‖2 =
(
|x1|2 + · · ·+ |xn|2

)1/2
.

It is a simple but laborious exercise to verify that the Euclidean metric d2(x,y) = ‖x−
y‖2 is a metric on Cn. As above, the restriction to Rn is also a metric.

(3) There are many other, different metrics on Rn. The best known are the p-metrics: for
1 ≤ p <∞,

‖(x1, . . . , xn)‖p = (|x1|p + · · ·+ |xn|p)1/p .

53
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There is also the∞-norm, aka the sup norm

‖(x1, . . . , xn)‖∞ = max{|x1|, . . . , |xn|}.

As above, all of these norms yield metrics in the usual way, dp(x,y) = ‖x − y‖p. Note:
the definition still makes sense when p < 1, but it no longer gives a metric: the triangle
inequality is violated. For example, taking p = 1

2
, we have

‖(9, 1) + (16, 0)‖1/2 = ‖(25, 1)‖1/2 = (251/2 + 11/2)2 = 36

‖(9, 1)‖1/2 + ‖(16, 0)‖1/2 = (91/2 + 11/2)2 + (161/2 + 01/2)2 = 32 < 36.

(4) LetB[0, 1] consist of all bounded functions [0, 1]→ R. Then define a function du : B[0, 1]×
B[0, 1]→ R by

du(f, g) = sup
x∈[0,1]

|f(x)− g(x)|.

This is well-defined: since f and g are bounded, the set {f(x) − g(x) : x ∈ [0, 1]} is a
bounded, nonempty set, so it has a sup. It is ≥ 0, and moreover if du(f, g) = 0, then
for every x0 ∈ [0, 1], |f(x0) − g(x0)| ≤ supx∈[0,1] |f(x) − g(x)| = 0, which implies that
f(x0) − g(x0) = 0 – i.e. f = g. This verifies the first two properties of Definition 5.1.
For the triangle inequality, we have

du(f, h) = sup
x∈[0,1]

|f(x)− h(x)| = sup
x∈[0,1]

|f(x)− g(x) + g(x)− h(x)|

≤ sup
x∈[0,1]

(|f(x)− g(x)|+ |g(x)− h(x)|)

≤ sup
x∈[0,1]

|f(x)− g(x)|+ sup
x∈[0,1]

|g(x)− h(x)|

= du(f, g) + du(g, h)

using the properties of sup we now know well. Thus the triangle inequality holds for du
as well, and so it is a metric. Note, like the above examples, it has the form du(f, g) =
‖f − g‖u for a norm ‖ · ‖u: a function on B[0, 1] which has the properties ‖f‖u ≥ 0
and = 0 only if f = 0, and satisfies the triangle inequality ‖f + g‖u ≤ ‖f‖u + ‖g‖u.
Whenever we have a function like this defined on a vector space, it gives rise to a metric
by subtraction.

(5) Not every metric is given in terms of a norm like this. For example, consider on R the
function

d(x, y) = min{|x− y|, 1}.
It is easy to verify that this satisfies properties (1) and (2) in Definition 5.1. The triangle
inequality is also easy to see, by breaking into eight cases (depending whether |x − y|,
|x− z|, and |y − z| are ≤ 1 or > 1); this boring proof is left to the reader.

(6) Given any nonempty set X , one can define a metric on X by the silly rule

d(x, y) =

{
0, x = y

1, x 6= y
.

This is known as the discrete metric. It says two points are close only if they are equal;
otherwise they are far apart. It is again simple to verify this is a metric.
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One important observation was made at several points in the examples: if (X, d) is a metric
space, and Y ⊆ X , then (Y, d|Y ) is a metric space – that is, the metric Y defined on all pairs
(x, y) ∈ X×X , also defines a metric when restricted only to pairs in Y ×Y , as is straightforward to
verify. Thus, the Euclidean metric on Cn automatically gives us a metric (also called the Euclidean
metric) on Rn. Similarly, the usual metric on R restricts to a metric on [0, 1].

Usually thinking of metric spaces using our intuition from R2 and R3, we introduce the follow-
ing notation.

DEFINITION 5.3. Let (X, d) be a metric space, and let x0 ∈ X . For a fixed r > 0, the ball of
radius r centered at x0, denoted Br(x0), is the set

Br(x0) = {x ∈ X : d(x0, x) < r}.
(Rudin calls this a neighborhood Nr(x0).) With r = 1, we refer to this as the unit ball centered
at x0.

EXAMPLE 5.4. (1) In Rn, using the definition of the Euclidean metric (and choosing the
base point 0 to simplify things), we have

Br(0) = {(x1, . . . , xn) : x2
1 + · · ·+ x2

n < r2}
which is what we usually know as a ball (in n-dimensions).

(2) Consider (R2, dp), with the p-metric of Example 5.2(3). Here are some pictures of the
unit ball:

(3) In a discrete metric space (X, d) as in Example 5.2(6), Br(x0) = X if r > 1, and
Br(x0) = {x0} if r ≤ 1.
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1. Lecture 14: February 18, 2016

Now, once more, we define convergence and Cauchy in the wider world of metric spaces.

DEFINITION 5.5. Let (X, d) be a metric space, and let (xn) be a sequence inX , and let x ∈ X .
Say that (xn) converges to x, or xn → x, or limn→∞ xn = x, if

∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N d(xn, x) < ε.

In other words, xn → x means that the real sequence d(xn, x) → 0. Alternatively, we could state
this as: for all sufficiently large n, xn ∈ Bε(x).

Similarly, say that (xn) is a Cauchy sequence in X if

∀ε > 0 ∃N ∈ N s.t. ∀n,m ≥ N d(xn, xm) < ε.

As discussed in the generalization from R to C, limits are unique: if xn → x and xn → y, then
x = y (this follows from the fact that d(x, y) = 0 implies that x = y; it is primarily for this reason
that this non-degeneracy property is required in the definition of a metric).

EXAMPLE 5.6. Consider a discrete metric space: (X, d) where d is given as in Example 5.2(6).
Let xn → x. In particular, this means that there is some timeN such that, for n ≥ N , d(xn, x) < 1

2
.

But by the definition of d, either d(xn, x) = 0 or d(xn, x) = 1; so if d(xn, x) < 1
2

then d(xn, x) = 0,
and so xn = x. Thus, if xn → x, then xn = x for all large n. In a discrete metric space,
convergence is the same thing as eventually constant. The same holds true for Cauchy.

In general, there is a fundamental difference between convergent sequences that are eventually
constant and convergent sequences that are not eventually constant. We use this difference to define
one of the most important topological concepts.

DEFINITION 5.7. Let (X, d) be a metric space, and let E ⊆ X be a subset. A point x ∈ X (not
necessarily in E) is called a limit point of E if there is a sequence xn ∈ E \ {x} that converges
to x, xn → x. That is: a limit point of E is a limit of some not eventually constant sequence in E.
A point e ∈ E that is not a limit point of E is called an isolated point of E.

EXAMPLE 5.8. In R with the usual metric, take E = (−1, 0] ∪ N. Then −1 is a limit point
of E: for example, −1 = lim(−1 + 1

n
) and −1 + 1

n
∈ E for each n. Also, any point x ∈ E

is a limit point of E: take xn = x − 1+x
n

as the sequence. This is in E since 1 + x > 0 and so
x− 1+x

n
< x ≤ 0, but also x− 1+x

n
> x− (1 + x) = −1.

On the other hand, the positive integers N are isolated points of E. For example, consider 1.
If yn is any sequence in R that converges to 1, then we must have yn ∈ (0.9, 1.1) for all large n;
but then if yn ∈ E it follows that yn = 1 for all large n, which isn’t allowed. Thus, no sequence in
E \ {1} converges to 1, showing that the point 1 ∈ E is not a limit point of E – it is an isolated
point.

The set of all limit points of a set E is denoted E ′. So E is closed iff E ′ ⊆ E.

DEFINITION 5.9. A subset E of a metric space is called closed if it contains all of its limit
points.

EXAMPLE 5.10. (1) The set E = (−1, 0] ∪ N from Example 5.8 is not closed: −1 is a
limit point of E, but −1 6∈ E.

(2) The set F = [−1, 0] ∪ N is closed. The argument in Example 5.8 shows that each of the
points in [−1, 0] is a limit point of F , while each of the points n ∈ N is an isolated point
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of F . On the other hand, if x is a real number not in F , then either x < −1 or x > 0 and
x /∈ N. In the former case, this means that no sequence in F can come within distance
1 + x > 0 of x, and so cannot converge to x; a similar argument with x > 0 shows that
x is not a limit point of F . Thus, the set of limit points of F consists exactly of the set
[−1, 0], and this set is contained in F . So F is closed.

Definition 5.9 is stated in terms of limit points to make it clear that there are two kinds of
points to consider in deciding whether a set is closed: isolated points and non-isolated points. For
example, if one has a closed set, then adding to it a finite collection of isolated points will preserve
closedness. But for the purposes of a concise definition, one need not be concerned about the
distinction.

PROPOSITION 5.11. A subset E of a metric space (X, d) is closed if and only if, for any
sequence (xn) in E that converges in X , the limit limn→∞ xn is actually in E.

That is: closed means closed under limits of sequences.

PROOF. Suppose E is closed, so E ′ ⊆ E. Now, let (xn) be any sequence in E that converges
to some point x. If xn 6= x for any n, then by definition x ∈ E ′, and therefore by assumption
x ∈ E. If, on the other hand, there exists n with xn = x, then since xn ∈ E for each n, we have
x ∈ E. Thus, the E is closed under limits of sequences.

Conversely, suppose E is closed under limits of sequences. Let x ∈ E ′; so by definition there
is a sequence xn ∈ E \ {x} such that xn → x. Well, since xn → x and xn ∈ E, by assumption
x ∈ E. Thus E ′ ⊆ E, and E is closed. �

There is a complementary notion to closed, called open.

DEFINITION 5.12. A subset E of a metric space is called open if, for any point x ∈ E, there
is a ball Br(x) (for some r > 0) with Br(x) ⊆ E.

EXAMPLE 5.13. (1) The set E = (−1, 0] ∪ N from Example 5.8 is not open. Consider
the point 0 ∈ E. For any 0 < r < 1, the ball Br(0) = (−r, r) contains some points (for
example r

2
) that are in (0, 1), and hence not in E. Similarly, any of the points in N are in

E but none is contained in a ball contained in E. So E is not open.
(2) On the other hand, the set U = (0, 1) is open. Indeed, let x ∈ U . Let’s consider two

cases: either 0 < x < 1
2

or 1
2
≤ x < 1. In the former case, the ball Bx(x) = (0, 2x) is

contained in U = (0, 1); in the latter case, the ball B1−x(x) = (2x− 1, 1) is contained in
U . So every point of x is contained in a ball inside U , showing that U is open.

(3) Let (X, d) be a discrete metric space. If x ∈ X , then by Example 5.4(3), B1(x) = {x}.
Thus, every singleton point in a discrete metric space is an open set. On the other hand,
by Example 5.6, there are no non-eventually-constant sequences converging to any point
x, which means every point is isolated. That is: X has no limit points, which means that
(vacuously) X contains all its limit points. So X is also closed.

(4) Consider the empty set ∅ in any metric space. It is both open and closed. Indeed, the
definitions of “open” and “closed” each start with “for every point in the set. . . ” and
since there are no points in ∅ to check the condition, it follows that the condition holds
vacuously.

Example 5.13(2) has a nice, important generalization to any metric space. Not that (0, 1) is
itself a ball in R: it is the ball B1/2(1/2). The fact is, any ball is open.
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PROPOSITION 5.14. Let (X, d) be a metric space, let x ∈ X , and let r > 0. Then the ball
Br(x) is open in X .

PROOF. Let y ∈ Br(x). This means d(x, y) < r. Hence, there is some ε > 0 so that d(x, y) =
r−ε. I claim thatBε(y) ⊂ Br(x). Indeed, suppose that z ∈ Bε(y), meaning that d(z, y) < ε. Then

d(x, z) ≤ d(x, y) + d(y, z) = r − ε+ d(y, z) < r − ε+ ε = r.

so z ∈ Br(x). We have thus shown that, for any y ∈ Br(x), there is a ball Bε(y) ⊂ Br(x). That
is: Br(x) is open. �
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2. Lecture 15: February 23, 2016

We referred to open and closed as complementary properties. That doesn’t mean that any set
is either open or closed: for example, the set (−1, 0] considered above is neither open nor closed.
But they concepts are complementary, in the following precise sense.

PROPOSITION 5.15. Let (X, d) be a metric space. A subset E ⊆ X is open if and only if
Ec = X \ E is closed.

Since (Ec)c = E, it follows similarly that E is closed iff Ec is open. In the proof we will use the
characterization of closed given in Proposition 5.11.

PROOF. Suppose E is open. Let (xn) be a sequence in Ec that converges to some point x ∈ X .
We want to show that x ∈ Ec; to produce a contradition, we therefore assume that x 6∈ Ec, meaning
x ∈ E. Since E is open, by definition there is some r > 0 so that Br(x) ⊆ E. On the other hand,
since xn → x, there is certainly some N so that d(xN , x) < r. Thus xN ∈ Br(x) ⊆ E, which
means that xN ∈ E. But we assumed that xN ∈ Ec, so this is a contradition. Therefore x ∈ Ec.
This shows that any convergent sequence in Ec has limit in Ec, which shows that Ec is closed.

Conversely, suppose Ec is closed. Let x ∈ E. We want to show that there is some r > 0 so that
Br(x) ⊆ E; to produce a contradiction, we therefore assume that there is no such r. That means
that, for say r = 1

n
, B1/n(x) 6⊆ E, which means precisely that there is som point xn 6∈ E such that

xn ∈ B1/n(x). So, we have produced a sequence xn ∈ Ec such that d(xn, x) < 1
n

, meaning that
xn → x. Thus x is the limit of a sequence in Ec, and so by assumption x ∈ Ec. This contradicts
the assumption that x ∈ E. Therefore there must be some r > 0 so that Br(x) ⊆ E, and so Ec is
closed. �

Let us make a few more definitions that pertain the local properties of open and closed sets.

DEFINITION 5.16. Let (X, d) be a metric space, and let E ⊆ X .
(1) The closure of E is the set E = E ∪ E ′.
(2) A point x ∈ E is called an interior point if there is some r > 0 with Br(x) ⊆ E. The set

of all interior points of E is called the interior of E, and is denoted
◦
E.

(3) The boundary of E is the set ∂E = E \
◦
E.

REMARK 5.17. Following the proof of Proposition 5.11, E can alternatively be described as
the set of all limits of convergent sequences in E.

EXAMPLE 5.18. Consider again the set E = (−1, 0] ∪ N in R, considered in Examples 5.8
and 5.10. We’ve shown that the points in (−∞,−1) and (0,∞) are not limit points (the points
1, 2, 3, . . . are in E but are isolated); on the other hand, we’ve shown that the points [−1, 0] are
all limit points. Thus E ′ = [−1, 0], and so E = E ∪ E ′ = [−1, 0] ∪ N. We’ve also shown in
Example 5.13(1) that there is no ball centered at 0 contained in E; similarly, there are no balls
centered at the points 1, 2, 3, . . . contained in E, so these are not interior points. On the other hand,
an argument very similar to Example 5.13(2) shows that the points in (−1, 0) are interior points.

So
◦
E = (−1, 0). Finally, this shows that ∂E = E \

◦
E = {−1, 0, 1, 2, . . .}.

EXAMPLE 5.19. Let Q denote the rational numbers as a subset of the metric space R. By
Theorem 1.17(2) (the density of Q in R), given any real numbers a < b there is a rational number
q ∈ Q with a < q < b. In particular, fix x ∈ R; then for n ∈ N there is a rational number
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qn with x + 1
2n

< qn < x + 1
n

. In particular, we have 1
2n

< |qn − x| < 1
n

. This shows that
qn → x but qn 6= x for any n; thus x ∈ Q′. So every real number is a limit point of Q, and so
Q = Q ∪ Q′ = Q ∪ R = R. (This is another way of saying Q is dense in R; in general, we say a
subset E ⊆ X is dense in a metric space X if E = X .)

On the other hand, let r > 0, and let q ∈ Q. The number x = q + r√
2

is < x+ r, which shows
that x ∈ (q − r, q + r) = Br(q). But x /∈ Q: indeed, we can solve

√
2 = r

x−q , and so if x were
rational

√
2 would also be rational, which we know it is not. Thus Br(q) 6⊆ Q for any r > 0. This

shows q is not interior to Q. This holds for any q ∈ Q, and so, in fact,
◦
Q = ∅.

THEOREM 5.20. Let (X, d) be a metric space, and let E ⊆ X .
(1) E is closed; E is closed iff E = E.

(2)
◦
E is open; E is open iff E =

◦
E.

PROOF. We begin with item 1. Let (xn) be a sequence in E with limit x. We wish to show
x ∈ E. If x ∈ E ⊆ E we are done, so assume x /∈ E. For each xn, either xn ∈ E or xn ∈ E ′.
In the latter case, by definition of E ′ there is some other sequence yk ∈ E such that yk → xn;
in particular, we can choose some k large enough that d(yk, xn) < 1

n
. So, we can define a new

sequence (x′n) as follows: if xn ∈ E then x′n = xn; if xn 6∈ E ′, then x′n = yk as above, so x′n ∈ E
and d(xn, x

′
n) < 1

n
. Then we have d(x′n, x) ≤ d(x′n, xn) + d(xn, x) < 1

n
+ d(xn, x) → 0, and so

x′n → x. As x′n ∈ E and x /∈ E, it follows that x is a limit point ofE, and so x ∈ E ′ ⊆ E∪E ′ = E.
Thus E is closed under limits; by Proposition 5.11, it follows that E is closed, as claimed. Now,
by definition E is closed iff E ′ ⊆ E, and this happens iff E = E ∪ E ′ = E, proving the second
point.

For item 2, let x ∈
◦
E; thus, there is some ball Br(x) contained in E. But by Proposition 5.14,

the ball Br(x) is open, which means all its points are interior points; thus Br(x) ⊆
◦
E. So, any

point in
◦
E is interior to

◦
E, which shows that

◦
E is open. By definition

◦
E ⊆ E for any set E; thus

◦
E = E iff E ⊆

◦
E, which is the statement that every point of E is an interior point, which is

precisely the definition of E being open. �

EXAMPLE 5.21. Let E ⊂ R be nonempty and bounded above. Then α = supE exists. By
definition, α− 1

n
is not an upper bound for E for any n ∈ N, which shows that there is an element

xn ∈ E with α − 1
n
< xn ≤ α. This shows that xn → α. By Remark 5.17, it follows that

α ∈ E: the supremum is always in the closure. On the other hand, if there were some r > 0 with
Br(α) ⊆ E, then, for example, α + r

2
∈ E. Since α + r

2
> α, this contradicts α being an upper

bound for E. Thus, α is not in
◦
E. That is: supE ∈ E \

◦
E = ∂E.
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3. Lecture 16: February 25, 2016

Now we come to an important concept you may not have encountered before: compactness.

DEFINITION 5.22. Let (X, d) be a metric space. A subset K ⊆ X is called compact if every
sequence (xn) in K has a convergent subsequence whose limit is in K.

EXAMPLE 5.23. (1) Let a < b be real numbers, and consider the set K = [a, b]. The
Bolzano-Weierstrass Theorem for R (Theorem 2.25) is precisely the statement that [a, b]
is compact.

(2) On the other hand, E = [a, b) is not compact: the sequence xn = b − b−a
n

is in E, but
converges to b /∈ E, therefore all of its subsequences converge to b, and hence none of
them converge in E. Similarly, an unbounded interval like [0,∞) is not compact: for
example the sequence xn = n has no convergent subsequences at all.

(3) Let (X, d) be a discrete metric space. IfK is a finite subset ofX , sayK = {y1, y2, . . . , ym},
then K is compact. Indeed, if (xn) is any sequence in K, then there must be some (per-
haps many) yj so that xn = yj for infinitely many n (by the pigeonhole principle). That
means exactly that there is an increasing sequence nk with xnk = yj for all k, which
means xnk → yj ∈ K. Thus K is compact. On the other hand if E ⊆ X is infinite,
it is not compact: for then we can find an infinite sequence x1, x2, x3, . . . ∈ E all dis-
tinct. Thus, any subsequence also has all distinct terms, which means it is not eventually
constant. By Example 5.6, this means no subsequence converges.

Now, there is an alternate definition of compactness which is the only one used in Rudin;
we refer to it as topological compactness, given in Definition 5.24 below. First, let us highlight
the fact that Definition 5.22 was the original definition of compact, and predated the so-called
“modern” definition by almost a century. Bolzano was already using our definition of compactness
in 1817, although it would not be until 1906 that Definition 5.22 was written down formally (by
Fréchet). It was around this time that Lebesgue proved (as a useful lemma) that Definition 5.24 also
characterizes compactness; indeed, as we will see, it is a very useful tool. Much later, in 1929, the
Russian school (led by Alexandrov and Urysohn) redefined compactness as what we are calling
topological compactness. Our definition of the word compact is now often called sequentially
compact.

DEFINITION 5.24. Let (X, d) be a metric space. Let K ⊆ X be a subset. An open cover
of K is a collection (finite or infinite) of open set C in X such that every point in K is in at
least on U ∈ C : that is X ⊆

⋃
U . We call K topologically compact if, given any open cover

C of K, there is a finite sub cover: that is, there are finitely many U1, . . . , Um ∈ C such that
K ⊆ U1 ∪ · · · ∪ Um.

EXAMPLE 5.25. Consider the interval (0, 1]. We have already seen this is not compact. It is
also not topologically compact. Indeed, consider the sets Un = ( 1

n
, 2) for n ∈ N. If x ∈ (0, 1)

then x > 0 and so there is some n ∈ N with 1
n
< x. Therefore x ∈ ( 1

n
, 1) ⊂ ( 1

n
, 2) = Un. This

shows that the collection C = {Un : n ∈ N} is an open cover of (0, 1]. Now, consider any finite
collection of sets from C : Un1 , Un2 , . . . , Unk for some k ∈ N. Note that 1

m
< 1

`
when m > `,

and so U` ⊂ Um in this case. What that means is that, if we let m = max{n1, . . . , nk} then
Un1 ∪ · · · ∪ Unk = Um = ( 1

m
, 2). But then this does not cover (0, 1]: there are points x ∈ (0, 1]

with x < 1
m

. Thus, no finite subcover of C will cover all of (0, 1]. The existence of such an open
cover without any finite subcover shows that (0, 1] is not topologically compact.
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THEOREM 5.26. Let K be a set in a subset of a metric space. Then K is sequentially compact
iff K is topologically compact.

We will not prove Theorem 5.26 here; this is the sort of thing that will be covered in an under-
graduate topology course (such as Math 190). Rudin chooses to use the more abstract topological
definition of compactness (for historical reasons that I find unsatisfactory), and this has the effect
of both making everything more abstract, and also making all the proofs harder than necessary.
We will stick exclusively with sequential compactness. This means all our proofs will be different
from Rudin’s – and generally shorter and easier to understand!

In Example 5.23(2), the absence of the point b from [a, b) makes the set non-compact. Note
that b is in the closure of [a, b). This highlights the following proposition.

PROPOSITION 5.27. Compact sets are closed. Also, if K is compact and F ⊆ K is closed,
then F is compact.

PROOF. Suppose K is compact. Let (xn) be a sequence in K which converges. By compact-
ness, there is some subsequence (xnk) that converges to a point in K. But we know that every
subsequence of (xn) converges to limxn, and hence limxn ∈ K. Thus, K is closed under limits,
and so K is closed.

Now, let F be a closed subset of a compact set K. Let (yn) be any sequence in F . Then (yn)
is a sequence in K, and hence by compactness there is a subsequence (ynk) that converges in K.
Note that ynk ∈ F for each k, and hence since F is closed it follows that lim ynk ∈ F . Thus, any
sequence in F has a convergent subsequence with limit in F ; i.e. F is compact. �

DEFINITION 5.28. Let E be a subset of a metric space. The diameter of E, denoted diam(E)
is defined to be

diam(E) = sup{d(x, y) : x, y ∈ E}.
Note: this might well be +∞. If diam(E) < +∞, we callE bounded; otherwiseE is unbounded.

EXAMPLE 5.29. (1) diam(Br(x)) ≤ 2r for any ball in a metric space. But it could be
less: for example in a discrete metric space with at least two elements, diam(Br(x)) = 0
if r ≤ 1 and = 1 if r > 1.

(2) In R, diam(0, 1) = diam(0, 1] = diam[0, 1) = diam[0, 1] = 1.
(3) In R, diam(N) =∞. Indeed, d(0, n) = n so sup{d(x, y) : x, y ∈ N} ≥ n for every n.

Note: if E is a bounded set, with diameter δ > 0, then for any point x ∈ E, E ⊆ B2δ(x)
(or B1.0001δ(x), or Bδ+0.0001(x), etc.) Conversely, suppose there is some x in the metric space and
some r > 0 with E ⊆ Br(x). Since diam(Br(x)) ≤ 2r, it follows that diam(E) ≤ 2r. So, to say
E is bounded is the same as saying it is contained in some ball.

PROPOSITION 5.30. Compact sets are bounded.

PROOF. We prove the contrapositive: unbounded sets are not compact. Let E be unbounded,
and fix a point x0 ∈ E. Consider the set of balls Bn(x0) for n ∈ N. By assumption, E 6⊆ Bn(x0)
for any n, so we can choose a point xn ∈ E with d(x0, xn) ≥ n.

In fact, the sequence (xn) has no convergent subsequences. For let x be any point in the metric
space. Let n ∈ N be large enough that N > d(x0, x). Then for n ≥ N + 1, we have by the triangle
inequality

d(xn, x) ≥ d(xn, x0)− d(x0, x) ≥ n− d(x0, x) ≥ 1 +N − d(x0, x) > 1.
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That is: for any point x in the metric space, eventually xn never comes within distance 1 of x.
It follows that no subsequence of (xn) can converge to x. Since this holds for any x, it follows
that (xn) has no convergent subsequences. Since (xn) is a sequence in E, this means E is not
compact. �

Thus, we have seen that compact sets are closed and bounded. One of the biggest theorems of
this course, the Heine–Borel Theorem, states that the converse is true in Euclidean space.

THEOREM 5.31 (Heine–Borel). Let m ∈ N. A subset of Rm is compact iff it is closed and
bounded.

PROOF. Let K ⊂ Rm. If K is compact, then by Propositions 5.27 and 5.30 K is closed and
bounded. We must prove the converse. Suppose K is a closed and bounded subset of Rm. Let (xn)
be a sequence in K. We may write it in terms of its components

xn = (x1
n, x

2
n, . . . , x

m
n ).

Consider first the sequence (x1
n)∞n=1 in R. Note that

|x1
n| ≤ |xn| = d(xn, x1) ≤ diam(K).

So the sequence (x1
n) is a bounded sequence in R. By Theorem 2.25 (the Bolzano-Weierstrass

Theorem for R), there is a subsequence x1
nk

that converges. Now we proceed as in the proof of
Theorem 3.15 (the Bolzano-Weierstrass Theorem for C). Consider the subsequence x2

nk
. Again

we have |x2
nk
| ≤ diam(K) is bounded, so by the Bolzano-Weierstrass Theorem for R, it possesses

a further subsequence x2
nk`

that is convergent. Note that x1
nk`

is a subsequence of the convergent
subsequence x1

nk
, so it is also convergent. Now we proceed to select a further convergent subsub-

subsequence that makes x3
nk`s

converge, and so forth. The notation becomes ridiculous, but in the
end (after m steps) we produce a single set of indices 1 ≤ `1 < `2 < · · · such that all of the
components (x1

`n
, x2

`n
, . . . , xm`n) converge as n→∞. We now follow the proof of Proposition 3.13

exactly to see that convergence in Rm is equivalent to convergence of each component separately,
and so we conclude that the subsequence (x`n) converges to some element x ∈ Rm. Finally, note
that x`n ∈ K by assumption, and K is closed; thus the point x is also in K. This shows that
every sequence in K has a convergent subsequence with limit in K, concluding the proof that K
is compact. �
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4. Lecture 17: February 29, 2016

So, closed intervals [a, b] are compact (as we already knew), as are sets like [0, 1] ∪ [2, 3] ∪
{4, 5, 6, 7, 8}. In fact, there are much more complicated closed and bounded sets in R (e.g. the
Cantor set of Example 5.34 below). Let’s emphasize that the Heine–Borel Theorem is exclusively
about the metric spaces Rd; it does not apply in general.

EXAMPLE 5.32. (1) Let (X, d) be a discrete metric space. Then for any two points x, y ∈
X , either d(x, y) = 0 or d(x, y) = 1. Thus, for any subset E ⊆ X , diam(E) ≤ 1, so E
is bounded. We have also shown that any subset E is closed. However, if E is an infinite
set, it is not compact, cf. Example 5.23(3). So any infinite discrete metric spaces contains
closed and bounded sets that are not compact.

(2) For a less contrived example, consider again B[0, 1], the set of all bounded, real-valued
functions on [0, 1], which is a metric space with respect to the metric

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)|.

Consider the functions

fn(x) =

{
1, x ≥ 1

n

0, x < 1
n

.

All of these functions are in B[0, 1]. We can also compute the function fn−fm; assuming
m > n we have

fm(x)− fn(x) =


0, x ≥ 1

n

1, 1
m
≤ x < 1

n
,

0, x < 1
m

.

This shows that d(fn, fm) = supx |fn(x) − fm(x)| = 1 for any m 6= n! Thus, the
sequence (fn) cannot have a convergent subsequence: no two terms in the sequence are
ever closer to (or farther from) each other than 1.

Here is an important property of compact sets. This is the generalization of the nested intervals
property that we used in the construction of R.

PROPOSITION 5.33. Let K1, K2, K3, . . . be nonempty compact sets in a metric space, and
suppose they are nested: Kn+1 ⊆ Kn for all n. Then

⋂
nKn is a nonempty compact set. If, in

addition, diam(Kn)→ 0 as n→∞, then
⋂
nKn consists of exactly one point.

PROOF. Since Kn 6= ∅ for any n, we can choose a point xn ∈ Kn for each n. By the nested
property, xn ∈ K1 for each n. Thus, (xn) is a sequence in the compact set K1, and therefore it
has a convergent subsequence xnk with a limit x ∈ K1. Now, for any m ∈ N, the tail subsequence
(xnk)

∞
k=m also converges to x; but this is a sequence of terms in Knm , which is closed, and so

x ∈ Knm . This holds for every m. Finally, for any n, there is nm > n, and therefore Knm ⊆ Kn;
thus, x ∈ Kn for every n, which shows that x ∈

⋂
nKn. This intersection is therefore nonempty.

It is an intersection of compact sets, therefore it is compact (Exercise 1 on HW9).
For the second claim, let x, y ∈

⋂
nKn. Fix ε > 0; since diam(Kn)→ 0, there is some n with

diam(Kn) < ε. Thus, since x, y ∈ Kn, d(x, y) ≤ diam(Kn) < ε. So 0 ≤ d(x, y) < ε for all ε > 0;
it follows that d(x, y) = 0 and so x = y. That is: there is at most one point in the intersection.
As we’ve shown the intersection is nonempty, this proves that it consists of exactly one point, as
claimed. �
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EXAMPLE 5.34 (Cantor set). The unit interval K0 = [0, 1] is compact. Now remove the
“middle third” and let K1 = [0, 1

3
]∪ [2

3
, 1]; this set is also compact, and K1 ⊂ K0. Now repeat this:

remove the middle third from each of the two intervals in K1, producing K2 = [0, 1
9
] ∪ [2

9
, 1

3
] ∪

[2
3
, 7

9
] ∪ [8

9
, 1]. Again, this set is compact, and K2 ⊂ K1. We can repeat this “delete middle thirds”

process indefinitely. Note a certain self-similarity: K2 has two pieces, each of which looks like K1

shrunk down by a factor of 1
3
. In fact, we can inductively define

Kn =
1

3
Kn−1 ∪

(
2

3
+

1

2
Kn−1

)
.

All of these sets are finite collections of closed, bounded intervals, so they are all compact, and they
are nested Kn+1 ⊂ Kn. Hence, by Proposition 5.33, the set C =

⋂
nKn is a nonempty compact

set. This set is called the Cantor set.
What can we say about this set? Well, what is the length of the longest interval in it? Note that

Kn consists of 2n intervals, each of length 1
3n

. Since the length of the intersection of two intervals
is≤ the length of either interval, and since C ⊂ Kn for every n, this means C contains no intervals
of length > 1

3n
for any n ∈ N; but 1

3n
→ 0 as n → ∞, and therefore C contains no intervals of

length > 0. This proves that
◦
C = ∅. Indeed, if x were an interior point of C, that would mean

Br(x) ⊆ C for some r > 0; but Br(x) = (x− r, x + r) is an interval of length 2r > 0, which we
know is not contained in C. Thus no point is interior to C. At the same time, C is compact, so it

is closed. Thus C = C, and so ∂C = C \
◦
C = C – the Cantor set is its own boundary.

That also happens for discrete sets: if K consists entirely of isolated points, then K is closed

and
◦
K = ∅, so ∂K = K. But the Cantor set is the opposite of a discrete set: it contains no isolated

points, so C consists entirely of limit points, C ′ = C. To see this, fix x ∈ C; so x ∈ Kn for every
n. Now Kn is a collection of disjoint closed intervals, so there is some interval In ⊂ Kn with
x ∈ In. Either x is in the interior of this interval or it is one of the endpoints; either way, there
is one endpoint xn of In with xn 6= x. Now, from the construction of C, the endpoints of all the
intervals are in C, so xn ∈ C. Also, as diam(In) = 1

3n
→ 0 and x, xn ∈ In, we have d(x, xn)→ 0.

This xn → x, but xn 6= x for any n, and xn ∈ C; this proves that x ∈ C ′. Since x was an arbitrary
element of C, this means C ⊆ C ′, and since C is closed, we have C ′ ⊆ C, so C = C ′.





CHAPTER 6

Limits and Continuity

1. Lecture 18: March 3, 2016

We now begin to study functions. We have, of course, been studying functions (for example
sequences, which are functions with domain N); now we will concentrate on metric properties of
functions. So we will set things up in terms of functions between metric spaces.

DEFINITION 6.1. Let X and Y be metric spaces. Let E ⊆ X , and let x0 ∈ E ′ be a limit point
of E. Let L ∈ Y . Now, for any function f : E → Y , we say f(x) tends to L as x → x0, or the
limit as x→ x0 of f(x) is L, in symbols

lim
x→x0

f(x) = L

if: given any sequence (xn) in E \ {x0} that converges xn → x0, it follows that the sequence
(f(xn)) in Y converges f(xn)→ L.

This is a more general kind of limit than the limit of a sequence: we are letting the argument
“tend to” a limit point through a set that may be quite different from N. Our definition makes use
of our knowledge of limits of sequences. This is useful, for example, in establishing some of the
basic properties of limits. For example:

LEMMA 6.2. Limits are unique: if limx→x0 f(x) = L1 and limx→x0 f(x) = L2, then L1 = L2.

PROOF. Since x0 is a limit point, there is a sequence (xn) with xn 6= x0 for any n and xn → x0.
By definition of limx→x0 f(x) = L1, this means that the sequence f(xn) converges to L1; by
definition of limx→x0 f(x) = L2, this means that f(xn) converges to L2. Thus, by uniqueness of
limits of sequences, L1 = L2. �

REMARK 6.3. (1) If we had not included in the definition the fact that x0 is a limit
point, this argument would fail. Indeed, if x0 is an isolated point, vacuously it holds
that limx→x0 f(x) = L for all L.

(2) On the other hand, we might try to modify the definition of limit so that this wouldn’t
happen: we could, for example, insist that f(xn)→ L for any sequence xn that converges
to x0, even if it does hit x0 at some times. But this would rule out some of our intuition
about limits, as the following example shows.

EXAMPLE 6.4. Consider the function f : R→ R given by

f(x) =

{
0, x 6= 0

1, x = 0
.

We know from our calculus intuition that limx→0 f(x) = 0. Indeed, we can verify this from
Definition 6.1: if xn is any sequence in R \ {0}, then f(xn) = 0 for all n, and the constant
sequence 0 does indeed converge to 0.

67
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On the other hand, suppose we had left out the xn 6= x0 clause in Definition 6.1, and insisted
that f(xn) → L for every sequence xn → x0. In this scenario, the function above would have no
limit at 0. Indeed, we could take the sequence xn = 1

n
if n is even and xn = 0 if n is odd. Then

the sequence f(xn) = (0, 1, 0, 1, 0, 1, . . .) has no limit.

This illustrates the fundamental idea of limits: a limit is where a function is going as you
approach the limit point; it is unrelated to the actual value of the function at that point (if it is even
defined).

We can use our theory of limits of sequences to calculate many limits. For example, if the
range space for the function is the familiar C, we have the following echo of the limit theorems for
C-sequences:

THEOREM 6.5 (Limit Theorems). Let f, g : X → C, and let x0 be a limit point in X . If
limx→x0 f(x) = L and limx→x0 g(x) = M , then

lim
x→x0

[f(x) + g(x)] = L+M, and lim
x→x0

[f(x) · g(x)] = L ·M.

PROOF. Let (xn) be any sequence inX\{x0} that converges to x0. By assumption, f(xn)→ L
and g(xn) → M . Thus, by the limit theorems for sequences in C, cf. Theorem 2.27, f(xn) +
g(xn) → L + M and f(xn) · g(xn) → L · M . This is precisely what it means to say that
limx→x0 [f(x) + g(x)] = L+M and limx→x0 [f(x) · g(x)] = L ·M . �

There is an equivalent definition of limit which does not explicitly rely on sequences. This
definition is one of the crowning achievements of 19th Century mathematics. The calculus was
built on an intuitive understanding of limits in the minds of Newton and Liebnitz (and others),
but it wasn’t until Weierstrass came up with this modern definition that analysis of functions was
finally put on rigorous footing.

THEOREM 6.6. Let (X, dX) and (Y, dY ) be metric spaces, let E ⊆ X , let f : E → Y be a
function, let x0 ∈ E ′, and let L ∈ Y . Then limx→x0 f(x) = L if and only if the following holds
true:

∀ε > 0 ∃δ > 0 s.t. ∀x ∈ E, x ∈ Bδ(x0) \ {x0} =⇒ f(x) ∈ Bε(L).

I.e.
∀ε > 0 ∃δ > 0 s.t. ∀x ∈ E, 0 < dX(x, x0) < δ =⇒ dY (f(x), L) < ε. (6.1)

In words: to say f(x) tends to L as x tends to x0 means that, for any tolerance ε > 0, no matter
how small, there is some (potentially even smaller) tolerance δ > 0 so that, if x is δ-close to x0

(but not equal to x0), then f(x) is ε-close to L.

PROOF. First, suppose that (6.1) holds. Let xn ∈ E \{x0} be a sequence converging to x0. Fix
ε > 0, and let δ > 0 be the corresponding δ. Now, as xn → x0, there is some N ∈ N so that, for
n ≥ N , dX(xn, x0) < δ. It follows from (6.1) that dY (f(xn), L) < ε for all n ≥ N . This proves
that f(xn)→ L. Thus, we have shown that limx→x0 f(x) = L by definition.

Conversely, suppose (6.1) fails to hold. This means that there exists some ε > 0 so that, for all
δ > 0, there is some point xδ ∈ Bδ(x0) \ {x0} such that f(xδ) is not in Bε(L). In particular, do
this with δ = 1

n
: for each n ∈ N, choose some xn ∈ B 1

n
(x0) such that dY (f(xn), L) ≥ ε. On the

one hand, since 0 < dX(xn, x0) < 1
n
→ 0, we have xn → x0 but xn 6= x0. On the other hand,

since dY (f(xn), L) ≥ ε for all n, this means that the sequence f(xn) does not converge to L. By
definition, this means that the statement limx→x0 f(x) = L is false. �
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EXAMPLE 6.7. Let us work directly from the ε–δ definition of (6.1) to show that limx→2 x
2 = 4.

Here the domain and range metric spaces are both R. Fix ε > 0. We want to guarantee that
|x2− 4| < ε. Write this as |x− 2||x+ 2| < ε. We want to choose δ > 0 and force 0 < |x− 2| < δ,
meaning 2 − δ < x < 2 + δ. So, as long as we assure that δ ≤ 2, this means that 0 ≤ x ≤ 4, in
which case |x− 2||x+ 2| ≤ 6|x− 2|. Thus, it suffices to make sure that 6|x− 2| < ε, which is to
say |x− 2| < ε/6. This tells us how to choose δ.

So, starting fresh: Let ε > 0. Choose δ = ε/6 if this is < 2, or δ = 2 otherwise. Then, so long
as 0 < |x− 2| < δ, we have 0 ≤ 2− δ < x < 2 + δ ≤ 4, and so

|x2 − 4| = |x+ 2||x− 2| ≤ 6|x− 2| < 6 · ε
6

= ε.

Thus, by (6.1), we have proven that limx→2 x
2 = 4.

On the other hand, if we refer to Theorem 6.5, we see that this follows from the fact that
limx→2 x = 2 (which is easy to verify by either definition of limit) and therefore limx→2 x · x =
2 · 2 = 4. Similar considerations show that limx→x0 f(x) = f(x0) holds for any point x0 ∈ R (or
C) if f is a polynomial, for example.
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2. Lecture 19: March 8, 2016

In Example 6.7, what we showed is that the function f(x) = x2 satisfies limx→2 f(x) = f(2).
We should recognize this as saying that f is continuous at 2.

DEFINITION 6.8. Let X, Y be metric spaces, E ⊆ X , and f : E → Y . Let x0 ∈ E ′ be a limit
point. Say that f is continuous at x0 if

lim
x→x0

f(x) = f(x0).

Note that this only defines continuity at limit points: we have left undefined what it would mean for
f to be continuous at an isolated point of its domain of definition. Indeed, what should we mean
by saying that a function is continuous on the set N? This is, to some degree, up to debate. The
standard answer is to say this is a vacuous condition: every function is continuous on a discrete set.

Now, consider again Example 6.7. To use the definition of limit, we assumed that d(x, x0) =
|x − 2| > 0 (as limits are about where you’re going, not where you get to). However, observe
that this requirement was never used in the proof. That is generically true in limits of continuous
functions, as the next result demonstrates.

PROPOSITION 6.9. Let X, Y be metric spaces and f : X → Y . Let x0 ∈ X ′. Then f is
continuous at x0 if and only if for every sequence (xn) in X with limn→∞ xn = x0, it follows that
limn→∞ f(xn) = f(x0). Similarly, f is continuous at x0 if and only if

∀ε > 0 ∃δ > 0 s.t. ∀x ∈ E, dX(x, x0) < δ =⇒ dY (f(x), f(x0)) < ε.

That is: we need not assume that the sequence (xn) never hits x0; and we need not remove x0 from
the δ-ball in the ε–δ definition of the limit. In fact, with these assumption no longer required, there
is no reason to assume x0 ∈ X ′; this definition makes perfect sense for isolated points as well,
so we take it more generally as the definition of continuity. From this more general definition, it
follows that any function is continuous at an isolated point of its domain (as you should work out).

PROOF. Suppose that xn → x0 implies f(xn)→ f(x0) in general; then in particular this holds
if we also assume that xn 6= x0 for any n, which means that limx→x0 f(x) = f(x0) by definition.
Thus f is continuous at x0. Conversely (in contrapositive form), suppose there is some sequence
xn → x0 such that f(xn) 6→ f(x0). This means there is some ε > 0 so that d(f(xn), f(x0)) ≥ ε
for infinitely many n. So let n1, n2, n3, . . . be these infinitely many indices where, for each k,
d(f(xnk), f(x0)) ≥ ε; then (xnk)

∞
k=1 is a sequence in X that converges to x0 (as a subsequence of

a sequence xn which converge to x0), but f(xnk) 6→ f(x0) and, moreover, since f(xnk) 6= f(x0)
for any k, it follows that xnk 6= x0 for any k. This shows, from the definition, that it is false that
limx→x0 f(x) = f(x0), completing the proof of the first statement.

The proof of the equivalence of the ε–δ statement is similar and left to the reader. �

The point is: when the putative limit is the value of the function at the limit point, there is no
reason to exclude the limit point from consideration: where you are going and where you get to
are the same in this case!

EXAMPLE 6.10. Let (X, d) be a metric space, and let y ∈ X . Then the function f(x) = d(x, y)
is continuous at every point inX . Indeed, fix x ∈ X , and let (xn) be a sequence inX with xn → x.
Then

d(xn, y) ≤ d(xn, x) + d(x, y)
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and so d(xn, y)− d(x, y) ≤ d(xn, x). But also

d(x, y) ≤ d(x, xn) + d(xn, y)

and so d(x, y)− d(xn, y) ≤ d(x, xn) = d(xn, x). Together, these give

0 ≤ |d(xn, y)− d(x, y)| ≤ d(xn, x).

Since xn → x, d(xn, x)→ 0 by definition, and so by the squeeze theorem |d(xn, y)−d(x, y)| → 0,
meaning that f(xn) = d(xn, y)→ d(x, y) = f(x). This shows that f is continuous at x0.

We would be remiss if we did not include some examples of discontinuous functions.

EXAMPLE 6.11. Let f : R→ R be the function

f(x) =

{
0, x 6∈ Q
1, x ∈ Q

.

Then f (sometimes called Dirichlet’s function) is not continuous at any point. Indeed, fix x ∈ R.
For any δ > 0, the ball Bδ(x) = (x − δ, x + δ) contains both rational and irrational numbers. So,
if x ∈ Q, choose some y 6∈ Q in the ball, and we have |f(x) − f(y)| = |1 − 0| = 1; if x /∈ Q,
choose some y ∈ Q in the ball, and we have |f(x)− f(y)| = |0− 1| = 1. In any case, we see that
for any δ > 0 there are points y ∈ Bδ(x) so that |f(y)− f(x)| = 1, so we can never force f(y) to
be in, for example, B 1

2
(f(x)). This shows f is discontinuous at x, for any x.

EXAMPLE 6.12. Consider the following function f : [0, 1]→ [0, 1], sometimes called the pop-
corn function:

f(x) =

{
0, x /∈ Q
1
q
, x = p

q
in lowest terms

.

The graph of this function looks like this:

In fact, f is discontinuous at all rational points, but it is actually continuous at all irrational
points. Indeed, let x = p

q
be rational, and let xn = x +

√
2
n

for all n large enough that this
is in [0, 1]; then xn → x. Then xn /∈ Q meaning that f(xn) = 0; but f(x) = 1

q
6= 0, so

f(xn) 6→ f(x). On the other hand, let x /∈ Q; we want to show that f is continuous at x, meaning
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limy→x f(y) = f(x) = 0. Fix ε > 0, and choose some integer n ∈ N with 1
n
< ε. As f(x) ≥ 0 for

all x, it suffices to show that f(y) < 1
n

for all y sufficiently close to x. Well, if y is a point in [0, 1]

where f(y) ≥ 1
n

, then y ∈ Q and, when written in lowest terms, y = p
q

with q ≤ n. There are only
finitely many such rational numbers, and x (which is irrational) is not one of them. Thus, we can
define δ = min{|x− y| : y = p

q
in lowest terms, with q ≤ n}; then for |y − x| < δ, it follows that

f(y) < 1
n
< ε, proving that limy→x f(y) = 0, and so f is continuous at x.

In Examples 6.11 and 6.12, we looked at the set of points where a function is continuous. That
is: if f : X → Y is a function and E ⊆ X , say that f is continuous on E if, for each x ∈ E, f is
continuous at x.

EXAMPLE 6.13. Let X = (0, 1), and let f : (0, 1) → R be the function f(x) = 1
x
. Then f

is continuous on its whole domain: for every x ∈ (0, 1), f is continuous at x. We could see this
by applying the limit theorems; but let’s use this as an opportunity to practice our ε–δ proofs. Fix
ε > 0. We want to guarantee that, when y is close to x, we have | 1

x
− 1

y
| < ε. That is

1

x
− ε < 1

y
<

1

x
+ ε.

We only need this to hold for all sufficiently small ε > 0, so it’s fine to assume ε is small enough
that 1

x
− ε > 0. Thus we can reciprocate to get

1

1/x− ε
> y >

1

1/x+ ε
.

Now, subtract x from both sides and we have
−εx

1/x+ ε
=

1

1/x+ ε
− x < y − x < 1

1/x− ε
− x =

εx

1/x− ε
.

This shows us how to choose δ: we define

δ = min

{
εx

1/x+ ε
,

εx

1/x− ε

}
=

εx

1/x+ ε
. (6.2)

Then, reversing the above steps, we have that for any y ∈ Bδ(x), we have |y−x| < εx
1/x+ε

< εx
1/x−ε ,

and this gives in particular the above two inequalities that can be reversed to say | 1
x
− 1

y
| < ε. So

we have proved that there is a δ > 0 for any given ε > 0 (as long as ε < 1
x
; otherwise, if ε ≥ 1

x
≥ 1,

we could take δ to be something silly and big), proving continuity at x.
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3. Lecture 20: March 10, 2016

In Example 6.13, we showed explicitly that the function f(x) = 1
x

is continuous at every point
x ∈ (0, 1). But note: the δ we had to choose for each ε > 0 in (6.2) depends on x as well as ε. This
will generically be true. Look at the ε–δ definition of continuity: a function f is continuous on a
set E if

∀x ∈ E ∀ε > 0 ∃δ > 0 s.t. ∀y ∈ E, dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε. (6.3)

Having chosen a x and ε > 0, we must then find a suitable δ = δ(x, ε). In Example 6.13, not only
does δ depend on x, but it does so in a bad way: as x→ 0, for given ε > 0, the δ → 0 as well (quite
fast, in fact: the numerator is shrinking and the denominator is growing). The closer x is to 0, the
smaller δ must be to get the same control over the function. So, while the function is continuous,
there is a lack of uniformity in how continuous it is. (Note: we have shown this δ works; one might
ask whether a larger, possibly more uniform δ could work just as well. The answer is no: it is not
hard to show in this example that the δ in (6.2) is the largest possible δ for the given x and ε; it is
called the modulus of continuity of the function.)

DEFINITION 6.14. Let X, Y be metric spaces, E ⊆ X , and f : E → Y . Call f uniformly
continuous on E if

∀ε > 0 ∃δ > 0 s.t. ∀x, y ∈ E, dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε. (6.4)

Compare (6.4) with (6.3). The difference appears subtle: just the placement of the quantifier
∀x. This makes a world of difference: (6.4) says that, not only is f continuous at each point x, but
one can choose a δ = δ(ε) that is uniform: it need not depend on x. This outlaws behavior like
the function f(x) = 1

x
near 0.

EXAMPLE 6.15. Let f(x) = 2x on R. Then |f(x) − f(y)| = 2|x − y|, so for any ε > 0, we
may let δ = ε/2; then if |x − y| < δ = ε/2, it follows that |f(x) − f(y)| = 2|x − y| < 2δ = ε.
This shows that f is continuous at all points; moreover, we may choose δ = δ(ε) = ε/2 uniformly
over all x, y ∈ R. Thus, f is uniformly continuous on R.

EXAMPLE 6.16. Let f(x) = x2 on [0,∞). We want to make |x2 − y2| small. We have
|x2 − y2| = (x + y)|x − y|. Thus, in order for |x2 − y2| < ε, we must have |x − y| < ε

x+y
(these

are equivalent). But this shows that f is not uniformly continuous. Indeed, in order for |x− y| < δ
to imply that |x− y| < ε

x+y
, we must have δ ≤ ε

x+y
; and there is no positive number δ = δ(ε) that

is ≤ ε
x+y

for all x, y > 0.

In Examples 6.13 and 6.16, we saw continuous functions on the intervals (0, 1) and [0,∞)
that are not uniformly continuous. In both cases, the non-uniformity was manifest by uncontrolled
growth near the “edge”. As it turns out, if the domain of the continuous function is compact, this
cannot happen. That will be our final big theorem of this class.

THEOREM 6.17. Let X, Y be metric spaces, K ⊆ X compact, and f : K → Y a continuous
function. Then f is uniformly continuous.

PROOF. Suppose, for a contradiction, that f is not uniformly continuous on K. Negating
Definition 6.14, this means

∃ε > 0 ∀δ > 0 ∃x, y ∈ K s.t. dX(x, y) < δ, but dY (f(x), f(y)) ≥ ε.

That is: there is a positive number ε > 0 so that, for every positive number δ > 0, we can find
two points x and y that are within distance δ of each other, but such that f(x) and f(y) are at



74 6. LIMITS AND CONTINUITY

least ε apart. So, let’s do this with δ = 1
n

for any given positive integer: we can find xn, yn with
dX(xn, yn) < 1

n
, and yet dY (f(xn), f(yn)) ≥ ε.

Now, we use the compactness of the domain K: the sequence (xn) has a convergent subse-
quence (xnk) with a limit x ∈ K. Consider, now, the corresponding subsequence ynk ; this has
a convergent subsequence ynk` with a limit y ∈ K. Now, xnk` is a subsequence of xnk which
converges to x, hence xnk` → x as well. But we also have

dX(xnk` , ynk` ) <
1

nk`
<

1

`
→ 0.

Hence, it follows from the triangle inequality that x = y. On the other hand, by their very con-
struction, the points xnk` and ynk` all satisfy

dY (f(xnk` ), f(ynk` )) ≥ ε. (6.5)

But xnk` → x and so, since f is continuous, f(xnk` ) → f(x); similarly, ynk` → y = x, and so by
continuity f(ynk` )→ f(y) = f(x). Thus, by Problem 4 on Exam 2,

dY (f(xnk` ), f(ynk` ))→ dY (f(x), f(x)) = 0.

This contradicts (6.5). Thus, we have proven that f is, in fact, uniformly continuous. �

Theorem 6.17 is typically the best way to prove uniform continuity of a function. For example:
any polynomial is continuous on R, but, as we saw in Example 6.16, they need not be uniformly
continuous. By Theorem 6.17, polynomial functions on compact intervals [a, b] are automatically
uniformly continuous. What’s more: once you know a function is uniformly continuous on a set
K, it is then automatically uniformly continuous on any subset E ⊆ K (the same δ = δ(ε) that
works on all of K also works on all of E ⊆ K). So, for example, polynomials are uniformly
continuous on all bounded intervals (a, b), (a, b], etc. Similarly, the function f(x) = 1

x
of Example

6.13 is uniformly continuous on [α, 1] for any α > 0. We could see this directly from (6.2), since
the modulus of continuity

δ = δ(x, ε) =
εx

1/x+ ε

decreases as x decreases; it follows that the uniform δ = δ(α, ε) will work for all x ≥ α. However,
this gets smaller as α shrinks, and if we include all of (0, 1] in the domain, there is no uniform δ.
For an alternate proof of the non-uniformity in this example, see HW10.4.

Here is another very useful property of continuous functions on compact sets.

PROPOSITION 6.18. Let X, Y be metric spaces, K ⊆ X compact, and f : K → Y continuous
(hence uniformly continuous). Then the image f(K) ⊆ Y is compact.

To be clear: f(K) denotes the image of f on K:

f(K) = {f(x) ∈ Y : x ∈ K} = {y ∈ Y : ∃x ∈ K s.t. y = f(x)}.

PROOF. Let (yn) be any sequence in f(K). By definition of f(K), for each yn, there exists
some (or potentially many) xn ∈ K such that yn = f(xn). Since K is compact, it then follows that
the sequence (xn) has a convergent subsequence (xnk) with limit x ∈ K. Since f is continuous, it
then follows that f(xnk)→ f(x) as k →∞. Since x ∈ K, f(x) ∈ f(K). Thus, the subsequence
ynk = f(xnk) of yn = f(xn) converges in K. We have thus shown that every sequence in f(K)
has a convergent subsequence with limit in f(K); that is, f(K) is compact. �
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COROLLARY 6.19 (Extreme Values Theorem). Let K be a nonempty compact metric space,
and f : K → R. Then f attains its maximum and minimum values on K.

Corollary 6.19 is a standard result stated in calculus classes, usually in the special case that
K = [a, b] is a compact interval in R.

PROOF. By Proposition 6.18, f(K) is compact. In particular, it is closed and bounded. It is
also nonempty since K is nonempty (so f(K) contains f(x) for any x ∈ K). Thus, by the least
upper bound property of R, the set f(K) ⊂ R has a supremum M and and infimum m. Now, for
any n ∈ N, M − 1

n
< M , which means that M − 1

n
is not an upper bound for f(K); thus, there is

some yn ∈ f(K) withM− 1
n
< yn ≤M Hence, by the Squeeze Theorem, yn →M . By definition

of f(K), there exists some xn ∈ K with yn = f(xn). Since K is compact, there is a convergent
subsequence (xnk) of (xn), with limit x ∈ K. Since f is continuous, ynk = f(xnk) → f(x).
But ynk is a subsequence of yn which converges to M ; thus f(x) = M . We have therefore
found a x ∈ K for which f(x) = M = sup f(K). That is: sup f(K) = max f(K), and the
maximum is achieved at the point x. A very similar argument shows there is a point x′ with
f(x′) = m = inf f(K), completing the proof. �
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CHAPTER 7

More on Continuity

1. Lecture 1: March 29, 2016

Presently, we return to the definition(s) of continuity, and consider more purely topological
characterizations. As such, we will not be dealing with continuity at a point, but instead continuity
on a set (or most of the time on the whole domain metric space), which simply means pointwise
continuity at each point in the domain. To begin, we note that continuity is well-behaved under
composition.

PROPOSITION 7.1. Let X, Y, Z be metric spaces, and suppose f : X → Y and g : Y → Z are
continuous functions. Then the composite function g ◦ f : X → Z is continuous.

PROOF 1. Here we see very clearly the power of the sequential definition of continuity (Def-
inition 6.8). Let x ∈ X , and let (xn) be a sequence that converges to x. Since f is continuous
on X , hence at x, it follows that f(xn) → f(x). Since (f(xn)) is a sequence in Y that converges
to f(x), and since g is continuous on Y , hence at f(x), it follows that g(f(xn)) → g(f(x)). But
g(f(xn)) = (g ◦ f)(xn), and g(f(x)) = (g ◦ f)(x). It follows that g ◦ f is continuous at (an
arbitrarily chosen) x ∈ X . �

PROOF 2. It is also possible to prove the proposition using the ε-δ definition of continuity
(Proposition 6.9). Fix x ∈ X and ε > 0. Since g is continuous on Y , hence at f(x), there is some
δ > 0 so that g(Bδ(f(x))) ⊆ Bε(g(f(x))). Now, since f is continuous on X , hence at x, there is
some δ′ > 0 so that f(Bδ′(x)) ⊆ Bδ(f(x)). Now, given two subsets A,B ⊆ Y with A ⊆ B, it
follows that g(A) ⊆ g(B) by definition. Thus

(g ◦ f)(Bδ′(x)) = g(f(Bδ′(x))) ⊆ g(Bδ(f(x))) ⊆ Bε(g(f(x))) = Bε((g ◦ f)(x)).

Thus, for each ε > 0 we can choose δ′ > 0 with (g ◦ f)(Bδ′(x)) ⊆ Bε((g ◦ f)(x)), which shows
g ◦ f is continuous at (an arbitrarily chosen) x. �

In Proof 2 above, we used a property of set mappings (that A ⊆ B =⇒ f(A) ⊆ f(B)). In
order to state and prove our next theorem, we need a more thorough understanding of the behavior
of set mapping; the following discussion is purely set theoretic.

DEFINITION 7.2. Let X be a set. Denote by 2X the power set of X: the set of all subsets of
X . Let Y be another set, and suppose f : X → Y is a function. Then there is an induced function
(also denoted f ) from 2X to 2Y : for any subset A ⊆ X , f(A) = {f(x) : x ∈ A}. It also induces a
reverse map f−1 : 2Y → 2X: for B ⊆ Y , f−1(B) = {x ∈ X : f(x) ∈ B}.

Note: it is not necessary for f to be one-to-one in order for f−1 to exists as a set mapping: it
always exists. In fact, f−1 generally has better properties than f as a set mapping.

LEMMA 7.3. Let X and Y be sets, and f : X → Y .
(1) For any B ⊆ Y , f−1(Bc) = f−1(B)c.

79
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(2) For anyB1, B2 ⊆ Y , f−1(B1∪B2) = f−1(B1)∪f−1(B2), and f−1(B1∩B2) = f−1(B1)∩
f−1(B2).

(3) For any A1, A2 ⊆ X , f(A1 ∪ A2) = f(A1) ∪ f(A2), while in general f(A1 ∩ A2) ⊆
f(A1) ∩ f(A2).

PROOF. (1) An element x ∈ X is in f−1(B)c if and only if x /∈ f−1(B). By definition,
this is the same as saying that f(x) /∈ B, which is to say that f(x) ∈ Bc, or equivalently
x ∈ f−1(Bc), as desired.

(2) An element x ∈ X is in f−1(B1 ∪ B2) iff f(x) ∈ B1 ∪ B2. If f(x) ∈ B1 then x ∈
f−1(B1); if f(x) ∈ B2 then x ∈ f−1(B2); altogether, this means that f(x) ∈ B1 ∪ B2 iff
x ∈ f−1(B1) ∪ f−1(B2), as desired. The argument for intersections is similar.

(3) For the first statement, let y ∈ f(A1) ∪ f(A2). So either there is an x1 ∈ A1 with
f(x1) = y, or there is an x2 ∈ A2 with f(x2) = y. In either case, y ∈ f(A1 ∪ A2), as
desired. Conversely, if y ∈ f(A1 ∪ A2), then there is some x ∈ A1 ∪ A2 with y = f(x).
Then either x ∈ A1, in which case y = f(x) ∈ f(A1), or x ∈ A2, in which case
y = f(x) ∈ f(A2); thus y ∈ f(A1) ∪ f(A2), as desired.

For the second statement, let y ∈ f(A1 ∩ A2); so there is some x ∈ A1 ∩ A2 with
f(x) = y. Since x ∈ A1, it follows that y = f(x) ∈ f(A1); since x ∈ A2, it follows that
y = f(x) ∈ f(A2); thus y ∈ f(A1) ∩ f(A2), as desired.

�

REMARK 7.4. Nothing like item (1) holds for the forward set mapping in general. On the
one hand, if f is a bijection with inverse function g, then f(A) = g−1(A) (you should untwist
the definitions to check this), and so in this case the forward set mapping has all the same nice
properties as the inverse. On the other hand, suppose X has more than one element, and f is a
constant map f(x) = y0 for all x ∈ X . Then for anyA ⊆ X , f(Ac) = {y0}, while f(A)c = {y0}c,
so the two sets are not only not equal, they are complementary (meaning in general there are not
even any consistent inclusions of one into the other).

Similarly, the inclusion f(A1 ∩ A2) ⊆ f(A1) ∩ f(A2) is, in general, not an equality if f is not
a bijection. For example, take again a constant function f(x) = y0, defined on a set X containing
at least two distinct points x1 and x2. Then f({x1}) ∩ f({x2}) = {y0}, but {x1} ∩ {x2} = ∅, so
f({x1}∩{x2}) = ∅ ( {y0}. So, we see, in general the forward set mapping is not as well-behaved
as the inverse set mapping with respect to the Boolean operations; i.e. the inverse set mapping is
always a Boolean homomorphism.

The nice behavior of the inverse setting mapping helps to explain why it appears in the follow-
ing topological characterization of continuity, instead of the forward set mapping.

THEOREM 7.5. Let X and Y be metric spaces. A function f : X → Y is continuous if and
only if the preimage of any open set is open; i.e. for all open sets V ⊆ Y , f−1(U) is open in X .

PROOF. First, suppose f is continuous. Let V ⊆ Y be an open set, and let x ∈ f−1(V );
this means that f(x) ∈ V . Since V is open, there is some ε > 0 with Bε(f(x)) ⊆ V . Since
f is continuous, there is some δ > 0 with f(Bδ(x)) ⊆ Bε(f(x)) ⊆ V . But that means that
Bδ(x) ⊆ f−1(V ). Hence, every x ∈ f−1(V ) is an interior point of f−1(V ), and so f−1(V ) is
open.

Conversely, suppose we know that f−1(V ) is open for every open V ⊆ Y . Let x ∈ X and
fix ε > 0. By assumption, f−1(Bε(f(x))) is open. Since x is a point in this open preimage, that
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means there is some δ > 0 with Bδ(x) ⊆ f−1(Bε(f(x))). Hence f(Bδ(x)) ⊆ Bε(f(x)), which
shows that f is continuous at (an arbitrarily chosen) x ∈ X . �

REMARK 7.6. In the last step of the above proof, we essentially used the fact that f(f−1(B)) ⊆
B, which is left as an exercise for you to verify. The reverse containment f−1(f(A)) ⊇ A also
holds true in general; in both cases, the containments are generally not equalities.

The above proof is quite natural, and really shows that the ε-δ definition of continuity funda-
mentally says that preimages of open sets are open. However, combining Theorem 7.5 with Lemma
7.3(1) gives an alternate characterization which is less clear (and therefore more interesting).

COROLLARY 7.7. Let X and Y be metric spaces. A function f : X → Y is continuous if and
only if the preimage of any closed set is closed; i.e. for all closed sets C ⊆ Y , f−1(C) is closed in
X .

PROOF. By Theorem 7.5, it suffices to show the preimages of closed sets are closed if and only
if preimages of open sets are open. But this follows from 7.3(1) together with Proposition 5.15:
the complement of an open set is closed. Precisely: suppose the preimage of any open set is open.
Let C be a closed set in Y . Then Cc is open, and so f−1(Cc) is open. But f−1(Cc) = f−1(C)c,
and so f−1(C) is a set whose complement is open, meaning that it is closed. The converse is very
similar. �

EXAMPLE 7.8. Consider the metric space S = {eiθ : θ ∈ R} ⊂ C, the unit circle in the
complex plane. As a subset of C, it inherits the Euclidean C-metric. but this might not be the
most natural metric to use. For example, the distance between the points (1, 0) and (−1, 0) is 2 in
the C-metric; but if we are thinking of distance as the shortest path in the circle, then the distance
should be π. To try to define this intrinsic metric, we’d like to have a correspondence between eiθ

and θ. Of course, we cannot do this for all θ ∈ R, but we can restrict the allowed θ to be in [0, 2π),
and define

f(eiθ) = θ, 0 ≤ θ < 2π.

This is well-defined (by the polar decomposition: every nonzero complex number z has a unique
decomposition z = |z|eiθ for some θ ∈ [0, 2π)). But is this a continuous function S → R?
Naively, we might write f(u) = −i lnu and expect this means it is continuous. However, consider
the closed set [π, 10] ⊂ R; the preimage of this set is

f−1([π, 10]) = f−1([π, 2π)) = f−1([π, 2π) ∪ [2π, 10]) = f−1([π, 2π)) ∪ f−1([2π, 10]).

Since the image of f does not intersect [2π, 10], this second preimage is empty, and so f−1([π, 10]) =
{eiθ : π ≤ θ < 2π}, which is the bottom half of S, including the point (−1, 0) but not including the
point (1, 0). This set is not closed in S: the sequence e−πi/n lives in this bottom half, and converges
to (1, 0) as n→∞. Thus, f is not continuous.

REMARK 7.9. It is, indeed, possible to define a metric on S that represents this “length of
shortest path” intuition; but this example shows that one cannot draw a global correspondence
between S and an interval in R to make it work. Rather, one must work only locally. This is a topic
for a course in differentiable manifolds.

Example 7.8 illustrates a very interesting point. The function f in that example is a bijection;
let’s consider its inverse g : [0, 2π) → S, which is simply g(θ) = eiθ. This function is continuous
(although we will not prove this until we study sequences and series of functions, in the next
chapter). So it is possible for a continuous bijection to have an inverse that is not continuous.
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Indeed, in this example, g “glues together” the points 0 and 2π at the boundary of its domain, and
so its inverse must “rip them apart”, which is discontinuous.

This kind of pathology does not happen, however, if the domain of the bijection is compact.

THEOREM 7.10. Let X and Y be metric spaces, and suppose X is compact. If f : X → Y is
a continuous bijection, then f−1 : Y → X is continuous.

PROOF. To avoid confusing notation, denote the inverse function f−1 = g. Let C ⊆ X
be closed. The preimage g−1(C) is equal to the forward image f(C). Since X is compact and
C ⊆ X is closed, C is compact (cf. Proposition 5.27). Now, by Proposition 6.18, it follows that
f(C) is compact, and therefore closed (again by Proposition 5.27). Thus, g−1(C) is closed for
every closed C, and so by Corollary 7.7, g is continuous. �

A continuous bijection whose inverse is continuous is called a homeomorphism. The function
g(θ) = eiθ from [0, 2π) onto S is a continuous bijection, but it is not a homeomorphism. In
topology, homeomorphisms are the basic “isomorphisms”; they tell you when two structures are
topologically indistinguishable. The circle S and the half-open interval [0, 2π) are topologically
distinguishable (this is intuitively clear, but proving that there exists no homeomorphism between
them requires developing tools beyond the scope of this course).
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2. Lecture 2: March 31, 2016

Before proceeding with more discussion continuity, we return to a purely topological notion.

DEFINITION 7.11. Let X metric space X . Two subsets A and B in X care called is called
separated if A∩B = A∩B = ∅; that is, no point in A is in the closure of B, and no point in B is
in the closure of A. The metric space X is called connected if it is not the union of two nonempty
separated sets.

EXAMPLE 7.12. The two intervals (0, 1) and (2, 3) are separated in R; in fact, their closures
[0, 1] and [2, 3] are disjoint (which is nominally stronger than separation). Similarly, the two in-
tervals (0, 1) and (1, 2) are separated: [0, 1] does not intersect (1, 2), and (0, 1) does not intersect
[1, 2]. However, (0, 1) and [1, 2) are not separated: the closure [0, 1] does intersect [1, 2).

Two separated sets are, of course, disjoint, but as the example points out, disjointness is not suffi-
cient to imply separation.

In R, connected sets can be easily characterized; they are precisely the sets we’ve been most
concerned with: intervals.

PROPOSITION 7.13. A subset E ⊆ R is connected if and only if it is an interval: i.e. if and
only if it has the property that, for all x, y, z ∈ E, is x < z < y and x, y ∈ E, then z ∈ E.

More precisely, the property in Proposition 7.13 should be called the intermediate value prop-
erty (of subsets in an ordered set). It is equivalent to insisting that E is an interval (with one or
both endpoints included or not, or possibly infinite). Indeed, it is straightforward to see that inter-
vals have the intermediate value property. The converse is a case analysis. For example, suppose
E 6= ∅ has finite sup and inf. If supE = inf E then E consists of a single point which is an
interval. Otherwise, inf E < supE; let z be in between. Since z < supE, there exists some point
y ∈ E with z < y ≤ supE. Similarly, since z > inf E, there exists some point x ∈ E with
inf E ≤ x < z. Thus x < z < y, and by the intermediate value property, z ∈ E. This shows that
(inf E, supE) ⊆ E. Of course E contains no points bigger than supE or smaller than inf E; so
this shows E is one of the four intervals whose closure is (inf E, supE) (with neither, either one,
or both of the endpoints included). The argument is similar when one or both of the sup and inf
are infinite.

PROOF OF PROPOSITION 7.13. First, suppose that E does not have the intermediate value
property: there are points x < z < y with x, y ∈ E but z /∈ E. Define A = (−∞, z) ∩ E and
B = (z,∞) ∩ E; since z /∈ E, it follows that E = A ∪ B. Since x ∈ A and y ∈ B, both sets are
nonempty. Now, z is an upper bound for A, so supE ≤ z. This means that A ⊆ (−∞, z]; this
follows from the squeeze theorem: if an ∈ E and an → a then, since an < z for all n, a ≤ z.
Hence, since B ⊆ (z,∞), it follows that A ∩B = ∅. A similar argument shows that A ∩B = ∅.
Thus E = A ∪B with A and B nonempty and separated; thus E is not connected.

For the converse, suppose that E is not connected, and let E = A∪B with A and B nonempty
and separated. Choose x ∈ A and y ∈ B; we’ll assume x < y (if they’re reverse ordered, just
rename them). Set z = sup(A ∩ [x, y]). By Example 5.21, z ∈ A, and therefore z /∈ B (since A
and B are separated). Since y ∈ b, z 6= y. We now consider two cases.

• Suppose z /∈ A. Since x ∈ A, z 6= x. But z ∈ [x, y], therefore x < z < y. But z /∈ A and
z /∈ B, so z /∈ E = A ∪B. Therefore, E does not have the intermediate value property.
• Suppose z ∈ A. Since A and B are separated, z /∈ B, so z ∈ Bc

, which is an open set.
Thus there is some ε > 0 so that Bε(z) ⊆ B

c
, and so z′ = z + ε

2
is not in B, therefore not
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in B; therefore z′ 6= y. Also z′ > z which is an upper bound for A, so z′ /∈ A. Thus we
have x ≤ z < z′ < y, and z′ /∈ E = A ∪ B. Therefore E does not have the intermediate
value property.

�

Connectedness is a topological property: it is invariant under homeomorphisms. In fact, it is
invariant under any continuous map.

THEOREM 7.14. Let X and Y be metric spaces, and let f : X → Y be continuous. If E ⊆ X
is connected, then f(E) is connected.

PROOF. We argue the contrapositive: suppose that f(E) is not connected. That is, f(E) a
union of two nonempty separated sets: f(E) = A∪B where A,B 6= ∅ and A∩B = A∩B = ∅.
Then let G = E ∩ f−1(A) and H = F ∩ f−1(B). Since E ⊆ f−1(f(E)) = f−1(A ∪ B) =
f−1(A) ∪ f−1(B), it follows that E = G ∪ H . We will show that G and H are nonempty and
separated, and therefore E is not connected.

First, note that G and H are nonempty. Indeed, if G were empty, then f−1(A) would not
intersect E, so no element of E is mapped into A. Since f(E) = A ∪ B, this would mean that
f(E) = B, and since A ∩ B = ∅, that would imply A = ∅, contradicting the hypothesis. A
similar argument shows that H is nonempty.

Now, since A ⊆ A, G ⊆ f−1(A) ⊆ f−1(A). Since A is closed, f−1(A) is closed (this is the
only point in the proof where continuity is used!), and it follows that G ⊆ f−1(A), which is to
say that f(G) ⊆ A. On the other hand, using Lemma 7.3(3), we have f(H) = f(E ∩ f−1(B)) ⊆
f(E) ∩ f(f−1(B)) ⊆ (A ∪B) ∩B = B. Thus, applying Lemma 7.3(3) once more,

f(G ∩H) ⊆ f(G) ∩ f(H) ⊆ A ∩B = ∅.
SinceG∩H is a set in the domain of f , it follows thatG∩H = ∅. An entirely analogous argument
demonstrates that G ∩H = ∅.

Thus E is a union of two nonempty separated sets, and so E is not connected. �

Combining Theorem 7.14 with Proposition 7.13 (characterizing connected sets in R) yields
another big calculus theorem: the Intermediate Value Theorem.

COROLLARY 7.15 (Intermediate Value Theorem). Let a < b be in R f : [a, b]→ R be contin-
uous. For any y between f(a) and f(b), there exists and x ∈ [a, b] where f(x) = y.

PROOF. By Proposition 7.13, the interval [a, b] is connected. Thus, by Theorem 7.14, f([a, b])
is also connected. Note that f(a) and f(b) are two points in f([a, b]); hence, by Proposition 7.13,
if y is between f(a) and f(b), then y ∈ f([a, b]), which is precisely to say that there exists an
x ∈ [a, b] where f(x) = y. �
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3. Lecture 3: April 5, 2016

It is tempting to think that the Intermediate Value Theorem actually characterizes continuous
functions, but this is not so. To be precise: say that a function f : [a, b] → R has the intermediate
value property if, given any c, d with a < c < d < b, and any value y between f(c) and f(d), there
is a point x ∈ [c, d] with f(x) = y. Corollary 7.15 shows that any continuous function has the
intermediate value property; but there are discontinuous function that do as well (e.g. Example 7.18
below). To see how this can happen, we now turn to further discuss what kinds of discontinuities
functions can have, continuing the discussion from Examples 6.11 and 6.12.

EXAMPLE 7.16. A piecewise continuous function defined on an interval in R can have a “jump
discontinuity” (see Definition 7.20 below), where the two functions on the two pieces do not
“match up” at the transition point. For example, take f : [0, 2] → [0, 1] to be the functions de-
fined piecewise by f(x) = x for 0 ≤ x < 1 and f(x) = x − 1 for 1 ≤ x ≤ 2. Then f is not
continuous as x = 1: consider the two sequences xn = 1− 1

n
and yn = 1 + 1

n
, both of which con-

verge to 1. Then f(xn) = xn → 1 as n→∞, while f(yn) = yn − 1→ 0 as n→∞. It therefore
cannot be true that all sequences converging to 1 have images that converge to f(1), since these
two sequences, both converging to 1, have different image limits. (In this case f(yn)→ 0 = f(1);
we will see below that f is right-continuous.

Any function with a jump discontinuity will fail to have the intermediate value property as
well. In the above example, consider the interval [0.9, 1.1]. The image of f here is f([0.9, 1.1]) =
f([0.9, 1)) ∪ f([1, 1.1]) = [0.9, 1) ∪ [0, 0.1], which does not include any points in the interval
(0.1, 0.9). But f(0.9) = 0.9 and f(1.1) = 0.1. So in this extreme example, no point between
f(0.9) and f(1.1) is in the image of f on [0.9, 1.1].

EXAMPLE 7.17. If we don’t restrict ourselves to a one dimensional domain, there is plenty of
room for weirder discontinuities. For example, consider the function f : R2 → R defined by

f(x, y) =


xy

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

This is a rational function, whose denominator only vanishes at (0, 0); therefore, by the limit
theorems, f is continuous on R2 \ {(0, 0)}. But the function is not continuous at (0, 0). Consider
the two sequences an = (1/n, 1/n) and bn = (−1/n, 1/n). Both converge to (0, 0), but

f(an) =
1
n
· 1
n

( 1
n
)2 + ( 1

n
)2

=
1

2
, f(bn) =

− 1
n
· 1
n

(− 1
n
)2 + ( 1

n
)2

= −1

2
.

Hence, there is no limit, since these two sequences, both converging to (0, 0), have different image
limits. In fact, notice that for any m ∈ R, f is constant along the line y = mx: f(x,mx) =
x·mx

x2+(mx)2
= m

1+m2 . The range of the function m 7→ m
1+m2 is [−1

2
, 1

2
] (the endpoints are achieved at

m = ±1 as computed above; the function is continuous and so all values between±1
2

are achieved
by the Intermediate Value Theorem; and no other values are achieved since 0 ≤ (1 − m)2 =
1 +m2 − 2m, so 2m ≤ 1 +m2). The graph of the function can be thought of as a “spiral / helical
slide” wrapping around a vertical pole at the origin. While it is difficult to even state what an
“intermediate value property” should mean in the context of a two-dimensional domain, it is clear
that this function does not have a “jump” discontinuity: there are no gaps in the range of its values
near 0. Below is a rendering of the graph of f on [−1, 1]2; you should use software like Maple or
Mathematica to explore this function further.
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EXAMPLE 7.18. We can find examples of non-jump discontinuities for functions of a single
real variable, too. The classic example is f(x) = sin( 1

x
) for x 6= 0 and f(0) = 0 (or any value in

[−1, 1]). A rendering of the graph of f on [− 2
π
, 2
π
] can be found on the following page.

We have not formally introduced the sin function yet; if you want, you can replace it with
f(x) = ς( 1

x
) for any periodic continuous function ς : R → [−1, 1] with ς(0) = 0 to see a very

similar picture (e.g. ς(x) = x for −1 ≤ x ≤ 1 and ς(x) = 2 − x for 1 ≤ x ≤ 3, and then on
any interval of the form [4n − 1, 4n + 3] for n ∈ Z define f(x) = ς(x − 4n)). Since x 7→ 1

x
is

continuous on R \ {0}, and sin is continuous on R, f is continuous on R \ {0} by Proposition
7.1. However, f is not continuous at 0. For example, let xn = 1

2nπ+π/2
and yn = 1

2nπ+3π/2
. Then

xn → 0 and yn → 0, but f(xn) = sin(2nπ + π/2) = 1 and f(yn) = sin(2nπ + 3π/2) = −1, so f
does not have a limit at 0. (Both of these sequences approach 0 from within (0,∞), so f does not
have a “right limit” either.)

However, f does have the intermediate value property on any interval in R. Since f is continu-
ous on R\{0}, this is only interesting for intervals that include 0 in their interior, so let a < 0 < b.
Consider the point c = 1

1/b+2π
. Then c < b, and f(c) = sin(1/b+ 2π) = sin(1/b) = f(b). What’s

more, on the interval [1/b, 1/b+ 2π], the function sin achieves its full range of values, [−1, 1], and
so f([c, b]) = [−1, 1]. This shows that f([a, b]) ⊃ f([c, b]) = [−1, 1] as well. Since the range of
f is [−1, 1], any value y in between f(a) and f(b) is in [−1, 1] and therefore is also in f([a, b]).
Thus, f is a discontinuous function with the intermediate value property.

Let’s formalize the insights from the above examples into a characterization of different kinds
of discontinuities. First we formally define left and right limits.
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FIGURE 1. The graph of sin( 1
x
).

DEFINITION 7.19. Let a < b be in R, and let f : [a, b]→ R be a function. Let x0 ∈ (a, b). Say
that

lim
x→x0−

f(x) = L

if, for any sequence (xn) in [a, x0) with xn → x0, f(xn)→ L. For shorthand, we write f(x0−) =
L. Similarly, we say

lim
x→x0+

f(x) = R

if, for any sequence (yn) in (x0, b] with yn → x0, f(yn)→ R. For shorthand, we write f(x0+) =
R.

Equivalently: f(x0−) = Lmeans that the function f |[a,x0] has limit L as x→ x0, and f(x0+) = R

means that the function f |[x0,b] has limit R as x→ x0. You should verify that limx→x0 f(x) = L is
equivalent to f(x0−) = f(x0+) = L.

DEFINITION 7.20. Let a < b in R, and let x0 ∈ (a, b). A function f : [a, b]→ R is said to have
a jump discontinuity at x0 if f(x0−) and f(x0+) exists, but f(x0−) 6= f(x0+). In this case, we
say that f has a jump of size f(x0+)− f(x0−).

If f is discontinuous at x0, but does not have a jump discontinuity at x0, we say f has a
non-jump discontinuity at x0.

REMARK 7.21. Rudin uses the term “simple discontinuity” for jumps, and “discontinuity of
the second kind” for non-jump discontinuities. This terminology is silly, for two reasons. First,
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no working analyst has used that terminology in at least 60 years. Second, and more importantly,
the distinction between the two kinds of discontinuities is very much like dividing the world into
bananas and non-bananas; jump discontinuities are rare. Thus “jumps” vs. “non-jumps” is a more
accurate division.

REMARK 7.22. It is almost correct to characterize non-jump discontinuities as those where
either the left or the right limit does not exist. The one kind of exception to this is a kind of degen-
erate discontinuity, where limt→x0 f(t) exists, but is not equal to f(x0). (For example: f(t) = 0
for all t 6= x0, but f(x0) = 1.) Such a discontinuity does not count as a jump discontinuity by
the above definition, and indeed it should not: the function is not jumping anywhere. (This is an
important distinction, for example in the theory of paths of stochastic processes.) But it is also
quite a bit milder than the discontinuity of Example 7.18. Such examples are called removable
discontinuities. So non-jump discontinuities are partitioned into removable ones, and the truly bad
ones, which we might call oscillatory discontinuities.

In example 7.16, the function has a jump discontinuity of size −1 at 0. In example 7.18, the
function has a non-jump discontinuity at 0. In Example 6.11 (Dirichlet’s function, the indicator
function of the rationals), every point is a non-jump discontinuity.

There is one important class of functions (which we will use extensively later in this course,
when we study integration theory) in which only jump discontinuities can occur.

DEFINITION 7.23. Let a < b in R. a function f : [a, b]→ R is said to be monotone increasing
or nondecreasing if, for all x < y in [a, b], f(x) ≤ f(y); it is said to be monotone decreasing
or nonincreasing if, for all x < y in [a, b], f(x) ≥ f(y). If f is either monotone increasing or
monotone decreasing, f is called monotone.

The functions in Examples 6.11, 6.12, and 7.18 are not monotone; all of them oscillate wildly.
In all cases, the discontinuities were not jump discontinuities. Example 7.16 is also not monotone,
but it is milder (just one oscillation), and its discontinuity is a jump discontinuity. In general,
monotone functions can be discontinuous (e.g. like Example 7.16, but with a positive jump: f(x) =
x for 0 ≤ x < 1 and f(x) = x+ 1 for 1 ≤ x ≤ 2), but that’s as bad as they get.

PROPOSITION 7.24. Let a < b in R, and let f : (a, b) → R be a monotone function. Then
f(x−) and f(x+) exists for each x ∈ (a, b); thus, all discontinuities of f are jump discontinuities.
If f is monotone increasing, then for all x ∈ (a, b),

sup
a<t<x

f(t) = f(x−) ≤ f(x) ≤ f(x+) = inf
x<t<b

f(t). (7.1)

Also f(x+) ≤ f(y−) whenever a < x < y < b. For monotone decreasing f , the inequalities (and
the sup and inf) are reversed.

PROOF. We assume f is monotone increasing; the proof for the monotone decreasing case is
analogous. But assumption, for any t < x, f(t) ≤ f(x). So the set {f(t) : a < t < x} is bounded
above by f(x), which shows that α = supa<t<x f(t) ≤ f(x). Fix ε > 0. Since α is the least upper
bound, there must exist some x′ ∈ (a, x) with α− ε < f(x′) ≤ α. Since f is monotone increasing,
if x′ < t < x, f(x′) ≤ f(t) ≤ α. Combining these last two inequalities yields

|f(t)− α| < ε, for x′ < t < x.

Hence, if tn ∈ (a, x) and tn → x, there is some N so that x′ < tn < x for n ≥ N , and so
|f(tn) − α| < ε for n ≥ N ; this shows that f(x−) = limt→x− f(t) = α, as claimed. The proof
that f(x) ≤ f(x+) = infx<t<b f(t) is very similar; thus we have proven (7.1) true.
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Now, if a < x < y < b, then since f(s) ≥ f(y) for all s > y, we have

f(x+) = inf
x<t<b

f(t) = inf
x<t<y

f(t).

Applying the left-hand-side of (7.1) to the interval (x, y) instead of (a, b) shows that

f(x+) = inf
x<t<y

f(t) ≤ sup
x<t<y

f(t) = f(y−)

which concludes the proof of the second inequality. The proofs for monotone decreasing functions
are analogous. �





CHAPTER 8

Differentiation of Functions of a Real Variable

1. Lecture 4: April 7, 2016

Almost everything that was discussed in Chapters 5, 6, and 7 applied quite generally to func-
tions / sequences in metric spaces. In this chapter, we will focus on concepts that are exclusive
to functions defined on (intervals in) R. Some of these concepts can be extended to more gen-
eral spaces, but not the level of generality we’ve seen so far: taking derivatives involves more
underlying structure than most metric spaces afford.

Let a < b in R, and suppose f : [a, b] → R is a function. For any x, y ∈ [a, b] with x 6= y, we
may define the difference quotient (DQf)(x, y) as follows:

(DQf)(x, y) ≡ f(x)− f(y)

x− y
.

EXAMPLE 8.1. If f(x) = x, then (DQf)(x, y) = x−y
x−y = 1 for all x 6= y. If f(x) = x2, we can

factor to find that

(DQf)(x, y) =
x2 − y2

x− y
=

(x− y)(x+ y)

x− y
= x+ y, x 6= y.

In general, for power functions f(x) = xk, since xk − yk = (x − y)(xk−1 + xk−2y + xk−3y2 +
· · ·+ xyk−2 + yk−1), we see that (DQf)(x, y) is a polynomial (of homogeneous degree k − 1) in
x and y. It is, a priori, only defined when x 6= y.

We will use the difference quotient DQf to define the derivative of f , by taking limits, as you
no doubt recall. Before we do so, it is instructive to note a few nice properties that the difference
quotient has. (Note that every function has a difference quotient.)

LEMMA 8.2. Let a < b in R, and let f, g : [a, b]→ R be functions. For any x 6= y in [a, b], we
have the following.

(1) DQ(f + g)(x, y) = DQf(x, y) +DQg(x, y).
(2) DQ(fg)(x, y) = f(x)DQg(x, y) +DQf(x, y)g(y).
(3) If g(x) 6= 0 for x ∈ [a, b], then DQ(1

g
)(x, y) = − 1

g(x)g(y)
DQg(x, y).

PROOF. (1) is an immediate consequence of the distributive properties of addition and multi-
plication, and is left to the reader. For (2), we calculate as follows:

f(x)g(x)− f(y)g(y) = f(x)g(x)− f(x)g(y) + f(x)g(y)− f(y)g(y)

= f(x)(g(x)− g(y)) + (f(x)− f(y))g(x).

Dividing through by x− y yields the result. For (3), we compute

DQ

(
1

g

)
(x, y) =

1
g(x)
− 1

g(y)

x− y
=

g(y)− g(x)

g(x)g(y)(x− y)
= − 1

g(x)g(y)
DQg(x, y).

�
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REMARK 8.3. Since fg = gf , (2) implies that we also haveDQ(fg)(x, y) = f(y)DQg(x, y)+
g(x)DQf(x, y). One can see this as well in the proof of (2), by introducing the opposite cross
terms −f(y)g(x) + f(y)g(x).

You should recognize the statements of Lemma 8.2 as versions the usual rules of differentiation;
e.g. (2) is the product rule. It is illuminating to note that these are simply algebraic rules that hold
for difference quotients, having nothing to do with the limits involved in taking derivatives. In
that vain, we can also prove a difference quotient version of the chain rule; this is particularly
instructive, since it highlights a technical difficulty we will have to overcome in proving the chain
rule for derivatives.

LEMMA 8.4. Let a < b in R, and let g : [a, b] → R be a function. Suppose f is a real valued
function defined on the range of g; then f ◦ g : [a, b] → R is a function. If x 6= y in [a, b], and if
g(x) 6= g(y), then

DQ(f ◦ g)(x, y) = DQf(g(x), g(y)) ·DQf(x, y).

PROOF. Since g(x) 6= g(y), we can multiply and divide through by it, to see that

DQ(f ◦ g)(x, y) =
f ◦ g(x)− f ◦ g(y)

x− y
=
f(g(x))− f(g(y))

g(x)− g(y)

g(x)− g(y)

x− y
and, by the definition of DQ, this gives the desired result. �

It is possible that g(x) = g(y), even if x 6= y; in this case, DQf(g(x), g(y)) is not defined, since
DQf(u, v) is only defined when u 6= v. Of course, we would like to define it even on the diagonal
u = v by taking the limit as v → u; we will presently do this to define the derivative. But the
reader should be wary of the above proof: it is possible that g(x) = g(y) for x and y arbitrarily
close to each other, in which case it will take some care to make sense of the limit; we will do this
below in Proposition 8.12.

We now come to the definition of the derivative.

DEFINITION 8.5. Let a < b in R, and let f : [a, b]→ R. For any point x ∈ [a, b], say that f is
differentiable at x if the limit limt→xDQf(x, t) exists; in this case, we call this limit the derivative
of f at x, and denote it

f ′(x) =
df

dx
≡ lim

t→x

f(x)− f(t)

x− t
.

REMARK 8.6. Some authors insist that x ∈ (a, b) for this definition. As stated above, we
highlight the fact that differentiability (like continuity) depends on the domain of the function. At
x = a, the above limit is actually a right limit limt→x+ DQf(x, t), and we might call f ′(a) (if it
exists) the right derivative of f at a. If f is actually defined on a larger interval including a in its
interior, then it is possible that f is not differentiable at a, even if it is right differentiable there.
Similar comments apply to left differentiability at b.

Differentiability is a regularity property of a function at a point. It is stronger than continuity.

PROPOSITION 8.7. Let a < b in R, and let f : [a, b] → R. If x ∈ [a, b] and f is differentiable
at x, then f is continuous at x.

PROOF. Let (xn) be a sequence in [a, b] \ {x} with xn → x. Then we can multiply and divide
by xn − x, and so

f(x)− f(xn) =
f(x)− f(xn)

x− xn
(x− xn) = DQf(x, xn)(x− xn).
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By assumption, f ′(x) exists, which means that limn→∞DQf(x, xn) = f ′(x). We also have
limn→∞(x− xn) = 0. Thus, by the limit theorems,

lim
n→∞

[f(xn)− f(x)] = lim
n→∞

DQf(x, xn) · lim
n→∞

(x− xn) = f ′(x) · 0 = 0.

This shows limn→∞ f(xn) = f(x), for any such sequence. By definition, this means limt→x f(t) =
f(x), which is the definition of continuity of f at x. �

REMARK 8.8. In the case x = a, differentiability (which really means right differentiability)
only implies right continuity; similarly differentiability at x = b (which really means left differen-
tiability) only implies left continuity.

The converse of Proposition 8.7 is very false.

EXAMPLE 8.9. Consider the function f(x) = |x| defined on R. This function is continuous on
R, and in particular at 0: if xn → 0 then |xn| → 0. Now, for x 6= 0, DQf(0, t) = 0−|t|

0−t = |t|
t

. This
is either +1 if t > 0 or −1 if t < 0. So take, for example, the sequence tn = (−1)n

n
, which tends

to 0. The sequence DQf(0, tn) = (−1)n does not converge as n → ∞. This means that the limit
f ′(0) does not exist, so f is not differentiable at 0.

REMARK 8.10. In Example 8.9, the function f fails to be differentiable only at a single point.
It was long thought (by Newton and others prior to the 19th Century) that non-differentiable points
of continuous functions were all of this nature: that continuous functions would have to be differ-
entiable except at a discrete set of points. This is extremely far from true. Later on, we will see
examples of functions that are continuous everywhere on R, but differentiable nowhere. In a sense,
such functions are the most important, to the modern theory of analysis and probability.

Let us now state the well-known differentiation rules that follow from Lemma 8.2.

PROPOSITION 8.11. Let a < b in R, and let f, g : [a, b] → R. Suppose f and g are differen-
tiable at a point x ∈ [a, b]. The following hold true.

(1) f + g is differentiable at x, and (f + g)′(x) = f ′(x) + g′(x).
(2) fg is differentiable at x, and (fg)′(x) = f ′(x)g(x) + f(x)g′(x).
(3) If g(x) 6= 0, then 1

g
is differentiable at x, and (1

g
)′(x) = − g′(x)

g(x)2
.

PROOF. (1) follow immediately from Lemma 8.2(1), using the limit theorem (a limit of a sum
is the sum of the limits). For (2), using Lemma 8.2(2), we have

(fg)′(x) = lim
t→x

DQ(fg)(x, t) = lim
t→x

[f(x)DQg(x, t) +DQf(x, t)g(t)]

= f(x) lim
t→x

DQg(x, t) + lim
t→x

DQf(x, t) · lim
t→x

g(t)

The limits of the difference quotients are, by definition, f ′(x) and g′(x). By Proposition 8.7, g is
continuous at x, and therefore limt→x g(t) = g(x), yielding the desired formula. For (3), we note
(again by Proposition 8.7) that g is continuous at x. Since g(x) 6= 0, it follows that, for some ¿.0,
g(t) 6= 0 for all t ∈ (x − δ, x + δ) ∩ [a, b]; indeed, from the ε-δ definition of continuity at x, this
follows by taking any ε < |g(x)|. Restricting to this neighborhood of x, the function 1

g
is well

defined, and we may apply Lemma 8.2(3) and the limit theorems to find that(
1

g

)′
(x) = lim

t→0
DQg(x, t) = lim

t→0

(
− 1

g(x)g(t)
DQg(x, t)

)
= − 1

g(x)
· lim
t→x

1

g(t)
· lim
t→x

DQg(x, t).
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Since g is continuous and nonvanishing on a neighborhood of x, 1
g

is continuous at x, and the first
limit is 1

g(x)
; the second limit is g′(x) by definition. This concludes the proof. �

Part (3) above is a special case of the so-called quotient rule, which states that(
f

g

)′
(x) =

f ′(x)g(x)− f(x)g′(x)

g(x)2

under the conditions stated above. This follows immediately by combining (2) and (3), noting that
f
g

= f · 1
g
; the details are left to the reader.

We now come to the chain rule.

PROPOSITION 8.12. Let a < b in R, and let g : [a, b] → R. Suppose x ∈ [a, b] and g is
differentiable at x. Let f be defined on the range of g, and in particular on a neighborhood of g(x),
and suppose that f is differentiable at g(x). Then f ◦ g is differentiable at x, and (f ◦ g)′(x) =
f ′(g(x)) · g′(x).

As mentioned above, the proof is technically more challenging than might at first seem nec-
essary. The straightforward approach would be to take the statement of Lemma 8.4 and apply the
limit theorems to derive the stated formula:

lim
t→x

DQ(f ◦ g)(x, t) = lim
t→x

DQf(g(x), g(t)) · lim
t→x

Dg(x, t) = lim
t→x

DQf(g(x), g(t)) · g′(x)

For the first limit, we would like to say that since g is continuous at x, g(t) → g(x) as t → x,
and so this limit is the same as lims→g(x) Df(g(x), s) = f ′(g(x)). The problem with this is that
the quantity Df(g(x), g(t)) is only well-defined if g(x) 6= g(t), and it is perfectly possible for g
to have the property that g(t) = g(x) for many ts, arbitrarily close to x (e.g. g could be constant
near x; or, technically worse, g could oscillate fast near x). Therefore, limt→xDQf(g(x), g(t))
may not be defined since, for limt→x u(t) to make sense, u must be defined on (x− δ, x+ δ) \ {x}
(intersected with [a, b]). Therefore, we must be much more careful in proving the chain rule.

PROOF. By definition, limt→xDQg(x, t) = g′(x); so if we set ux(t) = DQg(x, t)− g′(x), we
have ux(t) → 0 as t → x. Similarly, setting y = g(x), we have lims→yDQf(y, s) = f ′(y); so if
we set vy(s) = DQf(y, s) − f ′(s), we have vy(s) → 0 as s → y. Now, unraveling the definition
of the difference quotient, we have

g(x)− g(t) = (x− t)DQg(x, t) = (x− t)[g′(x) + ux(t)]

f(y)− f(s) = (y − s)DQf(y, s) = (y − s)[f ′(y) + vy(s)].

Here t is in a neighborhood of x (where g is defined) and s is in a neighborhood of y (where f is
defined). Composing, we have f ◦ g(x)− f ◦ g(t) = f(y)− f(g(t)). Since g is continuous, when t
is in a small enough neighborhood of x, s = g(t) is in the given neighborhood of y = g(x), and so

f ◦ g(x)− f ◦ g(t) = f(y)− f(s) = (y − s)[f ′(y) + vy(s)]

= (g(x)− g(t))[f ′(y)− vy(s)]
= (x− t)[g′(x) + ux(t)][f

′(y) + vy(s)]

For all t 6= x, we can then divide through by x− t and we see that

DQ(f ◦ g)(x, t) = [g′(x) + ux(t)][f
′(y) + vy(s)] = [g′(x) + ux(t)][f

′(y) + vy(g(t))].

As t → x, ux(t) → 0. Also, g is continuous at x, so as t → x, g(t) → g(x) = y, and so
vy(g(t)) → 0. It now follows from the limit theorems that limt→xDQ(f ◦ g)(x, t) = [g′(x) +
0][f ′(y) + 0] = g′(x)f ′(g(x)), as desired. �
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2. Lecture 5: April 12, 2016

As you’ll recall from calculus, one of the main applications of derivatives is in the study of
extrema.

DEFINITION 8.13. Let X, Y be metric spaces, and let f : X → Y . A point x ∈ X is called a
local maximizer of f if there is a positive radius δ > 0 so that, for all t ∈ Bδ(x), f(t) ≤ f(x); in
this case the value f(x) is called a local maximum. Similarly, x is a local minimizer if there is a
δ > 0 so that, for all t ∈ Bδ(x), f(t) ≥ f(x); in this case the value f(x) is called local minimum.
The local maxima and minima of f are called its local extrema, and the points at which they occur
are local extremizers.

For a f : R→ R, local extrema of f can be determined by locating the points x where f ′(x) =
0.

THEOREM 8.14. Let a < b in R, and suppose f : (a, b) → R be a function. If f has a local
extremum at x ∈ (a, b), and if f ′(x) exists, then f ′(x) = 0.

PROOF. We will assume x is a local maximizer; the argument for a local minimizer is analo-
gous. By assumption, there is a δ > 0 such that a < x − δ < x + δ < b and f(x) ≥ f(t) for
all t ∈ (x − δ, x + δ). In particular, this means that if x − δ < t < x, then x − t > 0 while
f(x)− f(t) ≥ 0, and so DQf(x, t) ≥ 0 in this interval; likewise, if x < t < x+ δ, then x− t < 0
while f(x)− f(t) ≥ 0, so here DQf(x, t) ≤ 0. Thus, using the squeeze theorem, we have

lim
t→x−

DQf(x, t) ≤ 0 and lim
t→x+

DQf(x, t) ≥ 0.

By assumption f ′(x) = limt→xDQf(x, t) = limt→x−DQf(x, t) = limt→x+DQf(x, t); thus,
this common value is both ≥ 0 and ≤ 0. It follows that f ′(x) = 0, as claimed. �

As you’ll recall, points x where f ′(x) = 0 are called critical points. The content of Theorem
8.14 is that, if a function is known to be differentiable at all points in its domain, then its local
extrema all occur at critical points. This is one of the core tools in calculus, and we will use it in
many theoretical applications as well. In order for it to be useful, of course, we must know that
our function is differentiable not just at certain points but everywhere: for example, the function
f(x) = |x| attains is global minimum (which is its only local extemum) at the point x = 0, where
f is not differentiable. We will thus be most interested, for now, in functions that are differentiable
everywhere.

Like continuity, differentiability is a local property: we speak of differentiability of a function
at a point x in its domain (and this only depends on the behavior of f in an arbitrarily small
neighborhood of x). Also like continuity, we can then boost this to a global property, by talking
about f being differentiable on a set (i.e. differentiable at all points of a given set). In the case of
derivatives, this produces a new function.

DEFINITION 8.15. Let a < b in R, and let f : [a, b] → R be differentiable (at all points
of its domain). We let f ′ denote the new function f ′ : [a, b] → R whose value at x is f ′(x) =
limt→xDQf(x, t).

Here are two examples that show how f ′ can be poorly behaved (at points) even when f is quite
well behaved. Both examples take for granted the functions sin and cos, which are differentiable
on R and satisfy sin′ = cos and cos′ = − sin. We will formally develop these later this quarter.
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EXAMPLE 8.16. Define a function f : R→ R as follows:

f(x) =

{
x sin 1

x
x 6= 0

0 x = 0

First of all, note that f is continuous at all x 6= 0 since it is a composition of continuous functions
there; and at x = 0, note that | sin 1

x
| ≤ 1 for all x, so |f(x)| ≤ |x| → 0 = f(0) as x → 0. So

f is continuous on R. What’s more, using the rules of differentiation, we can compute that f is
differentiable at all points x 6= 0, and for such points

f ′(x) = sin
1

x
+ x cos

1

x
·
(
− 1

x2

)
= sin

1

x
− 1

x
cos

1

x
.

However, at 0, we have

DQf(0, t) =
0− f(t)

0− t
= sin

1

t
and this function has no limit as t → 0 (cf. Example 7.18). Thus, f ′(0) does not exist. Also,
the formula for f ′(x) for x 6= 0 involves terms like sin 1

x
and 1

x
cos 1

x
which are at least as badly

behaved as sin 1
x
. So there is no way to extend the function f ′ to be defined at 0 in such a way that

it will be continuous: f ′ has a non-jump discontinuity at 0.

FIGURE 1. The graph of x sin( 1
x
); the envelope is given by the lines y = ±x.

EXAMPLE 8.17. Now consider the following function:

g(x) =

{
x2 sin 1

x
x 6= 0

0 x = 0

An argument very similar to the one in Example 8.16 shows that g is continuous on R, and differ-
entiable everywhere except possibly at 0; here

g′(x) = 2x sin
1

x
− cos

1

x
.
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Now, looking at x = 0 specifically, we have

DQg(0, t) =
0− f(t)

0− t
=
t2 sin 1

t

t
= t sin

1

t
= f(t)→ 0 as t→ 0

where f is the function from Example 8.16, which is continuous at 0 as shown above. Thus, g
is actually differentiable on all of R, with f ′(0) = 0. But the formula for g′ at points other than
0 shows that g is not continuous on R: it has a non-jump discontinuity at 0. Ergo: it is possible
for a function to be continuous and differentiable everywhere, but for its derivative to have a (bad)
discontinuity somewhere.

FIGURE 2. The graph of x2 sin( 1
x
); the envelope is given by the curves y = ±x2.

If we want to use tools like Theorem 8.14, functions like the one in Example 8.16 are out;
functions like the one in Example 8.17, on the other hand, are eligible, despite the bad behavior of
the derivative as a function.

We now come to the most important theorem on all of calculus: the Mean Value Theorem.

THEOREM 8.18 (Mean Value Theorem). Let a < b in R, and let f : [a, b]→ R be a continuous
function. Suppose also that f is differentiable on (a, b). Then there is a point x ∈ (a, b) such that
f ′(x) = DQf(a, b); i.e.

f ′(x) =
f(b)− f(a)

b− a
.

Notice that we do not even need to assume that f is (one-sided) differentiable at the endpoints; it
need only be continuous there.

PROOF. Define a new function h(t) = (b− a)f(t)− t[f(b)− f(a)]. First, notice that

h(a) = (b− a)f(a)− a[f(b)− f(a)] = bf(a)− af(b),

h(b) = (b− a)f(b)− b[f(b)− f(a)] = bf(a)− af(b).
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So h(a) = h(b).
Now, by the differentiation rules, h is differentiable on (a, b) and h′(t) = (b−a)f ′(t)− [f(b)−

f(a)], and so our goal is to show that h′(x) = 0 for some x ∈ (a, b). First, consider the case that
h is constant: then h′(x) = 0 for all x ∈ (a, b), and we’re done. Otherwise, there is some point
t ∈ (a, b) such that h(t) 6= h(a) = h(b). Thus, either h(t) > h(a) or h(t) < h(a). For the moment,
we assume the former: there is some point t ∈ (a, b) where h(t) > h(a).

Since f is continuous on [a, b], so is h by the limit theorems. Since [a, b] is compact, by
the Extreme Values theorem, there is a point x ∈ [a, b] where h(x) = max{f(t) : t ∈ [a, b]}.
As h(a) = h(b) and this value is not the maximum (by assumption that h(t) > h(a) for some
t ∈ (a, b)), it follows that x ∈ (a, b). As h is differentiable in (a, b), by Theorem 8.14 it follows
that h′(x) = 0, and this shows the desired conclusion in this case.

For the case that we only know that h(t) < h(a) for some t ∈ (a, b), the argument is analogous,
using the minimum, rather than the maximum, of h. �

To demonstrate why we called the Mean Value Theorem the most important theorem in calcu-
lus, note the following corollary which encapsulates most of the material (on curve sketching, etc.)
which follows immediately from it.

COROLLARY 8.19. Let a < b in R, and let f : [a, b] → R be continuous and differentiable on
(a, b).

(1) If f ′ ≥ 0 then f is monotone increasing.
(2) If f ′ = 0 then f is constant.
(3) If f ′ ≤ 0 then f is monotone decreasing.

PROOF. All three parts of the proof follow from the fact that, for any x1, x2 ∈ [a, b], by the
Mean Value Theorem there is a point x ∈ (x1, x2) such that

f(x2)− f(x1) = (x2 − x1)f ′(x).

For example, in case (2) where f ′(x) = 0 for all x, this shows f(x2)− f(x1) = 0 for all x1, x2 ∈
[a, b], which is precisely to say that f is constant. The other two cases are similar. �

In addition to practical applications like curve sketching, the mean value theorem allows us
to see that, while derivative functions f ′ can be quite irregular (e.g. Example 8.17, there are con-
straints. While derivative functions need not be continuous, they always have the intermediate
value property.

PROPOSITION 8.20 (Darboux). Let a < b in R, and suppose f : (a, b) → R is differentiable.
Then f has the intermediate value property on (a, b): for any x1 < x2 in (a, b), if y be a real
number between f ′(x1) and f ′(x2), then there is a point x ∈ (x1, x2) such that f ′(x) = y.

PROOF. Without loss of generality, we suppose f ′(x1) < y < f ′(x2); the reverse ordering case
is very similar. Set g(t) = f(t)− yt. Since f is differentiable on (a, b), it is continuous on [x1, x2],
and so therefore is g. As [x1, x2] is compact, by the Extreme Values theorem, g attains its mimimum
value at some point x ∈ [x1, x2]. Now, g is also differentiable on (a, b), and g′(t) = f ′(t)− y. By
assumption, g′(x1) = f ′(x1)− y < 0 and g′(x2) = f ′(x2)− y > 0.

We claim that x1 < x < x2. To prove this, we just need to show that neither x1 nor x2 is a
minimizer for g. Indeed, consider x1: we have limt→x1 DQg(x1, t) = g′(x1) < 0; i.e.

lim
t→x1

g(t)− g(x1)

t− x1

< 0.



2. LECTURE 5: APRIL 12, 2016 99

It follows that, for all t sufficiently close to x1, DQg(x1, t) < 0. In particular, for t > x1 and
sufficiently small, multiplying through by the positive t− x1 yields g(t)− g(x1) < 0. This shows
that g(x1) is not the minimum of g on [x1, x2]. An analogous argument at x2, using the fact that
g′(x2) > 0, shows that x2 is not a minimizer for g. Thus, x ∈ (x1, x2) as claimed.

Thus, by the Mean Value Theorem (or in fact by Theorem 8.14, which is equivalent to it),
g′(x) = 0. This shows that 0 = g′(x) = f ′(x)− y, and so f ′(x) = y as claimed. �

REMARK 8.21. This theorem was proved by Darboux in the late 19th Century. Until that point,
it was widely believed that only continuous functions could have the intermediate value property.
But Darboux proved Proposition 8.20, and then gave examples (like Example 8.17 to show that
this is not the case.

COROLLARY 8.22. If f is differentiable, then f ′ cannot have any jump discontinuities.

PROOF. As mentioned just after Example 7.16, any function with a jump discontinuity must
fail to have the intermediate value property (in a neighborhood of the jump). �
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3. Lecture 6: April 14, 2016

As we saw in the previous lecture, a differentiable function f can have a derivative f ′ which is
not very regular. The function f ′ cannot be arbitrary (as Darboux’s theorem shows, f ′ must at least
have the intermediate value property), but f ′ certainly need not be continuous. In many circum-
stances, it is natural to assume that f ′ is continuous. For example, in many calculus applications,
we use the second derivative, meaning we actually assume that the function f ′ is differentiable
(ergo continuous).

DEFINITION 8.23. Let a < b in R, and let f : [a, b]→ R be differentiable. If f ′ is a continuous
function on [a, b], we say f is continuously differentiable, and write f ∈ C1[a, b]. More generally,
for a positive integer k, we say f ∈ Ck[a, b] if f (j) is continuous for 0 ≤ j ≤ k, where f (j) is
defined recursively by f (j) = (f (j−1))′, and f (0) = f .

Example 8.17 shows that a function f can be differentiable (on all of R, even) without being
C1. The difference is subtle but important. It is analogous to the difference between continuous
and uniformly continuous functions: continuity is a local property boosted to a global property
pointwise, while uniform continuity is a truly global property. Similarly, being differentiable is a
local property boosted to a global property pointwise, while being C1 is a truly global property.
(Warning: this is not a perfect analogy. It is, for example, not true that a differentiable function is
continuously differentiable on a compact interval.)

Recall our motivation for introducing differentiability. Continuity of f at a point x is the
statement that f(x + t) − f(x) tends to 0 as h → 0, but at what rate? If f is differentiable, the
answer is that there is a correction factor, the linear function h 7→ f ′(x)t, so that

f(x+ t)− f(x)− f ′(x)t = o(t) (8.1)

where the notation α(t) = β(t) + o(t) means that limt→0
α(t)−β(t)

t
= 0. Thus, differentiability

implies that, up to a linear correction, f(x + t) is closer to f(x) than any linear function: the
difference goes to 0 faster than t as t → 0. This leads us to ask what happens if there are higher
derivatives? Is the difference even smaller, modulo higher order corrections? The answer is yes,
which is the statement of Taylor’s theorem.

THEOREM 8.24. [Taylor’s Theorem] Let a < b in R, let k ∈ N, and let f : (a, b) → R be
Ck−1, such that f (k) exists (but need not be differentiable) on (a, b). Define the Taylor polynomial
T k−1
x f by

(T k−1
x f)(t) = f(x) + f ′(x)t+

1

2
f ′′(x)t2 + · · ·+ 1

(k − 1)!
f (k−1)(x)tk−1 =

k−1∑
j=0

f (j)(x)

j!
tj.

For each t such that x+ t ∈ (a, b), there exists a point ξ between x and x+ t such that

f(x+ t) = (T k−1
x f)(t) +

1

k!
f (k)(ξ)tk.

The theorem is often stated using the variable y = x + t as f(y) = (T k−1
x f)(y − x) +

1
k!
f (k)(ξ)(x − y)k for some point ξ between x and y. This is natural in the sense that the poly-

nomial y 7→ (T k−1
x f)(y − x) can be described as the unique degree k − 1 polynomial whose

derivatives of orders ≤ k − 1 at x match those of f . Note also that, in the special case k = 1, the
statement is just

f(y) = f(x) + f ′(ξ)(y − x) for some ξ between x and y
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which is exactly the statement of the Mean Value Theorem. We will see below that the proof of
Taylor’s theorem is just repeated application of Taylor’s theorem.

The last term involving f (k)(ξ) is called the k-remainder term, often written as (Rkf)(x, y), so
we have

f(y) =
k−1∑
j=0

f (j)(x)

j!
(y − x)j + (Rkf)(x, y).

This says that f is well-approximated by the Taylor polynomial T k−1
x f , so long as the remainder

termRkf(x, y) can be shown to be small. From the form of the remainder term in the theorem, this
amounts to having good control on the kth derivative f (k) (at arbitrary points, since all we know is
that ξ is between x and y). Indeed, we have

f(x+ t)− (T k−1
x f)(t)

tk
=

1

k!
f (k)(ξ)

and so, as long as we have good uniform control on f (k), this gives us the alluded-to generalization
of (8.1): if, for example, |f (k)(ξ)| ≤M for all ξ, then we’ll have

f(x+ t) = T k−1
x f(t) + o(tk).

PROOF OF THEOREM 8.24. For any t0 such that x+ t0 ∈ (a, b), define α0 by the equation

f(x+ t0) = (T k−1
x f)(t0) +

tk0
k!
α0.

Our goal is to show that α0 = f (k)(ξ) for some ξ between x and x + t0. Well, on the interval
between 0 and t0, consider the function

g(t) = (T k−1
x f)(t) +

tk

k!
α0 − f(x+ t), for t between 0 and t0.

As f and T k−1
x f are Ck−1 and have kth derivatives, the same holds true of g. By definition of

α0, g(t0) = 0. Also, (T k−1
x f)(0) = f(x) by definition, so g(0) = 0. Therefore, by the mean

value theorem there is a point t1 between 0 and t0 such that g′(t1) = g(t0)−g(0)
t0

= 0. But by
construction of Taylor polynomials, and the fact that d

dt
tkktk−1 = 0 at t = 0, we have g′(0) =

(T k−1
x f)′(0) − f ′(x) = 0, and so we can apply the Mean Value Theorem to g′ to find a point t2

between 0 and t1 where g′′(t2) = 0. We may continue this way finding t1, t2, t3, . . . , tk, with tj
between 0 and tj−1, such that g(j)(tj) = 0. At the last step, since T k−1

x f is a polynomial of degree
k − 1, its kth derivative is 0, and also dk

dtk
1
k!
tk = 1, so

0 = g(k)(tk) = (T k−1
x f)(k−1)(tk) + α0 − f (k)(x+ tk) = α0 − f (k)(x+ tk).

Setting ξ = x+ tk concludes the proof. �

Taylor’s theorem is one of the most ubiquitously useful results in analysis, and we will use it
frequently. As a first application, we now use it to understand another very powerful computational
tool: l’Hôpital’s rule. This deals with limits of the form

lim
y→x

f(y)

g(y)

where limy→x f(y) = limy→x g(y) = 0. (There are some other cases as well, which we will discuss
below.) To understand what happens to such a limit, let us suppose for the moment that f and g are
C2 in a neighborhood of x. These constraints are much stronger than required, as we’ll see in the
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proof below; but with these assumptions, we can use Taylor’s theorem to understand what happens.
Since f and g are continuous at x, we have f(x) = limy→x f(y) = 0 and g(x) = limy→x g(y) = 0.
We then have, for sufficiently small t,

f(x+ t) = f(x) + f ′(x)t+
1

2
f ′′(ξ)t2 = f ′(x)t+

1

2
f ′′(ξ)t2

g(x+ t) = g(x) + g′(x)t+
1

2
g′′(η)t2 = g′(x)t+

1

2
g′′(η)t2

for some ξ and η between x and x+ t. Thus

f(x+ t)

g(x+ t)
=
f ′(x) + 1

2
f ′′(ξ)t

g′(x) + 1
2
g′′(η)t

.

Since we assumed f, g ∈ C2, the functions f ′′ and g′′ are continuous. As t→ 0, since ξ and η are
between x and x + t, we see that ξ → x and η → x, and so f ′′(ξ) → f ′′(x) and g′′(ξ) → g′′(x).
By the limit theorems, then we see that if g′(x) 6= 0, then

lim
y→x

f(y)

g(y)
= lim

t→0

f(x+ t)

g(x+ t)
=
f ′(x)

g′(x)
.

This is the result of L’Hôpital’s rule: the limit of a ratio of functions that is indeterminate is equal
to the limit of ratio of derivatives (provided it is not indeterminate). If f ′(x) = g′(x) = 0, we
could then apply the same reasoning with higher derivatives (assuming the functions are C3, for
example) to get f

′′(x)
g′′(x)

, and so forth.
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4. Lecture 7: April 19, 2016

Having used Taylor’s theorem to explore why L’Hôpital’s rule makes sense (and prove it for
nice enough functions), we now go about proving that it holds much more generally: we do not
need the functions to be C2, or even C1, merely differentiable; and they need not be differentiable
at the point x, only in a (one-sided) neighborhood of x.

THEOREM 8.25 (L’Hôpital’s Rule). Let a < b in R, and let f, g : (a, b) → R be differentiable
functions, with g(x) 6= 0 and g′(x) 6= 0 for all x ∈ (a, b). Suppose that

lim
x→a+

f ′(x)

g′(x)
= L

exists in R. If limx→a+ f(x) = limx→a+ g(x) = 0, or if limx→a+ |g(x)| =∞, then

lim
x→a+

f(x)

g(x)
= L.

The analogous statement holds with limx→a+ replaced with limx→b−.

To prove L’Hôpital’s rule in this general form, we first need an extended version of the Mean
Value Theorem that deals with ratios of functions.

LEMMA 8.26 (Extended Mean Value Theorem). Let a < b in R, and let f, g : [a, b] → R be
continuous functions, such that f and g are differentiable on (a, b). Assume that g(a) 6= g(b). Then
there is a point x ∈ (a, b) where g′(x) 6= 0, and

f(b)− f(a)

g(b)− g(a)
=
f ′(x)

g′(x)
.

The requirement that g(b) 6= g(a) is simply so that that the ratio on the left makes sense; the lemma
can be stated more generally without this assumption, and without the conclusion that g′(x) 6= 0,
in the form [f(b) − f(a)]g′(x) = [g(b) − g(a)]f ′(x). It is tempting to try to prove the lemma by
applying the Mean Value Theorem to f and g separately, but this will only show that the ratio on
the left is equal to f ′(x)/g′(y) for two (not necessarily equal) points x, y. Instead, we just follow
the precise outline of the proof of the Mean Value Theorem 8.18.

PROOF. Define h(t) = [f(b)−f(a)]g(t)− [g(b)−g(a)]f(t). If h is constant, then its derivative
is 0, and the result is that the conclusion holds at every x. So assume h is not constant, and
wlog assume there is some point t ∈ (a, b) where h(t) > h(a). The function h is continuous
on the compact interval [a, b], so achieves its maximum at some point x in this closed interval;
because there is some t with h(t) > h(a), we know x 6= a. Also, a quick calculation shows that
h(b) = h(a) = f(b)g(a) − f(a)g(b), and so x 6= b either. Since h is differentiable in (a, b),
and h achieves its maximum at x ∈ (a, b), it follows that h′(x) = 0, which yields the desired
conclusion. �

We can now proceed to prove L’Hôpital’s rule.

PROOF OF THEOREM 8.25. We first treat the case limx→a+ f(x) = limx→a+ g(x) = 0. Here,
we may extend the functions to be defined on [a, b) by defining f(a) = g(a) = 0, and this (by
definition) makes them continuous on this interval. Let (xn) be a sequence in (a, b) such that
xn → a as n → ∞. Then f and g are continuous on [a, xn], and differentiable on (a, xn),



104 8. DIFFERENTIATION OF FUNCTIONS OF A REAL VARIABLE

with g′(x) 6= 0 for all x in this interval. By the extended Mean Value Theorem, there is a point
tn ∈ (a, xn) such that

f ′(tn)

g′(tn)
=
f(xn)− f(a)

g(xn)− g(a)
=
f(xn)

g(xn)
.

By the Squeeze theorem, tn → a, and so by assumption limn→∞ f
′(tn)/g′(tn) → L. Hence,

the function r(x) = f(x)/g(x) satisfies r(xn) → L for every sequence (xn) in (a, b) for which
xn → a; by definition of right limit, the conclusion follows.

Now consider the case that limx→a+ |g(x)| = ∞. The idea here is related, but a little more
complicated, and is more amenable to an ε-δ proof. By assumption limx→a+

f(x)
g(x)

= L; thus, for
any ε > 0, there is some δ0 > 0 so that∣∣∣∣f ′(t)g′(t)

− L
∣∣∣∣ < ε

4
for all t ∈ (a, a+ δ0). (8.2)

(We freely assume δ0 is small enough that a + δ0 < b, of course.) Fix some x0 ∈ (a, a + δ0).
Since |g(x)| → ∞ as x → a, there is some δ1 > 0 so that, for x ∈ (a, a + δ1), |g(x)| > |g(x0)|;
in particular, g(x) 6= g(x0) for x ∈ (a, a + δ1). Now, both f and g are continuous on [a, x0],
and differentiable on (a, x0). It follows from the Extended Mean Value Theorem that for each
x ∈ (a, a+ δ1), there is a point t0 = t(x, x0) in (x, x0) (and therefore in (a, a+ δ0)) such that

f(x)− f(x0)

g(x)− g(x0)
=
f ′(t0)

g′(t0)
.

We are interested in f(x)
g(x)

, not the more complicated quotient above; but since |g(x)| grows without
bound, the two are very close. Dividing through top and bottom by g(x) gives

f ′(t0)

g′(t0)
=

f(x)
g(x)
− f(x0)

g(x)

1− g(x0)
g(x)

; therefore
f(x)

g(x)
=

(
1− g(x0)

g(x)

)
f ′(t0)

g′(t0)
+
f(x0)

g(x)
. (8.3)

We now have all the pieces in place. Before proceeding formally, let’s outline how this works.
From (8.2), f

′(t0)
g′(t0)

is close to L. Since |g(x)| → ∞, for x close to a, 1− g(x0)
g(x)

is close to 1, and f(x0)
g(x)

is close to 0. This shows that for such x, f(x)
g(x)

is close to L, as desired.

Now let’s make this precise. Working from (8.3), if a < x < a + min{δ0, δ1}, then t0 ∈
(a, a+ δ0), and we have∣∣∣∣f(x)

g(x)
− L

∣∣∣∣ ≤ ∣∣∣∣(1− g(x0)

g(x)

)
f ′(t0)

g′(t0)
− L

∣∣∣∣+

∣∣∣∣f(x0)

g(x)

∣∣∣∣
=

∣∣∣∣(1− g(x0)

g(x)

)(
f ′(t0)

g′(t0)
− L

)
− Lg(x0)

g(x)

∣∣∣∣+

∣∣∣∣f(x0)

g(x)

∣∣∣∣
≤
∣∣∣∣1− g(x0)

g(x)

∣∣∣∣ ∣∣∣∣f ′(t0)

g′(t0)
− L

∣∣∣∣+ |L|
∣∣∣∣g(x0)

g(x)

∣∣∣∣+

∣∣∣∣f(x0)

g(x)

∣∣∣∣
<

(
1 +

∣∣∣∣g(x0)

g(x)

∣∣∣∣) ε

4
+ |L|

∣∣∣∣g(x0)

g(x)

∣∣∣∣+

∣∣∣∣f(x0)

g(x)

∣∣∣∣ , (8.4)
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where we used (8.2) in (8.4). As |g(x)| → ∞ as x → a+, and since |f(x0)| and |g(x0)| are fixed
finite numbers, we can find some δ2 > 0 so that, for all x ∈ (a, a+ δ2),

|g(x0)|
|g(x)|

< 1 and |L| |g(x0)|
|g(x)|

+
|f(x0)|
|g(x)|

<
ε

2
.

The first bound shows that the first term in (8.4) is < ε
2
, and the second bound shows that the last

terms in (8.4) are < ε
2
. Thus∣∣∣∣f(x)

g(x)
− L

∣∣∣∣ < ε

2
+
ε

2
= ε for x ∈ (a, a+ min{δ0, δ1, δ2}).

As ε > 0 was chosen arbitrarily, this shows that limx→a+
f(x)
g(x)

= L, as desired. �

REMARK 8.27. The same holds true with a = −∞ or b = +∞, and the proof is extremely
similar; the details are left to the bored reader.

Let us now conclude our discussion of differentiation by considering how much of what we’ve
developed applies to vector-valued functions of a real variable. First, the definitions are essentially
the same.

DEFINITION 8.28. Let a < b in R, let d ∈ N, and let f : (a, b) → Rd be a functions. Call f
differentiable at t0 ∈ [a, b] if

f ′(t0) = lim
t→t0

f(t)− f(t0)

t− t0
exists. Say that f is differentiable if f ′(t0) exists for each t0 in the domain of f ; in this case, f ′ is
a function [a, b] → Rd as well. If this function is continuous, we say f ∈ C1. More generally, for
k ∈ N, we say f ∈ Ck if f has k continuous derivatives. If f ∈ Ck for all k, we say f ∈ C∞, and
call f smooth.

It is often customary to use the variable name t for vector-valued functions, as we often think
of f as tracing out a curve in space, with t tracking the flow of time. It is then very important to
note that smoothness properties of f are different from smoothness properties of the range f [a, b]:
it is perfectly possible to construct a smooth function f : [0, 1] → R2 such that the image f [0, 1] is
a curve with a right angle in it. We may discuss this later, time permitting.

PROPOSITION 8.29. A function f = (f1, f2, . . . , fd) is differentiable at t0 if and only if each of
its component functions f1, f2, . . . , fd is differentiable at t0, in which case

f ′(t0) = (f ′1(t0), f ′2(t0), . . . , f ′d(t0)).

More generally, a function f is Ck iff its component functions are Ck.

PROOF. We just write out that

f(t)− f(t0) = (f1(t)− f1(t0), f2(t)− f2(t0), . . . , fd(t)− fd(t0))

and so, dividing by t − t0, we see that the difference quotient is a vector whose jth component is
fj(t)−fj(t0)

t−t0 . Since a limit of a vector sequence exists iff the limits of all its components exist, in
which case the limit is the vector of component limits (as proved, e.g., in the case d = 2 in Propo-
sition 3.13), the first result follows. The same applies to Ck functions by noting that continuity
obeys the same structure (a vector-valued function is continuous iff its component functions are all
continuous), and then iterating. �
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EXAMPLE 8.30. As a special case, consider functions f : R→ R2, where we identify R2 ∼= C;
then we may write

f(t) = f1(t) + if2(t).

For example, taking it on faith that cos and sin are differentiable functions satisfying sin′ = cos
and cos′ = sin, consider the function

e(t) = cos t+ i sin t.

Both component functions are smooth, and therefore e is a smooth function. Indeed, this function
traces out the unit circle at unit angular speed in the counter-clockwise direction. Note that

e′(t) = − sin t+ i cos t = i(i sin t+ cos t) = ie(t).

Thinking back to your knowledge of differential equations, if u is a smooth functions satisfying
u′(t) = au(t) for some constant a, then u(t) = eatu(0). In our case e(0) = 1 + 0i = 1, so we
should expect that e(t) = eit. This is, in fact, true, and we will prove it more satisfactorily later
this quarter.

While the definitions and notation of derivatives apply equally well to vector-valued functions,
the major theorems do not apply. For example, consider the Mean Value Theorem. One might
think that one could show that f(b)−f(a)

b−a = f ′(ξ) for some ξ ∈ (a, b), the usual way one might
approach this (componentwise) fails. The Mean Value Theorem applied to each component fj
asserts that there is some point ξj ∈ (a, b) where fj(b)−fj(a)

b−a = f ′j(ξj); but the point ξj can certainly
depend on j, and there is no obvious way to guarantee that a single point ξ will work for all j. In
fact, this is just not true.

EXAMPLE 8.31. Continuing with Example 8.30, notice that e(2π) − e(0) = 1 − 1 = 0.
However, e′(t) = ie(t), and so ‖e′(t)‖2 = sin2 t + cos2 t = 1 for any t. Thus, there is no point ξ
where e′(ξ) = 0, and so

e(2π)− e(0)

2π − 0
6= e′(ξ) for any ξ ∈ (0, 2π).

The Mean Value Theorem also featured prominently in the proof of LH́ôpital’s Rule. In general
for vector-valued functions f and g, it does not even make sense to take the ratio f

g
(one cannot

divide by a vector). In the case of C-valued functions, we can divide (in the same sense that we
can for real-valued functions: so long as the denominator itself does not vanish at points where we
are dividing). Even so, LH́ôpital’s Rule fails here.

EXAMPLE 8.32. Consider the two complex-valued functions f(t) = t and g(t) = tei/t. That
is, f is nominally complex-valued, f(t) = t + i0, while g(t) = t(cos 1

t
+ i sin 1

t
). Of course

limt→0 f(t) = 0. In Example 8.16, we showed that t sin 1
t
→ 0 as t → 0; a very similar proof

shows that t cos 1
t
→ 0 as t → 0. Thus limt→0 g(t) = 0 as well. So f(t)

g(t)
is a 0

0
type indeterminate

form as t→ 0, where both top and bottom are differentiable away from 0. If L’Hôpital’s Rule held
precisely as in Theorem 8.25, we would expect to see limt→0

f(t)
g(t)

= limt→0
f ′(t)
g′(t)

. We can compute
these derivatives (for t 6= 0): f ′(t) = 1, while

g′(t) =
d

dt

(
t cos

1

t

)
+ i

d

dt

(
t sin

1

t

)
=

(
cos

1

t
+

1

t
sin

1

t

)
+ i

(
sin

1

t
− 1

t
cos

1

t

)
.
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Notice that

|g′(t)|2 =

(
cos

1

t
+

1

t
sin

1

t

)2

+

(
sin

1

t
− 1

t
cos

1

t

)2

=

(
cos2 1

t
+ sin2 1

t

)(
1 +

1

t2

)
= 1+

1

t2
> 0

and hence g′(t) is never equal to 0. The reciprocal can be computed: since 1
z

= z
|z|2 ,

f ′(t)

g′(t)
=

1

g′(t)
=

1

1 + 1/t2

[(
cos

1

t
+

1

t
sin

1

t

)
− i
(

sin
1

t
− 1

t
cos

1

t

)]
.

Let’s look at the real part for now. Simplifying, we have

t2

t2 + 1

(
cos

1

t
+

1

t
sin

1

t

)
=

1

t2 + 1

(
t2 cos

1

t
+ t sin

1

t

)
.

At t → 0, 1
t2+1

→ 1, and both terms inside the brackets tend to 0 (cf. Example 8.17). Similar
arguments show that the second term in f ′(t)

g′(t)
tends to 0; so limt→0

f ′(t)
g′(t)

= 0.
However, we can compute directly (using computations just like the ones above, or by follow-

ing our nose with the exponential notation) that

f(t)

g(t)
=

t

tei/t
= e−i/t = cos

1

t
− i sin

1

t

and as we know (cf. Example 7.18), this limit does not exists. So the statement of L’Hôpital’s rule
is simply false for complex-valued functions.

We have claimed that the Mean Value Theorem is they key tool of calculus; and L’Hôptial’s
rule is a very powerful computational tool. Are we then lost when it comes to calculus of vector-
valued functions of a real variable? No. The saving grace is that, while the Mean Value Theorem
does not hold, it does hold as an inequality in general, and that is enough for most theoretical
applications.

THEOREM 8.33 (Mean Value Inequality for Vector-Valued Functions). Let a < b in R, d ∈ N,
and let f : [a, b] → Rd be continuous, and differentiable on (a, b). Then there exists a point ξ ∈
(a, b) where

‖f(b)− f(a)‖ ≤ (b− a)‖f ′(ξ)‖.

Note that this result does not contradict Example 8.31: in that example, the left-hand-side of
the inequality is 0, which is certainly ≤ the non-negative right-hand-side.

To prove Theorem 8.33, we need one key inequality which is one of the most important in-
equalities in all of analysis.

LEMMA 8.34 (The Cauchy-Schwarz Inequality). Let d ∈ N, and let v,w ∈ Rd. Then |v ·w| ≤
‖v‖‖w‖.

PROOF. In this finite-dimensional setting, it is possible to prove the inequality by squaring both
sides and comparing terms directly. But it is instructive to give a cleaner proof even here. Consider
the function p(t) = ‖v − tw‖2. This function is always ≥ 0. Expanding it out, we have

p(t) = (v − tw) · (v − tw) = v · v − 2tv ·w + t2w ·w
= ‖v‖2 − 2tv ·w + t2‖w‖2

= at2 + bt+ c
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where a = ‖w‖2, b = −2v · w, and c = ‖v‖2. Thus p is a quadratic polynomial, with leading
coefficient a > 0. Since we know p(t) ≥ 0 for all t, it follows that p cannot have two distinct
real roots (if so, the function would be strictly negative between those roots). Thus, either p has
no real roots, or a double-root. From the quadratic formula, it thus follows that the discriminant
b2 − 4ac ≤ 0. That is:

0 ≥ b2 − 4ac = (−2v ·w)2 − 4‖w‖2‖v‖2.

This shows that (v ·w)2 ≤ ‖v‖2‖w‖2; taking square roots yields the result. �

REMARK 8.35. This proof relied on nothing more than the fact that the norm N(v) = ‖v‖
“polarizes” in terms of the bilinear form B(v,w) = v ·w: N(v)2 = B(v,v). Indeed, the theorem
holds in this level of generality: if B is a symmetric bilinear form on any vector space for which
B(v,v) ≥ 0 for all v, then

|B(v,w)| ≤ B(v,v)1/2B(w,w)1/2.

This generalization is especially handy in many infinite-dimensional settings.

PROOF OF THEOREM 8.33. Set v = f(b)− f(a) ∈ Rd. Consider the real-valued function

ϕ(t) = v · f(t) =
d∑
j=1

vjfj(t), t ∈ [a, b].

As each component vjfj is a continuous function on [a, b], differentiable on (a, b), the same applies
to the sum, and so ϕ is the kind of function to which the Mean Value Theorem applies. Thus, there
is a point ξ ∈ (a, b) where ϕ′(ξ) = ϕ(b)−ϕ(a)

b−a . That is to say

(b− a)ϕ′(ξ) = ϕ(b)− ϕ(a) = v · f(b)− v · f(a) = v · [f(b)− f(a)] = v · v = ‖v‖2.

Also, note that

ϕ′(ξ) =
d

dt

d∑
j=1

vjfj(t)

∣∣∣∣∣
t=ξ

=
d∑
j=1

vjf
′
j(ξ) = v · f ′(ξ).

Thus we have
(b− a)v · f ′(ξ) = ‖v‖2.

Taking absolute values and applying the Cauchy-Schwarz inequality,

‖v‖2 = |‖v‖2| = |(b− a)v · f ′(ξ)| ≤ (b− a)‖v‖‖f ′(ξ)‖.
If v = f(b) − f(a) = 0, there is nothing to prove; otherwise we can divide out one factor of ‖v‖
to yield

‖f(b)− f(a)‖ = ‖v‖ ≤ (b− a)‖f ′(ξ)‖
which is the desired conclusion. �

COROLLARY 8.36. If f ∈ C1(a, b), then

‖f(s)− f(t)‖ ≤ sup
s≤ξ≤t

‖f ′(ξ)‖|s− t|, for all s, t ∈ (a, b).

This allows for a vector-valued version of Lipschitz functions (cf. Homework 3): we define the
Lipschitz norm of such a function to be

‖f‖Lip = sup
s 6=t

‖f(s)− f(t)‖
|s− t|
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and we call a vector-valued function f Lipschitz if ‖f‖Lip <∞. Corollary 8.36 shows that if f ∈ C1

with a bounded derivative then f is Lipschitz, and ‖f‖Lip ≤ supξ ‖f ′(ξ)‖; in fact, these are equal
for the same reason they are in the scalar-valued case covered on the homework exercise (since
‖f ′(t)‖ is very close to ‖f(s)−f(t)‖|s−t| when s is close to t). One can then follow with a comparable
theory of Hölder continuous vector-valued functions as well; this is important, but for now it is left
to the reader’s imagination.

One final remark: since Taylor’s theorem was proved simply by iterating the Mean Value
Theorem, in the vector-valued setting, one cannot expect a Taylor expansion with a remainder
term analogous to the one in Theorem 8.24. One can, instead, formulate a Taylor inequality, where

‖f(x+ t)− T k−1
x f(x)‖ ≤ 1

k!
‖f (k)(ξ)‖|t|k, for some point ξ between x and x+ t.

This is just as useful for approximations; but in truth, most applications of Taylor’s theorem in
the vector-valued setting are just as amenable to applying the Theorem to each component of f
separately and working from there.





CHAPTER 9

Integration

1. Lecture 8: April 21, 2016

You likely saw some version of the actual definition of the integral in your calculus class: it
was presented as a “limit of Riemann sums”. This is not quite accurate: it is not a limit in the sense
that we’ve defined in this course. (It is a much more complicated kind of limit.) There are several
approached to making sense of this rigorously. We are going to present the largely historically-
accurate version here developed by Riemann somewhat non-rigorously, and really properly devel-
oped by Darboux (indeed, in some sources it is called the Darboux integral).

DEFINITION 9.1. Let a < b in R. A partition Π of [a, b] is a finite set of points {t0, t1, . . . , tn}
where

a = t0 < t1 < t2 < · · · < tn−1 < tn = b.

For 1 ≤ j ≤ n, denote ∆tj = xj − xj−1.

A word on notation: we will usually have a fixed partition around, and the letter n will be used
consistently to mean the index of the largest partition point (unless otherwise stated).

DEFINITION 9.2. Let a < b in R. Given a bounded function f : [a, b] → R, and a partition
Π = {t0, t1, . . . , tn} of [a, b], we can define upper and lower sums of f on Π:

U(f,Π) ≡
n∑
j=1

sup
tj−1≤t≤tj

f(t) ·∆tj

L(f,Π) ≡
n∑
j=1

inf
tj−1≤t≤tj

f(t) ·∆tj.

Note that this only makes sense for bounded f ; if f is not bounded, then on at least one partition
interval [tj−1, tj] f is unbounded, and so at least one of the terms in either U(f,Π) or L(f,Π) will
be±∞; but there could be more than one term that is±∞, perhaps with opposite signs, and so the
sums may not even be defined. Thus, we restrict our attention to bounded functions for now; we
will later discuss how to extend integration to some unbounded functions.

DEFINITION 9.3. Let a < b in R, and let f : [a, b]→ R. Define the upper and lower Darboux
integrals of f as follows:

U(f) = inf
Π
U(f,Π), L(f) = sup

Π
L(f,Π).

The inf and sup are taken over all partitions of [a, b]. If U(f) = L(f), we say that f is Riemann
integrable (or Darboux integrable), and denote this common value by∫ b

a

f =

∫ b

a

f(t) dt ≡ U(f) = L(f).

111
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REMARK 9.4. The textbook uses the notation

U(f) =

∫ b

a

f(t) dt and L(f) =

∫ b

a

f(t) dt.

We will probably never use this notation.

Before continuing, let’s discuss where these definitions come from. U(f,Π) and L(f,Π) are
approximations of the “area under the curve” of the graph of f : you partition the domain [a, b] into
a finite collection of adjacent intervals, and on each interval you approximate the function f by a
constant one. Which constant should you choose? The upper sum has you choose the largest (or
more precisely supremal) value on that interval, while the lower sum chooses the smallest (or more
precisely infimal) value. There are other possibilities: the original scheme by Riemann is to choose
another set of points t∗1, t

∗
2, . . . , t

∗
n with tj−1 ≤ t∗j ≤ tj , and then approximate f by the constant

f(t∗j) on the interval [tj−1, tj]. If the points {t∗j} are denoted together as Π∗, we might denote this
sum as

R(f,Π,Π∗) =
n∑
j=1

f(t∗j)∆tj

which is the kind of “Riemann sum” you saw in calculus. In all cases, we then define an approx-
imate integral to be the (signed) area of the rectangles with base length ∆tj and height given by
the appropriate constant approximation of the function. Notice that, by definition of sup and inf
on each interval,

L(f,Π) ≤ R(f,Π,Π∗) ≤ U(f,Π)

and so if U(f) = L(f), the Riemann sums must also “converge” to this common value.
How do we compute the area under the actual curve, assuming that even makes sense? In the

Riemann scheme, we then start changing the partition Π (and the associated points Π∗) to make
the maximum width of any ∆tj smaller; this is supposed to give a better approximation, and then
we take the “limit” as this width goes to 0. In the Darboux approach (which we are following),
notice that U(f, P ) is definitely an over-estimate for the “actual” area: if you change the partition
Π (for example by refining it to add a new point splitting one of the intervals into two), you can
only decrease the value of the sum, since the sup of f on the two sub-intervals cannot be larger
than the sup on the whole interval: for tj−1 ≤ s ≤ tj ,

sup
tj−1≤t≤tj

f(t) · (tj − tj−1) ≥ sup
tj−1≤t≤s

f(t) · (s− tj−1) + sup
s≤t≤tj

f(t) · (tj − s). (9.1)

(You should draw a quick picture to see why this is true.) Hence, replacing Π with a refined
partition Π′ will yield U(f,Π′) ≤ U(f,Π). A similar argument shows that L(f,Π′) ≥ L(f,Π).
This is why we define the upper Darboux integral to be the infimum of the upper sums over all
partitions, and likewise the lower Darboux integral is the supremum of the lower sums over all
partitions.

Of course, we need to make sure these infima and suprema make sense. Let’s summarize this
with the following lemma.

LEMMA 9.5. Let a < b in R, and let f : [a, b] → R be a bounded function, with |f(t)| ≤ M
for all t ∈ [a, b]. Then for any partitions Π1 and Π2 of [a, b],

−M(b− a) ≤ L(f,Π1) ≤ U(f,Π2) ≤M(b− a).

Ergo
−M(b− a) ≤ L(f) ≤ U(f) ≤M(b− a).
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PROOF. Let Π1 = {s0 < s1 < · · · < sm} and Π2 = {t0 < t1 < · · · < tn}. Since f(t) ≤M for
all t, M is an upper bound for {f(t) : tj−1 ≤ t ≤ tj} for each j, and hence suptj−1≤t≤tj f(t) ≤M .
Thus

U(f,Π2) =
n∑
j=1

sup
tj−1≤t≤tj

f(t) ·∆tj ≤
n∑
j=1

M∆tj = M

n∑
j=1

(tj − tj−1) = M(b− a).

(The last sum is telescoping.) A similar proof, using the fact that f(t) ≥ −M for all t ∈ [a, b],
shows that L(f,Π1) ≥ −M(b − a). For the middle inequality, we use an important trick: we
introduce a new partition Π which is the common refinement of Π1 and Π2: Π = Π1 ∪ Π2 =
{s0, s1, . . . , sm, t0, t1, . . . , tn} (not written in order here). For this common partition (whose points
we’ll refer to as uj), we note that, for each j,

inf
uj−1≤t≤uj

f(t) ≤ sup
uj−1≤t≤uj

f(t).

Multiplying both sides by the positive number ∆uj and summing up yields L(f,Π) ≤ U(f,Π).
Then, using (9.1), we see (by induction) that

L(f,Π1) ≤ L(f,Π) ≤ U(f,Π) ≤ U(f,Π2).

This concludes the proof of the first chain of inequalities. For the second: since U(f,Π2) ≤
M(b− a) for all Π2, it follows that U(f) ≤ M(b− a); a similar argument shows that L(f,Π1) ≥
−M(b− a). For the middle inequality, we hold Π2 fixed: since L(f,Π1) ≤ U(f,Π2) for all Π1, it
follows that L(f) = supΠ1

L(f,Π1) ≤ U(f,Π2). Thus L(f) is a lower bound for {U(f,Π2) : Π2},
and so U(f) = infΠ2 U(f,Π2) ≥ L(f), as desired. �

Thus, U(f) and L(f) are well-defined for any bounded function f , and ordered L(f) ≤ U(f).
The question is whether they’re equal. The answer is: certainly not always.

EXAMPLE 9.6. Consider Dirichlet’s function from Example 6.11: the indicator function of the
rationals.

f(x) =

{
0, x 6∈ Q
1, x ∈ Q

.

Taking this function for x ∈ [0, 1] let us compute the upper and lower integrals. First, fix any
partition Π = {0 = t0 < t1 < · · · < tn = 1} of [0, 1]. On any interval [tj−1, tj], since tj−1 < tj ,
we know there are both rational and irrational points in the interval. It follows that

sup
tj−1≤t≤tj

f(t) = 1, inf
tj−1≤t≤tj

f(t) = 0.

Thus

U(f,Π) =
n∑
j=1

1 ·∆tj = (1− 0) = 1, L(f,Π) =
n∑
j=1

0 ·∆tj = 0.

So U(f,Π) and L(f,Π) do not depend on Π, and therefore taking appropriate sup and inf, we see
that U(f) = 1 while L(f) = 0. Ergo, f is not Riemann integrable: U(f) 6= L(f).

The question of when it is true that U(f) = L(f) is a delicate one having to do with the
continuity properties of the function f . We will explore and answer this question fully. Before we
do, it pays to be a little more general right away (without adding any abstraction), and talk about
the Riemann-Stieltjes integral. That is our next topic.
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The generalization of the Riemann / Darboux integral we will now develop allows for a “weight-
ing” of the domain. In the construction of the integral, when approximating the area under the
graph of a function by rectangles, we may compute the “area” of each partition rectangle over
[tj−1, tj] by declaring the length of this interval is not necessarly ∆tj but instead some (well-
behaved) function of this width. In fact, a wide variety of weight functions are possible to produce
meaningful theories of integration, but to mimick precisely the upper and lower integral construc-
tion outlined in the previous lecture, we restrict ourselves to monotone increasing weight functions.

DEFINITION 9.7. Let a < b in R, and let α : [a, b] → R be a monotone increasing function.
(In particular, since α([a, b]) = [α(a), α(b)], α is also bounded.) Given a partition Π = {a =
t0 < t < 1 < · · · < tn = b}, define ∆αj = α(tj) − α(tj−1) (which is ≥ 0 since α is monotone
increasing).

Let f : [a, b] → R be a bounded function. Define the upper sum and lower sum of f relative
to Π and α as

U(f,Π, α) ≡
n∑
j=1

sup
tj−1≤t≤tj

f(t) ·∆αj

L(f,Π, α) ≡
n∑
j=1

inf
tj−1≤t≤tj

f(t) ·∆αj

An argument exactly like the one in Lemma 9.5 shows that, if |f(t)| ≤M for all t then for any
partitions Π1 and Π2, with Π∗ = Π1 ∪ Π2, we have

−M(α(b)− α(b)) ≤ L(f,Π1, α) ≤ L(f,Π∗, α)

≤ U(f,Π∗, α) ≤ U(f,Π2, α) ≤M(α(b)− α(a)). (9.2)

In particular, the definition / proposition makes sense.

PROPOSITION 9.8. Let a < b in R, let α : [a, b] → R be monotone increasing, and let
f : [a, b]→ R be bounded. Define

U(f, α) ≡ inf
Π
U(f,Π, α), and L(f, α) = sup

Π
L(f,Π, α).

Then
−M(α(b)− α(a)) ≤ L(f, α) ≤ U(f, α) ≤M(α(b)− α(a)).

If L(f, α) = U(f, α), we say that f is Riemann-Stieltjes integrable with respect to α, and write
f ∈ R(α). In this case, we denote the common value by∫ b

a

f dα =

∫ b

a

f(t) dα(t) ≡ U(f, α) = L(f, α).

REMARK 9.9. We will tend not to use the second notation
∫ b
a
f(t) dα(t), since the t is just a

dummy variable and carries no independent meaning here.

Taking α(x) = x, this reduces to the Riemann integral theory discussed in the previous lecture.
In this case, we write simply f ∈ R. We might write the integral in this case as

∫ b
a
f(t) dt, but

more likely just as
∫ b
a
f .

We now give a quantitative charactrerization of Riemann-Stieltjes integrability.
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LEMMA 9.10. Let a < b in R, let f : [a, b]→ R be bounded, and let α : [a, b]→ R be monotone
increasing. Then f ∈ R(α) if and only if for each ε > 0 there is a partition Π of [a, b] such that

U(f,Π, α)− L(f,Π, α) < ε. (9.3)

PROOF. First, suppose that (9.3) holds; so fix ε > 0 and let Π be a partition verifying that
inequality. By definition L(f,Π, α) ≤ L(f, α) ≤ U(f, α) ≤ U(f,Π, α), and so (9.3) implies that
0 ≤ U(f, α)− L(f, α) < ε for each ε > 0; thus U(f) = L(f), as desired.

Conversely, suppose f ∈ R(α), and let ε > 0. Since
∫
f dα = supΠ L(f,Π, α), there is some

partition Π1 so that L(f,Π1, α) >
∫
f dα− ε

2
, and there is some partition Π2 so that U(f,Π2, α) <∫

f dα + ε
2
. Let Π∗ = Π1 ∪ Π2 be the common refinement. Then by (9.2), we have

U(Π∗, f, α) ≤ U(Π2, f, α) <

∫
f dα +

ε

2
< L(f,Π1, α) +

ε

2
+
ε

2
≤ L(f,Π∗, α) + ε.

Thus (9.3) is verified by the partition Π∗, concluding the proof. �

With the characterization of Lemma 9.10, we can now easily see that continuous functions are
always Riemann-Stieltjes integrable.

THEOREM 9.11. Let a < b in R, let f : [a, b] → R be continuous, and let α : [a, b] → R be
monotone increasing. Then f ∈ R(α).

PROOF. First, if α is constant on [a, b], then ∆αj = 0 on any interval [tj−1, tj], and so
U(f,Π, α) = L(f,Π, α) = 0 for all Π; thus U(f, α) = L(f, α) =

∫ b
a
f dα = 0. Otherwise,

we must have α(a) < α(b). Now, since f is continuous on the compact interval [a, b], it is uni-
formly continuous there, so we may choose δ > 0 such that, for any x, y ∈ [a, b] with |x− y| < δ,
it follows that |f(x)− f(y)| < ε

α(b)−α(a)
.

Now, fix a partition Π = {a = t0 < t1 < · · · < tn = b} of [a, b] for which ∆tj = tj − tj−1 < δ
for all j; for example, fix n with b−a

n
< δ and use the even partition Π = {a, a + b−a

n
, a +

2 b−a
n
, · · · , a+ (n− 1) b−a

n
, b}. Since f is continuous on each interval [tj−1, tj], there are points xj

and yj such that
sup

tj−1≤t≤tj
f(t) = f(xj) and inf

tj−1≤t≤tj
f(t) = f(yj).

Since tj−1 ≤ xj, yj ≤ tj and tj − tj−1 < δ it follows thast |xj − yj| < δ, and so f(xj)− f(yj) =
|f(xj)− f(yj)| < ε

α(b)−α(a)
. Thus

U(f,Π, α)− L(f,Π, α) =
n∑
j=1

[f(xj)− f(yj)]∆αj <
n∑
j=1

ε

α(b)− α(a)
∆αj.

Factoring out the constant ε
α(b)−α(a)

, we have just the telescoping sum
∑n

j=1 ∆αj = α(b) − α(a),
and so we see that with this partition, U(f,Π, α) − L(f,Π, α) < ε. As we can do this for any
ε > 0, by Lemma 9.10, it follows that f ∈ R(α), as desired. �

So, we now know how to integrate continuous functions. In particular, taking α(x) = x, this
gives us the usual Riemann integral of continuous functions, which is the main object of study
in integral calculus. However, the class of functions that can be integrated is much larger than
continuous functions. For example:

THEOREM 9.12. Let a < b in R, let f : [a, b] → R be bounded, and let α : [a, b] → R be
monotone increasing. Suppose that the set of points in [a, b] where f is discontinuous is finite, and
at each such point α is continuous. Then f ∈ R(α).
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PROOF. As in the proof of Theorem 9.11, if α is constant there is nothing to prove, so we
freely assume α(b) < α(a). Fix ε > 0, and let M = sup |f |. Let D = {x1, x2, . . . , xd} be the
set of points in [a, b] where f is not continuous. By assumption α is continuous at each xj , so
there is some ηj > 0 such that |α(s) − α(t)| < ε

4Md
for all s, t ∈ (xj − ηj, xj + ηj) ∩ [a, b]. Let

η ≤ min{η1, . . . , ηd} be small enough that (xj − η, xj + η) ⊂ (a, b) for all j (except if possibly
xj = a or xj = b). Now define points uj < vj as follows: if xj = a then uj = a and vj = a+ ε

2
; if

xj = b then uj = b− η
2
; and if xj ∈ (a, b) then uj = xj − η

2
and vj = xj + η

2
. By definition ofη, it

follows that α(vj)− α(uj) <
ε

4Md
for 1 ≤ j ≤ d, and so
d∑
j=1

[α(vj)− α(uj)] <
ε

4M
.

Now, let K = [a, b] \
⋃d
j=1(uj, vj). This is a closed subset of [a, b] and so is compact. Because

no point in D is in K, f is continuous on K, and hence uniformly continuous there. So we may
choose δ > 0 so that, whenever s, t ∈ K with |s− t| < δ, it follows that

|f(s)− f(t)| < ε

2(α(b)− α(a))
.

Now form a partition Π of [a, b] as follows: Π contains all the points uj and vj for 1 ≤ j ≤ d; it
contains no points in any of the intervals (uj, vj); and for any point ti in Π not of the form vj , we
have ti − ti−1 < δ.

We now expand U(f,Π, α)− L(f,Π, α):

U(f,Π, α)− L(f,Π, α) =
∑
i

[ sup
ti−1≤t≤ti

f(t)− inf
ti−1≤t≤ti

f(t)]∆αi.

We break this sum into two kinds of terms, dividing the indices into i ∈ I1 and i ∈ I2: I1 consists
of those i for which ti = vj for some j, and I2 consists of all the others. For i ∈ I1, by construction
ti−1 = uj . For these terms we make the estimate that supti−1≤t≤ti f(t)−

∫
ti−1≤t≤ti f(t) ≤ 2M and

so we get ∑
i∈I1

[ sup
ti−1≤t≤ti

f(t)− inf
ti−1≤t≤ti

f(t)]∆αi ≤ 2M
∑
i∈I1

∆αi

= 2M
∑
i∈I1

[α(ti)− α(ti−1)]

= 2M
d∑
j=1

[α(vj)− α(uj)]

< 2M · ε

4M
=
ε

2
.

Now, for those i ∈ I2, we have constructed Π so that ti − ti−1 < δ, which means that for any
s, t ∈ [ti−1, ti] |f(s) − f(t)| ≤ ε

2[α(b)−α(a)]
, and so this also holds true for the difference between

the supremal and infimal values of f on the interval. Summing up these terms yields∑
i∈I2

[ sup
ti−1≤t≤ti

f(t)− inf
ti−1≤t≤ti

f(t)]∆αi ≤
∑
i∈I2

ε

2[α(b)− α(a)]
· [α(ti)− α(ti−1)]

≤ ε

2[α(b)− α(a)]

∑
i

[α(ti)− α(ti−1)] =
ε

2
.
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Thus U(f,Π, α)−L(f,Π, α) < ε
2

+ ε
2

= ε, and so by Lemma 9.10, it follows that f ∈ R(α). �

REMARK 9.13. If both f and α are discontinuous at a point, it is possible that f /∈ R(α),
regardless of how continuous f is elsewhere. You will work with such an example on this week’s
homework.

REMARK 9.14. It is important to note that Theorem 9.12 applies to discontinuities in general,
not just jump discontinuities. In particular, we now know that the function f(t) = sin 1

t
of Example

7.18 is Riemann-Stieltjes integrable (with respect to any monotone increasing integrator α) on any
compact interval, including 0 or not. And the proof shows us why. Even though the function
oscillates wildly near 0, it is bounded by 1 in absolute value, and so for any small δ > 0, the total
contribution of the upper or lower sums over any partition from points in (−δ, δ) is no bigger than
α(δ)− α(−δ), which is very small so long as α is continuous at 0.

REMARK 9.15. It is natural to wonder how much further this can be taken, in terms of allow-
ing irregular f to be integrated. For example, the above proof does not immediately generalize to
the case where f has countably infinitely many discontinuities. It is a delicate matter in general
to settle which f are in R(α) for a particular α. The most important case where α(x) = x (the
Riemann integral), however, is completely understood. In that case, even if f has (at most) count-
ably infinitely many discontinuities, it is still Riemann integrable. In that case, the exact criterion
for Riemann integrability is continuous almost everywhere: a bounded function f is in R iff, for
every ε > 0, there is a countable collection of open intervals I1, I2, I3, . . . with

∑
j length(Ij) < ε

such that the set of discontinuities of f is contained in
⋃
j Ij . (I.e. the set of discontinuities has

“measure 0”)
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We now turn to the basic properties of the Riemann-Stieltjes integral, all of which reflect its
nature as a kind of limit sum. We state them as a sequence of lemmas. In all cases, a < b are
real numbers, f, f1, f2 : [a, b]→ R are bounded functions, and α, α1, α2 : [a, b]→ R are monotone
increasing functions.

LEMMA 9.16. If f1, f2 ∈ R(α) and c ∈ R, then f1 + f2 ∈ R(α) and cf1 ∈ R(α), with∫ b

a

(f1 + f2) dα =

∫ b

a

f1 dα +

∫ b

a

f2 dα and
∫ b

a

cf1 dα = c

∫ b

a

f1 dα.

PROOF. Fix a partition Π = {a = t0 < t1 < · · · < tn = b}. To save notation, let Ij =
[tj−1, tj]. Since

inf
Ij
f1 + inf

Ij
f2 ≤ inf

Ij
(f1 + f2) ≤ sup

Ij

(f1 + f2) ≤ sup
Ij

f + sup
Ij

f2

multiplying by ∆αj and summing yields

L(f1,Π, α) + L(f2,Π, α) ≤ L(f1 + f2,Π, α)

≤ U(f1 + f2,Π, α) ≤ U(f1,Π, α) + U(f2,Π, α). (9.4)

Since fj ∈ R(α) for j = 1, 2, there are partitions Πj such that U(fj,Πj, α) − L(fj,Πj, α) < ε
2
.

Letting Π∗ = Π1 ∪ Π2 as usual, we then have U(fj,Π
∗, α) ≤ U(fj,Πj, α) and L(fj,Π

∗, α) ≥
L(fj,Πj, α), so U(fj,Π

∗, α)− L(fj,Π
∗, α) < ε

2
. Adding up and applying (9.4) (with Π∗ in place

of Π) yields

U(f1 + f2,Π
∗, α)− L(f1 + f2,Π

∗, α)

≤U(f1,Π
∗, α) + U(f2,Π

∗, α)− L(f1,Π
∗, α)− L(f2,Π

∗, α) <
ε

2
+
ε

2
= ε.

Hence f1 + f2 ∈ R(α). What’s more, since L(fj,Π
∗, α) ≤

∫
fj dα ≤ U(fj,Π

∗, α), it follows that
U(fj,Π

∗, α) <
∫
fj dα + ε

2
and L(fj,Π

∗, α) >
∫
fj dα− ε

2
. Thus, applying (9.4) again, we have∫

f1 dα +

∫
f2 dα− ε < L(f1 + f2,Π

∗, α) ≤ U(f1 + f2,Π
∗, α) <

∫
f1 dα +

∫
f2 dα + ε.

Taking sup and inf as appropriate shows that
∫

(f1 + f2) dα is distance < ε away from
∫
f1 dα +∫

f2 dα for each ε > 0, and this establishes the first equality.
For the second, we note that for c > 0, we simply have U(cf1,Π, α) = cU(f1,Π, α) and

L(cf1,Π, α) = cL(f1,Π, α) for any partition Π, and hence if we choose a Π so that U(f1,Π, α)−
L(f1,Π, α) < ε

c
, then U(cf1,Π, α) − L(cf1,Π, α) = c[U(f1,Π, α) − L(f1,Π, α)] < ε, so cf1 ∈

R(α), and moreoever
∫
cf1 dα = U(cf1, α) = infΠ U(cf1,Π, α) = infΠ cU(f1,Π, α) = c ·

infΠ U(f1,Π, α) = cU(f, α) = c
∫
f1 dα. If, on the other hand, c < 0, then multiplication by c

interchanges sup and inf and so U(cf1,Π, α) = cL(f1,Π, α) and L(cf1,Π, α) = cU(f1,Π, α). A
very similar argument now yields the result. If c = 0, there is nothing to prove as both sides are
0. �

LEMMA 9.17. If f1 ≤ f2 on [a, b] and f1, f2 ∈ R(α), then
∫
f1 dα ≤

∫
f2 dα.

PROOF. The inequality f1(t) ≤ f2(t) implies that supIj f1 ≤ supIj f2 for all intervals Ij ,
and hence U(f1,Π, α) ≤ U(f2,Π, α) for any partition Π. Taking infΠ now yields

∫
f1 dα =

U(f1, α) ≤ U(f2, α) =
∫
f2 dα. �
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LEMMA 9.18. If a < c < b and f ∈ R(α) on [a, b], then it is in R(α) on [a, c] and on [c, b],
and ∫ b

a

f dα =

∫ c

a

f dα +

∫ b

c

f dα.

PROOF. Set f1 = f1[a,c] and f2 = f1[c,b]. Then both f1 and f2 are in R(α). Indeed, if Π
is a partition for which U(f,Π, α) − L(f,Π, α) < ε, then we may (possibly) refine it by taking
Π∗ = Π ∪ {c} and noting that we still have U(f,Π∗, α)− L(f,Π∗, α) < ε. Let m be the index in
Π∗ = {a = t0 < t1 < · · · < tn = b} with tm = c, and let Ij = [tj−1, tj]; then

U(f1,Π
∗, α)− L(f1,Π

∗, α) =
n∑
j=1

[sup
Ij

f − inf
Ij
f ]∆αj

=
m∑
j=1

[sup
Ij

f − inf
Ij
f ]∆αj ≤ U(f,Π∗, α)− L(f,Π∗, α) < ε

since the omitted terms are all ≥ 0. A similar calculation shows that U(f2,Π
∗, α) − L(f2,Π

∗, α)
is the sum of terms of index ≥ m which is ≤ the full sum, hence < ε. So both f1, f2 are in R(α),
and by Lemma 9.16, ∫ b

a

f dα =

∫ b

a

f1 dα +

∫ b

a

f2 dα.

It is left to the reader to establish (using very similar arguments) that
∫ b
a
f1 dα =

∫ c
a
f dα and∫ b

a
f2 dα =

∫ b
c
f dα, concluding the proof. �

LEMMA 9.19. If f ∈ R(α1) and f ∈ R(α2) then f ∈ R(α1 +α2) and f ∈ R(cα1) for c > 0,
with ∫ b

a

f d(α1 + α2) =

∫ b

a

f dα1 +

∫ b

a

f dα2 and
∫ b

a

f d(cα1) = c

∫ b

a

f dα1.

PROOF. Here we simply note that

∆(α1 + α2)j = (α1 + α2)(tj)− (α1 + α2)(tj−1)

= [α1(tj)− α1(tj−1)] + [α2(tj)− α2(tj−1)] = ∆(α1)j + ∆(α2)j,

and similarly ∆(cα1)j = c∆(α1)j , for each j. Since all these increments are ≥ 0, it then follows
that

U(f,Π, α1 + α2) = U(f,Π, α1) + U(f,Π, α2) andU(f,Π, cα1) = cU(f,Π, α1).

Taking infΠ yields we get U(f, α1 + α2) = U(f, α1) + U(f, α2) =
∫
f dα1 +

∫
f dα2 and

U(f, cα1) = cU(f, α1) = c
∫
f dα1. Similar considerations with lower sums show that these

two are equal to the given linear combinations, concluding the proof. �

LEMMA 9.20. Let f ∈ R(α). Let M = sup f and m = inf f , and suppose φ : [m,M ]→ R is
continuous. Then h = φ ◦ f is in R(α).

PROOF. Fix ε > 0. Denote by C = sup |φ|; we assume it is > 0, otherwise φ = 0 and the
statement of the lemma is silly; similarly, we assume α(b) > α(a). As φ is uniformly continuous
on [m,M ], there is some δ > 0 so that |φ(x)−φ(y)| < ε

2[α(b)−α(a)]
whenever |x− y| < δ. For later

convenience, we will make sure to select δ ≤ ε
4C

.
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Since f ∈ R(α), there is a partition Π of [a, b] such that U(f,Π, α) − L(f,Π, α) < δ2. Now
the difference U(h,Π, α)− L(h,Π, α) is equal to∑

j

[
sup
Ij

h− inf
Ij
h

]
∆αj.

We break up the sum into two parts: j ∈ J1tJ2, where j ∈ J1 iff supIj f− infIj f < δ, and j ∈ J2

iff this difference is≥ δ. The choice of δ shows that, for j ∈ J1, supIj h−infIj h <
ε

2[α(b)−α(a)]
. For

j ∈ J2, on the other hand, the best we can say in general is that supIj h− infIj h ≤ 2 sup |h| = 2C.
But we’ve arranged things so that the total α-length of the intervals indexed by J2 is small: because
supIj f − infIj f ≥ δ for j ∈ J2,

δ
∑
j∈J2

∆αj ≤
∑
j∈J2

[
sup
Ij

f − inf
Ij
f

]
∆αj = U(f,Π, α)− L(f,Π, α) < δ2

and so
∑

j∈J2 ∆αj < δ. Thus, adding up,

U(h,Π, α)− L(h,Π, α) =
∑
j∈J1

[
sup
Ij

h− inf
Ij
h

]
∆αj +

∑
j∈J2

[
sup
Ij

h− inf
Ij
h

]
∆αj

<
ε

2[α(b)− α(a)]

∑
j∈J1

∆αj + 2C
∑
j∈J2

∆αj

≤ ε

2[α(b)− α(a)]

∑
j

∆αj + 2Cδ

<
ε

2
+ 2C · ε

4C
= ε.

This shows that h ∈ R(α), as desired. �

REMARK 9.21. The above proof shows no simple connection between the value of
∫
φ ◦ f dα

and
∫
f dα, and indeed there is no simple connection.

LEMMA 9.22. If f, g ∈ R(α), then so is fg.

PROOF. By Lemma 9.16, f ± g are both in R(α). The function φ(x) = x2 is continuous, and
so by Lemma 9.20, (f + g)2 and (f − g)2 are both in R(α). Thus, by Lemma 9.16 again, so is

1

4

[
(f + g)2 − (f − g)2

]
= fg.

�

LEMMA 9.23. If f ∈ R(α), then |f | ∈ R(α), and
∣∣∣∣∫ f dα

∣∣∣∣ ≤ ∫ |f | dα.

PROOF. The function φ(x) = |x| is continuous, and so by Lemma 9.20, |f | ∈ R(α). Now, let
σ = sgn

(∫
f dα

)
(so σ = 1 if the integral is ≥ 0 and σ = −1 if the integral is < 0.) Then by

Lemma 9.16, ∣∣∣∣∫ f dα

∣∣∣∣ = σ

∫
f dα =

∫
(σf) dα.
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For each t, we have f(t) ≤ |f(t)| and −f(t) ≤ |f(t)|; thus σf ≤ f . Thus, by Lemma 9.17,∣∣∣∣∫ f dα

∣∣∣∣ =

∫
(σf) dα ≤

∫
|f | dα.

�
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4. Lecture 11: May 3, 2016

We now know how to integrate (or more precisely that we can integrate) a reasonably large
class of functions, against arbitrary monotone increasing integrators. One may then reasonably
ask: what benefit have we gained by including more general integrator weights α? To partly
answer this, consider the following example.

EXAMPLE 9.24. Let a < b in R, and fix some s ∈ (a, b). Let αs be the monotone function
αs(t) = 1(s,b](t), i.e. αs(t) = 0 if t ≤ s and αs(t) = 1 if t > s. If f is continuous on [a, b] then∫ b

a

f dαs = f(s).

To see this, fix any partition Π = {a = t0 < t1 < · · · < tn = b}. Let m ≥ 1 be the unique index
such that tm−1 < s ≤ tm. For any j 6= m, αs is constant on [tj−1, tj] and so ∆αj = 0, while
∆αm = 1− 0 = 1. Thus

U(f,Π, αs) = sup
tm−1≤t≤tm

f(t), L(f,Π, αs) = inf
tm−1≤t≤tm

f(t).

Since s ∈ [tm−1, tm], inftm−1≤t≤tm f(t) ≤ f(s) ≤ suptm−1≤t≤tm f(t). It follows that L(f, αs) ≤
f(s) ≤ U(f, αs). Since f is continuous, Theorem 9.11 implies that L(f, αs) = U(f, αs), and so
this common value must be

∫
f dαs = f(s) as claimed. (A more careful argument shows that this

holds true even if we only assume that f is continuous at s.)

Example 9.24 gives a rigorous treatement of a “delta function”. Physicists love to use delta
functions: a “function” δ(t) with the property that, for s ∈ (a, b),∫ b

a

f(t)δ(t− s) dt = f(s).

In fact, there is no such function δ(t) which Riemann integrates a function by evaluating it at a
point. Instead, δ(t− s) dt must be interpreted as the Riemann–Stieltjes integrator dαs(t).

We can use the additivity of the integral to generalize Example 9.24, and put discrete infinite
sums on the same footing as integrals, and treat them all as one kind of object. If (sn)∞n=1 is
an increasing (possibly finite) sequence in (a, b), and if (cn) is a nonnegative sequence such that∑
cn <∞, we can define a pure step function

α(t) =
∞∑
n=1

cnαsn(t).

This is a monotone increasing function on [a, b]. It is constant on [a, a + s1], takign value c1; its
value on (a+ s1, a+ s2] is c1 + c2; and so forth.

LEMMA 9.25. Let α be the pure step function above. If f is continuous on [a, b], then∫ b

a

f dα =
∞∑
n=1

cnf(sn).

PROOF. Since |αs(t)| ≤ 1 for any s, by the comparison test, the series α(t) =
∑∞

n=1 cnαsn(t)
converges for all t. The function α defined is monotone increasing, since cn ≥ 0 for all n, and
αs(t) ≤ αs(t

′) whenever t < t′. Hence, it makes sense to compute
∫ b
a
f dα. (Note also that

α(a) = 0 while α(b) =
∑

n cn.) Similarly, since f is bounded on [a, b], the sum
∑∞

n=1 cnf(sn)
also converges by the comparison test, so all quantities presented make sense.
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Now, let ε > 0, and let M = sup |f | (and assume M > 0 to avoid silliness). By the Cauchy
criterian for convergence of

∑
n cn, there is some N ∈ N so that

∑
n>N cn <

ε
M

. We then break
up α accordingling: α(t) = α1(t) + α2(t), where

α1(t) =
N∑
n=1

cnαsn(t), α2(t) =
∞∑

n=N+1

cnαsn(t).

By Lemma 9.19, we have ∫
f dα =

∫
f dα1 +

∫
dα2.

The first integral, by induction on Lemma 9.19, has the value∫
f dα1 =

N∑
n=1

cn

∫
f dαs =

N∑
n=1

cnf(sn).

Thus, by Lemma 9.23 and Lemma 9.17,∣∣∣∣∫ f dα−
∫
f dα1

∣∣∣∣ =

∣∣∣∣∫ f dα2

∣∣∣∣ ≤ ∫ |f | dα2 ≤
∫
M dα2 = M [α2(b)− α2(a)].

Since (sn) is an increasing sequence, sN+1 > a, and so αsn(a) = 0 for n > N ; thus α2(a) = 0.
On the other hand αsn(b) = 1 for each n, and so α2(b) =

∑∞
n=N+1 cn <

ε
M

by constructions. Thus
the above inequality shows that∣∣∣∣∣

∫
f dα−

N∑
n=1

cnf(sn)

∣∣∣∣∣ =

∣∣∣∣∫ f dα−
∫
f dα1

∣∣∣∣ < ε

M
·M = ε.

Since we can do this for each ε > 0, and since we know
∑N

n=1 cnf(sn) converges as N → ∞, it
follows that it must converge to

∫
f dα as claimed. �

Thus, if we use a pure step function as our integrator, we unify the theory of infinite series and
integration. On the flip side, what happens if α is the opposite of a purely discrete function: what
if α is differentiable? In that case, we will see that integration with respect to α actually involved
the derivative α′ (and this will motivate the connection afterward to the Fundamental Theorem
of Calculus). As you should be used to by now, anything involving derivatives will involve the
Mean Value Theorem, which will mean evaluating the derivative of the integrand on [tj−1, tj] at a
(random) point ηj ∈ (tj−1, tj). As such, it will be convenient in the next several results to connect
our formulation of the integral, in terms of upper and lower sums, to Riemann(–Stieltjes) sums.

LEMMA 9.26. Let f be in R(α) on [a, b], let ε > 0, and let Π be a partition for which
U(f,Π, α)− L(f,Π, α) < ε (cf. Lemma 9.10). With Π = {a = t0 < t1 < t2 < · · · < tn = b} and
Ij = [tj−1, tj], let ηj ∈ Ij . Then ∣∣∣∣∣

n∑
j=1

f(ηj) ∆αj −
∫ b

a

f dα

∣∣∣∣∣ < ε.

PROOF. By definition infIj f ≤ f(ηj) ≤ supIj f for each j. Multiplying by the non-negative
numbers ∆αj and summing up shows that

L(f,Π, α) ≤
n∑
j=1

f(ηj)∆αj ≤ U(f,Π, α). (9.5)
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Of course, we also have

L(f,Π, α) ≤
∫ b

a

f dα ≤ U(f,Π, α). (9.6)

So the Riemann–Stieltjes sum in question and the integral
∫
f dα are both in the interval from

L(f,Π, α) up to U(f,Π, α). By assumption this interval has width< ε. Thus, the distance between
the Riemann–Stieltjes sum and the integral is < ε, as claimed. �

THEOREM 9.27. Let α : [a, b] → R be monotone increasing, and suppose that α is differen-
tiable on [a, b] with α′ ∈ R. Then for any bounded f : [a, b] → R, f ∈ R(α) if and only if
fα′ ∈ R, and ∫

f dα =

∫
fα′.

This theorem is often summarized by writing dα(t) = α′(t) dt.

PROOF. Fix ε > 0, and let M = sup |f | (assume M > 0 to avoid silliness). Since α′ ∈ R,
there is a partition Π = {a = t0 < t1 < · · · < tn = b} of [a, b] such thatU(α′,Π)−L(α′,Π) < ε

3M
.

By the Mean Value Theorem (applied to α), for each j there is a point ξj ∈ (tj−1, tj) such that
∆αj = α(tj)− α(tj−1) = α′(ξj). Now, fix any points ηj ∈ Ij; then the Riemann–Stieltjes sum at
the points ηj can nearly be expressed as a Riemann sum:

n∑
j=1

f(ηj)∆αj =
n∑
j=1

f(ηj)α
′(ξj) ∆tj.

We would like to convert this to a proper Riemann sum at the points ηj; to do so, we need to
compare the points ηj to ξj , which results in a correction factor∣∣∣∣∣

n∑
j=1

f(ηj) ∆αj −
n∑
j=1

f(ηj)α
′(ηj) ∆tj

∣∣∣∣∣ =

∣∣∣∣∣
n∑
j=1

f(ηj)[α
′(ξj)− α′(ηj)] ∆tj

∣∣∣∣∣
≤

n∑
j=1

|f(ηj)||α′(ξj)− α′(ηj)|∆tj

≤M
n∑
j=1

|α′(ξj)− α′(ηj)|∆tj.

Now, since ξj, ηj ∈ Ij , it follows that |α′(ξj)− α′(ηj)| ≤ supIj α
′ − infIj α

′, and thus
n∑
j=1

|α′(ξj)− α′(ηj)|∆tj ≤
n∑
j=1

[
sup
Ij

α′ − inf
Ij
α′

]
∆tj = U(α′,Π)− L(α′,Π) <

ε

3M
.

Thus, we see that, for any points ηj ∈ Ij ,∣∣∣∣∣
n∑
j=1

f(ηj) ∆αj −
n∑
j=1

f(ηj)α
′(ηj) ∆tj

∣∣∣∣∣ < ε

3
. (9.7)

In particular, this shows that
n∑
j=1

f(ηj) ∆αj <
n∑
j=1

(fα′)(ηj) ∆tj +
ε

3
≤

n∑
j=1

sup
Ij

(fη′) ∆tj +
ε

3
= U(fα′,Π) +

ε

3
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holds for every choice of points ηj ∈ Ij , and so taking sup again we find that U(f,Π, α) <
U(fα′,Π) + ε

3
. Now, doing the same argument again in the other order shows that

n∑
j=1

(fα′)(ηj) ∆tj <
n∑
j=1

f(ηj) ∆αj +
ε

3
≤ U(f,Π, α) +

ε

3

and soU(fα′,Π) < U(f,Π, α)+ ε
3

as well. Combining these shows that |U(f,Π, α)−U(fα′,Π)| <
ε
3
. An entirely analogous argument shows that |L(f,Π, α)− L(fα′,Π)| < ε

3
as well.

Thus, we have shown that, for any partition Π for which U(α′,Π)−L(α′,Π) < ε
3M

, it follows
that |U(f,Π, α) − U(fα′,Π)| < ε

3
and |L(f,Π, α) − L(fα′,Π)| < ε

3
. If we find such a partition

Π, the antecedent will also hold true for any refinement of Π.
Now, to conclude the proof: suppose that f ∈ R(α); then let Π′ be a partition for which

U(f,Π′, α) − L(f,Π′, α) < ε
3
. If Π is a partition for which U(α′,Π) − L(α′,Π) < ε

3M
, take

Π∗ = Π∪Π′; then we have U(α′,Π∗)−L(α′,Π∗) < ε
3M

. Thus |U(f,Π∗, α)−U(fα′,Π∗)| < ε
3

and
|L(f,Π∗, α)−L(fα′,Π∗)| < ε

3
. Since Π∗ refines Π′, it is also true that U(f,Π∗, α)−L(f,Π∗, α) <

ε
3
. Thus

U(fα′,Π∗)− L(fα′,Π∗)

≤|U(fα′,Π∗)− U(f,Π∗, α)|+ |U(f,Π∗, α)− L(f,Π∗, α)|+ |L(f,Π∗, α)− L(fα′,Π∗)|

<
ε

3
+
ε

3
+
ε

3
= ε.

Thus fα′ ∈ R as well; and the fact that we can find a partition Π∗ such that |U(f,Π∗, α) −
U(fα′,Π∗)| < ε

3
for each ε > 0 shows that |

∫
f dα −

∫
fα′| < ε

3
for all ε > 0, thus the two

integrals are equal as claimed.
An entirely analogous argument beginning from the assumption that fα′ ∈ R shows that

f ∈ R(α) and that the two integrals are the same, concluding the proof. �

This brings us to one of the most important tool for actually computing integrals.

THEOREM 9.28 (The Change of Variables Formula). Let a < b and c < d in R, and let
ϕ : [c, d] → [a, b] be a strictly increasing surjective function. Let α : [a, b] → R be monotone
increasing, and let f ∈ R(α). Define β, g : [c, d] → R by β = α ◦ ϕ and g = f ◦ ϕ. Then β is
monotone increasing, g ∈ R(β), and ∫ d

c

g dβ =

∫ b

a

f dα.

PROOF. Since ϕ is strictly increasing, it is one-to-one; since it is surjective onto [a, b], there
is an inverse map ϕ−1 : [a, b] → [c, d]. This gives a bijection between partitions Π of [a, b] and
partitions Θ of [c, d]: the correspondence is t ∈ Θ iff ϕ(t) ∈ Π, and so we write ϕ(Θ) = Π.
Writing out the definitions, we see that

U(g,Θ, β) = U(f,Π, α) and L(g,Θ, β) = L(f,Π, α).

Thus, finding a partition Π so that U(f,Π, α)− L(f,Π, α) < ε is equivalent to finding a partition
Θ = ϕ−1(Π) for which U(g,Θ, β)−L(g,Θ, β) < ε, and thus g ∈ R(β). Because the map Π→ Θ
is a bijection of partitions,

∫
f dα = infΠ U(f,Π, α) = infΘ U(g,Θ, β) =

∫
g dβ. �
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Theorem 9.28 may not look like the change of variables theorem you remember from calculus,
but it is actually the generalization of it to the Riemann–Stieltjes integral. To restore the theorem
you recall exactly, take the special case α(x) = x. Then β = α ◦ ϕ = ϕ. If we further assume that
ϕ is differentiable and ϕ′ ∈ R, then Theorem 9.27 shows that dβ(x) = ϕ′(x) dx, and so∫ b

a

f(u) du =

∫ b

a

f dα =

∫ d

c

f ◦ ϕdβ =

∫ d

c

f(ϕ(x))ϕ′(x) dx (9.8)

which is the statement you learned in calculus.

REMARK 9.29. In calculus, you may have stated this theorem without the requirement that ϕ
is strictly increasing. It is possible to generalize this, by reinterpreting the symbol

∫ b
a

to include
orientation. Suppose, for example, that ϕ is strictly decreasing. Then β = α ◦ ϕ is monotone
decreasing, and therefore not the kind of integrator we know how to use. We could redo everything
in this chapter so far for monotone decreasing integrators, and it would all work similarly, with
appropriate minus signs thrown in. This can be accounted for by introducing the new (familiar
from calculus) notation that if a < b then

∫ a
b
≡ −

∫ b
a

; this is what we mean by adding an orientation
to the integral. With this in hand, everything works the same for monotone decreasing integrators,
including Theorem 9.28. What’s more, by employing Lemma 9.18, suitably reinterpreted in terms
of the new orientation concept, we can even handle the case that ϕ is piecewise strictly monotone:
there are finitely many points a = x0 < x1 < x2 < · · · < xp = b such that ϕ is strictly monotone
on each interval (xj−1, xj). We can even allow ϕ to be flat on some of the intervals (since the
integral will just be 0 there). These are actually the kinds of functions for which the calculus
change of variables formula works as stated above. Alternatively, one can restrict a little further to
functions ϕ ∈ C1 such that ϕ′ has only finitely many zeroes (this is true for all the usual functions
studied in calculus).
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5. Lecture 12: May 5, 2016

We now come to the central result of calculus, appropriately called the Fundamental Theorem
of Calculus: the Riemann integral is (more or less) the inverse of the derivative.

THEOREM 9.30 (Fundamental Theorem of Calculus). Let a < b in R, and let f ∈ R on [a, b].

(a) For a ≤ x ≤ b, define F (x) by

F (x) =

∫ x

a

f(t) dt.

Then F is Lipschitz continuous on [a, b]. Moreover, if f is continuous at a point x0 ∈ [a, b],
then F is differentiable at x0, with F ′(x0) = f(x0).

(b) If there exists a differentiable function G : [a, b]→ R such that G′ = f , then
∫ b
a
f(t) dt =

G(b)−G(a).

PROOF. For part (a), since f ∈ R it is bounded, say |f | ≤ M . Then for any x, y ∈ [a, b], say
x < y; then by Lemma 9.18 and 9.23,

F (y) =

∫ y

a

f =

∫ x

a

f +

∫ y

x

f = F (x) +

∫ y

x

f

and so by Lemma 9.17

|F (y)− F (x)| =
∣∣∣∣∫ y

x

f

∣∣∣∣ ≤ ∫ y

x

|f | ≤
∫ y

x

M = M(y − x).

This shows that F is Lipchitz continuous, with Lipschitz constant ≤ M . (In fact, the Lipschitz
constant is precisely sup |f |.)

Now, suppose f is continuous at x0. Fix ε > 0, and choose δ > 0 so that |f(t) − f(x0)| < ε
whenever |t− x0| < δ. Then for x0 ≤ t < x0 + δ, we have

F (t)− F (x0)

t− x0

− f ′(x0) =
1

t− x0

∫ t

x0

f − f ′(x0) =
1

t− x0

∫ t

x0

[f − f(x0)]

where we have used the fact that
∫ t
x0
f(x0) = f(x0)(t−x0). Because |t−x0| < δ, |f − f(x0)| < ε

on [x0, t], and so∣∣∣∣F (t)− F (x0)

t− x0

− f(x0)

∣∣∣∣ ≤ 1

t− x0

∫
|f − f ′(x0)| ≤ 1

t− x0

∫ t

x0

ε = ε.

An analogous argument shows that the difference quotient DQF (t, x0) is distance less than ε from
f(x0) in the case x0−δ < t < x0 as well. Thus, we have shown that F ′(x0) = limt→x0 DQF (t) =
f(x0), as claimed.

For part (b), fix ε > 0, and let Π = {a = t0 < t1 < · · · < tn = b} be a partition for which
U(f,Π) − L(f,Π) < ε. By the Mean Value Theorem, for each j there is a point ξj ∈ (tj−1, tj)
such that G(tj)−G(tj−1) = F ′(ξj) ∆tj = f(tj) ∆tj . Thus, reversing the telescoping sum,

G(b)−G(a) =
n∑
j=1

[G(tj)−G(tj−1)] =
n∑
j=1

f(ξj) ∆tj.
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By Lemma 9.26, by the choice of Π, we have∣∣∣∣∫ b

a

f − [G(b)−G(a)]

∣∣∣∣ =

∣∣∣∣∣
∫ b

a

f −
n∑
j=1

f(ξj) ∆tj

∣∣∣∣∣ < ε.

As this holds for every ε > 0, the result follows. �

In summary: if f is continuous, then F (x) =
∫ x
a
f(t) dt is an anti-derivative (a differentiable

function with F ′ = f ), and moreover if G is any anti-derivative, then
∫ b
a
f = G(b) − G(a). Any

two antiderivatives differ by a constant: if F ′ = G′ on [a, b], then (F − G)′ = F ′ − G′ = 0. So
F − G is a differentiable function whose derivative is 0, which means it is constant by Corollary
8.19(2). So this is consistent: if F = G+ c, then F (b)− F (a) = G(b)−G(a).

In light of Theorem 9.30, the special case of the Change of Variables Formula in (9.8) is a
straightforward consequence of the chain rule (under continuity assumptions). Indeed, let f be
continuous and suppose ϕ is differentiable with ϕ′ ∈ R on [c, d]. Let F be an anti-derivative of
f (as in Theorem 9.30(a)), so that F ′ = f . Then F ◦ ϕ is differentiable, and by the chain rule
(F ◦ ϕ)′ = (F ′ ◦ ϕ)ϕ′ = (f ◦ ϕ)ϕ′. Employing the Fundamental Theorem of Calculus, we get∫ d

c

f(ϕ(x))ϕ′(x) dx =

∫ d

c

(F ◦ ϕ)′(x) dx = F ◦ ϕ(d)− F ◦ ϕ(c).

Note that this holds regardless of whether ϕ is increasing (or even piecewise monotone). So as
long as ϕ(c) = a and ϕ(d) = b, we then have∫ d

c

f(ϕ(x))ϕ′(x) dx = F (b)− F (a) =

∫ a

b

f(u) du

again by the Fundamental Theorem of Calculus. This condition certainly holds if ϕ is strictly
increasing from [c, d] onto [a, b], but this is not required; it could oscillate infinitely often as it
fills out the interval. But this approach required the assumption that f is continuous, rather than
just Riemann integrable; if one wants more general Riemann integrable functions f , the previous
approach (which required ϕ be at least piecewise monotone) is required.

In the same light, let us now use the Fundamental Theorem of Calculus to turn the product rule
into a powerful computational (and theoretical) tool for Riemann integration.

THEOREM 9.31 (Integration by Parts). Let a < b in R, and let f, g : [a, b]→ R be differentiable
functions with f ′, g′ ∈ R. Then fg′ and f ′g are both in R, and∫ b

a

f(t)g′(t) dt = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′(t)g(t) dt.

PROOF. The chain rule gives (fg)′ = fg′ + f ′g. By assumption f ′ and g′ are both in R, and
so are f and g since they are differentiable (hence continuous). Thus, by Lemma 9.22, fg′ and f ′g
are both in R, and by the Fundamental Theorem of Calculus and 9.16,

f(b)g(b)− f(a)g(a) =

∫ b

a

(fg)′(t) dt =

∫ b

a

f(t)g′(t) dt+

∫ b

a

f ′(t)g(t) dt.

Subtracting yields the result. �
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As with the Change of Variables formula, we can wonder if there is a version for more general
integrators. Indeed, suppose that g is differentiable, and g′ is strictly increasing. Then Theorem
9.27 shows that g′(t) dt = dg(t), and so we can rewrite Integration by Parts in the form∫ b

a

f dg = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′(t)g(t) dt.

In fact, this formula holds true even if g is not differentiable, as you will prove on your homework.

To conclude this chapter on integration, we consider an application to curves.

DEFINITION 9.32. Let a < b in R and let d ∈ N. A (parametrized) curve in Rd, with parameter
domain [a, b], is a continuous function γ : [a, b] → Rd. If γ(a) = γ(b), it is called a closed curve.
If γ is one-to-one on (a, b), it is called a simple curve.

Note: a curve is more than just a path traced out in space (which is the image γ([a, b]); it also
includes the information of the parametrization t 7→ γ(t), which is usually thought of as specifying
the position of a particle at time t as it moves through space.

Our present goal is to measure the length of a curve. To that end, we begin by approximating
the curve by pieces whose lengths we know how to measure: line segments. Fix a partition Π =
{a = t0 < t1 < · · · < tn = b} of [a, b]. We replace γ by the path which passes through the points
γ(t0), γ(t1), γ(t2), . . . , γ(tn), and is a straight line segment between successive points. The length
of each such line segment is just the Euclidean length of the difference vector: |γ(tj) − γ(tj−1)|.
Hence, we approximate the length of γ by

Λ(γ,Π) ≡
n∑
j=1

|γ(tj)− γ(tj−1)|.

Note that if we refine the partition used, the triangle inequality makes this length shrink: for any
point s ∈ (tj−1, tj), then

|γ(tj)− γ(tj−1)| ≤ |γ(tj)− γ(s)|+ |γ(s)− γ(tj−1)|.
It follows (by induction) that if Π∗ is a refinement of Π then Λ(γ,Π) ≤ Λ(γ,Π∗). Indeed, this
matches up with the fact (known as the isoperimetric inequality) that the shortest path between two
points is the straight-line path. Thus, if we want to take a “limit” making partitions finer and finer,
we ought to define the length of the curve γ by

Λ(γ) ≡ sup
Π

Λ(γ,Π).

This sup may well be infinite. A first guess at such an example would be something like the graph
of the function f(x) = 1

x
, which has a vertical asymptote. But there is no way to parametrize this

curve continuously on a closed interval, which is needed in our definition of curve. Nevertheless,
there are continuous curves on closed intervals that have infinite length.

EXAMPLE 9.33. Consider the curve γ : [0, 1]→ R2 which traces out the graph of the function
f(x) = x sin 1

x
(with f(0) = 0) of Example 8.16:

γ(t) = (t, f(t)).

Since f is continuous on [0, 1], as is the identity function, it follows that γ is continuous on [0, 1],
and hence is a curve according to the above definition. Now, for each n, consider the partition (with
points written in the reverse of the usual order) Πn = {1 = t0 > t1 > · · · > tn−1 > tn = 0} where
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for 0 < j < n, tj = (π
2

+ (n − 1)π)−1. So 1
t1

= π
2
, 1
t2

= 3π
2

, and so forth through 1
tn−1

= (2n−3)π
2

.
At all of these points, sin( 1

tj−1
) = ±1, with the sign changing from one term to the next. Hence,

the lengths of adjacent increments (when neither j nor j − 1 is 0 or n) are given by

|γ(tj)− γ(tj−1)| = |(tj,±tj)− (tj−1,∓tj−1)| =
√

(tj − tj−1)2 + (tj + tj−1)2 > tj + tj−1 > tj.

Now, tj = 2
(2j−1)π

> 1
4(j−1)

for 0 < j < n, and so in the range 2 ≤ j ≤ n− 1 (where neither j nor
j − 1 is 0 or n), we have

Λ(γ,Πn) >
n−1∑
j=2

|γ(tj)− γ(tj−1)| > 1

4

n−1∑
j=2

1

j − 1
=

1

4

n−2∑
k=1

1

k
.

Since
∑∞

k=1
1
k

= +∞, it follows that Λ(γ) = supΠ Λ(γ,Π) = +∞.

So the length of the curve traced out by the graph of our favorite pathological continuous
function is infinite.

We are interested in curves whose length is finite; these are called rectifiable. (The act of
rectifying a curve is to “unravel” it into a straight line without stretching.) There is a large class of
curves that are rectifiable, and with (nominally) computable lengths: C1 curves. To prove this, we
first need to briefly extend the integral to curves (i.e. vector-valued functions of a real variable).

DEFINITION 9.34. Let f : [a, b] → Rd be a function f = (f1, . . . , fn) where each component
fj is Riemann integrable on [a, b]; we still denote this by f ∈ R. The integral

∫ b
a
f is the vector

defined by componentwise integration:∫ b

a

f ≡
(∫ b

a

f1, . . . ,

∫ b

a

fd

)
.

As with derivatives, any theorem about integrals of scalar-valued functions extends immedi-
ately to vector-valued functions, so long as it applies separately to the components. For exam-
ple: the Fundamental Theorem of Calculus still holds: if f ∈ R and F′ = f (meaning that
F = (F1, . . . , Fd) is differentiable and F ′j = fj for each j), then

∫ b
a
f = F(b) − F(a). One re-

sult about integrals that does not obviously carry over to the vector-valued case is Lemma 9.23:
|
∫
f | ≤

∫
|f |. If we try to apply this componentwise, we get∣∣∣∣∫ f

∣∣∣∣ =

√√√√ n∑
j=1

∣∣∣∣∫ fj

∣∣∣∣2 ≤
√√√√ n∑

j=1

(∫
|f |
)2

but this is not related in any clear way to∫
|f | =

∫ √√√√ n∑
j=1

|fj|2.

Nonetheless, these two are comparable in precisely the same manner.

LEMMA 9.35. Let f ∈ R on [a, b]. Then |f | ∈ R as well, and∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.
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PROOF. By Lemma 9.22, f 2
j ∈ R for each j, and then by induction on Lemma 9.22, |f |2 =

f 2
1 + · · · + f 2

d is in R. Since x 7→
√
x is continuous on [0,∞), it then follows from Lemma 9.20

that |f | =
√
f 2

1 + · · ·+ f 2
d is in R as claimed. To prove the inequality, we take a hint from the

proof of the vector Mean Value inequality (Theorem 8.33: let v =
∫
f , and note that

|v|2 = v · v = v ·
∫

f =
d∑
j=1

vj

∫
fj =

∫ ( d∑
j=1

vjfj

)
=

∫
v · f

where we used Lemma 9.16 in the penultimate equality. Applying the Cauchy-Schwarz inequality,
we have v · f ≤ |v||f |. Since we know that |f | ∈ R, it then follows from Lemma 9.17 that∫
v ·f ≤

∫
|v||f | = |v|

∫
|f |. Thus |v|2 ≤ |v|

∫
|f |; so either v = 0 (in which case |v| = 0 ≤

∫
|f |)

or we can cancel one |v| > 0 to find |v| ≤
∫
|f |, which is the desired inequality. �

REMARK 9.36. We can define
∫
f dα for general increasing α in the same manner, and the

above proof shows that the inequality of Lemma 9.35 holds in this general setting; but we will not
have occasion to use it beyond the standard Riemann integral case.

With these facts about integration of vector-valued functions at hand, we can now prove that
C1 curves are rectifiable.

THEOREM 9.37. Let γ be a C1 curve on [a, b], meaning γ′ is continuous on [a, b]. Then γ is
rectifiable, and

Λ(γ) =

∫ b

a

|γ′(t)| dt.

PROOF. Let Π = {a = t0 < t1 < · · · < tn = b} be a partition. Applying the Fundamental
Theorem of Calculus, we have

γ(tj)− γ(tj−1) =

∫ tj

tj−1

γ′(t) dt

and thus, applying Lemma 9.35 we have

Λ(γ,Π) =
n∑
j=1

|γ(tj)− γ(tj−1)| =
n∑
j=1

∣∣∣∣∣
∫ tj

tj−1

γ′(t) dt

∣∣∣∣∣ ≤
n∑
j=1

∫ tj

tj−1

|γ′(t)| dt =

∫ b

a

|γ′(t)| dt.

(The last equality follows from Lemma 9.18, collapsing the telescoping sum.) Hence,
∫ b
a
|γ′(t)| dt

is an upper bound for Λ(γ,Π) over all Π, and thus Λ(γ) = supΠ Λ(γ,Π) ≤
∫ b
a
|γ′(t)| dt. We are

left only to prove the reverse inequality.
Fix ε > 0. Since γ′ is continuous on the compact interval [a, b], it is uniformly continuous,

and so there is some δ > 0 so that |γ′(s) − γ′(t)| < ε
2(b−a)

whenever |s − t| < δ. Let Π be any
partition with ∆tj < δ for each j. Then for any t ∈ [tj−1, tj], since |t − tj| < δ, it follows that
||γ′(t)| − |γ′(tj)|| < ε

2(b−a)
; in particular, |γ′(t)| ≤ |γ′(tj)|+ ε

2(b−a)
. Thus∫ tj

tj−1

|γ′(t)| dt ≤
∫ tj

tj−1

(|γ′(tj)|+ ε
2(b−a)

) dt = (|γ′(tj)|+ ε
2(b−a)

)∆tj. (9.9)
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For the first term here, we make the following clever estimate:

|γ′(tj)|∆tj =

∣∣∣∣∣
∫ tj

tj−1

γ′(tj) dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ tj

tj−1

[γ′(t) + γ′(tj)− γ′(t)] dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ tj

tj−1

γ′(t) dt

∣∣∣∣∣+

∣∣∣∣∣
∫ tj

tj−1

[γ′(tj)− γ′(t)] dt

∣∣∣∣∣
≤ |γ(tj)− γ(tj−1)|+ ε

2(b−a)
∆tj

where we’ve applied the Fundamental Theorem of Calculus again to the first term, and in the
second term used Lemma 9.35 and then the fact that |γ′(tj) − γ′(t)| < ε

2(b−a)
again. Combining

this with (9.9) and summing (using Lemma 9.18) gives∫ b

a

|γ′(t)| dt =
n∑
j=1

∫ tj

tj−1

|γ′(t)| dt ≤
n∑
j=1

(
|γ(tj)− γ(tj−1)|+ 2 ε

2(b−a)
∆tj

)
= Λ(γ,Π) + ε

≤ Λ(γ) + ε.

Since this holds true for all ε > 0, it follows that
∫ b
a
|γ′(t)| dt ≤ Λ(γ), as desired. �

REMARK 9.38. In the above proof, the continuity of γ′ was not needed to show that γ is
rectifiable; indeed, this holds whenever γ′ ∈ R, and the inequality Λ(γ) ≤

∫ b
a
|γ′(t)| dt holds true.

But this inequality may be strict if γ′ is Riemann integrable but not continuous.



CHAPTER 10

Sequences and Series of Functions

1. Lecture 13: May 10, 2016

Although we have been tacitly using many of the familiar functions from calculus (like cos,
sin, exp) and assuming regularity properties of them, we have yet to formally define and develop
these functions rigorously. To do so requires an understand of limits of sequences and series of
functions, to which this chapter is devoted.

For each n ∈ N, suppose fn be a real- or complex-valued function, defined on some set X
which does not vary with n; for us X will usually be an interval in R. We can then talk about
the pointwise limit of these functions (should it exist): for each x ∈ X , we consider the sequence
(fn(x))∞n=1, which is a sequence in R or C. (Indeed, we could consider more general cases where
the fn take values in some common metric space Y .)

DEFINITION 10.1. Let (fn) be a sequence of functions as described above. If the sequences
(fn(x)) converge for each x ∈ X , we define a new function f(x) ≡ limn→∞ fn(x). The function f
is called the pointwise limit of fn.

The questions that will be important to us concern whether common properties of the functions
fn carry over to the limit function f , should it exist; e.g. continuity, differentiability, integrability,
etc. In all cases, the answer will be a resounding no without further assumptions. Let’s consider
some examples.

EXAMPLE 10.2. For x ∈ R and n ∈ N, define

fn(x) =
1

(1 + x2)n
.

This is a rational function, and the denominator vanishes nowhere, so fn is C∞ on R. Note that
fn(0) = 1 for all n, so limn→∞ fn(0) = 1. But for x 6= 0, 1 + x2 > 1, and so 1

(1+x2)n
→ 0. Thus

f(x) = lim
n→∞

fn(x) =

{
1 x = 0

0 x 6= 0

Thus, (fn) has a pointwise limit, but even though the functions fn are all smooth, the limit function
is not even continuous.

EXAMPLE 10.3. Taking for granted that sin and cos are differentiable functions with sin′ =
cos, define functions fn on R by

fn(x) =
sin(nx)√

n
.

These functions are smooth, and since sin is bounded, limn→∞ fn(x) = 0 for all x, so the limit
function is also smooth. But note that

f ′n(x) =
√
n cos(nx).

133
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FIGURE 1. The function fn(x) = 1
(1+x2)n

, for n = 1, 5, 10, 50.

The behavior of these functions is not nearly as nice. For example, f ′n(0) =
√
n → +∞ as

n→∞. Even worse, f ′n(π) =
√
n(−1)n oscillates without bound. Evaluating at other points can

produce even worse behavior. So, while fn is differentiable and fn → 0 pointwise, the derivatives
fn do not converge pointwise to anything.

FIGURE 2. The function fn(x) = sin(nx)√
n

, for n = 1, 5, 10, 50.

EXAMPLE 10.4. Let fn(x) = nx(1 − x2)n for 0 ≤ x ≤ 1. Note that fn(0) = 0 for all
n. For 0 < x ≤ 1, the sequence x(1 − x2)n converges to 0 exponentially fast, and therefore even
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multiplying by n, we still have fn(x)→ 0 as n→∞ (cf. Proposition 2.30(4)). Thus, the pointwise
limit of (fn) is the constant function 0 on [0, 1]. Nevertheless, we may easily compute that∫ 1

0

fn(x) dx = n

∫ 1

0

x(1− x2)n dx = n

∫ 1

0

1

2
un du =

n

2(n+ 1)

where we made the change of variables u = 1− x2. Thus

0 =

∫ 1

0

lim
n→∞

fn(x) dx 6= lim
n→∞

∫ 1

0

fn(x) dx =
1

2
.

So although the functions fn are all integrable, as is their pointwise limit function, the limit of the
integrals is not the integral of the limit. Using similar arguments, note that gn(x) = nfn(x) still
satisfies limn→∞ gn(x) = 0 for all x, and yet following the above we have

∫ 1

0
gn(x) dx = n2

2(n+1)
→

+∞ as n → ∞; so we can even have the total area blowing up, even as the function converges to
0.

FIGURE 3. The function fn(x) = nx(1− x2)n, for n = 1, 5, 10, 100, 500.

What’s going on in all these examples? To understand at a lower level, let’s consider the
question of continuity of the limit function: when is it true for continuous function fn with
pointwise limit function f that limt→x f(t) = f(x) for each x? Writing this out further, since
limt→x fn(t) = fn(x), we are asking that

lim
t→x

lim
n→∞

fn(t) = lim
t→x

f(t) = f(x) = lim
n→∞

fn(x) = lim
n→∞

lim
t→x

fn(t).

I.e. we are asking whether we can interchange the limit. One might näively expect to be able to
change the order of limits at will, but this is not so. Indeed, a limit is characterized by a quantified
sentence “for all ε > 0, there exists a δ > 0 or N ∈ N. . . ”. Thus, a double limit involves two
such sentences in order, and we know that changing the order of quantifiers can really change
the meaning of the sentence. Indeed, we can easily exhibit examples of double limits (even for
sequences of real numbers) where the order matters big time.
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EXAMPLE 10.5. Consider the double sequence am,n = m
m+n

, for m,n ≥ 1.

For fixed m, lim
n→∞

am,n = lim
n→∞

m

m+ n
= 0. For fixed n, lim

m→∞
am,n = lim

m→∞

m

m+ n
= 1.

Thus
0 = lim

m→∞
lim
n→∞

am,n 6= lim
n→∞

lim
m→∞

am,n = 1.

It is actually not surprising that regularity properties of functions do not generally survive under
pointwise limit. If (fn) is a sequence of functions, and f(x) = limn→∞ fn(x) for each x, the limit
has no way of “seeing” any properties (local or global) of the functions; it is only paying attention
to each x separately, decoupled from the others. If we want the limit function f to reflect any
properties of the functions fn, we will need a stronger form of convergence. In fact, we already
introduced it in Example 5.2(4).

DEFINITION 10.6. Let (fn) be a sequence of real-valued functions defined on a common set
E. We say that (fn) converges to f uniformly, fn →u f , iff supx∈E |fn(x) − f(x)| converges to
0 as n → ∞. I.e. fn →u f iff for each ε > 0, there is an N ∈ N so that, for all n ≥ N and all
x ∈ E, |fn(x)− f(x)| < ε.

Like comparing continuity to uniform continuity, uniform convergence differs from pointwise
convergence by a reordering of quantifiers: here we must be able to choose N independently of
x, so we have ∀ε > 0 ∃N ∀n ≥ N ∀x, as opposed to the pointwise definition which beings with
∀x ∀ε > 0 ∃N ∀n ≥ N .

REMARK 10.7. If the functions (fn) in the sequence are all bounded, then we are talking
about metric convergence here: on the spaceB(E) of bounded real-valued functions defined on E,
du(f, g) = supx∈E |f(x)− g(x)| is a metric, as discussed in Example 5.2(4); then fn →u f simply
means du(fn, f) → 0, meaning that fn → f in the metric space. However, functions fn need not
be bounded in order to converge uniformly. For example, fn(x) = x + 1

n
converges uniformly to

f(x) = x, since fn(x) − f(x) = 1
n

which converges to 0 uniformly in x. But du(fn, 0) = ∞ for
all n, so du is not a well-defined metric on any space containing the functions fn (and 0).

Motivated by the above remark, the following result essentially says that du is a Cauchy-
complete metric.

PROPOSITION 10.8. A sequence (fn) of real-valued functions on E converges uniformly to
some function if and only if the sequence is uniformly-Cauchy: for each ε > 0, there is an N ∈ N
so that, for all n,m ≥ N and for all x ∈ E, |fn(x)− fm(x)| < ε.

PROOF. First suppose we know there exists a function f on E with fn →u f . Choose N so
that, for all n ≥ N and all x ∈ E, |fn(x)− f(x)| < ε

2
. Then for n,m ≥ N , and all x ∈ E,

|fn(x)− fm(x)| = |fn(x)− f(x) + f(x)− f(x)− fm(x)|

≤ |fn(x)− f(x)|+ |fm(x)− f(x)| < ε

2
+
ε

2
= ε.

Hence, (fn) is uniformly Cauchy, as claimed. For the converge, suppose (fn) is uniformly Cauchy.
Fix any t ∈ E. Then |fn(t)− fm(t)| ≤ supx∈E |fn(x)− fm(x)|, and since the latter is Cauchy, it
follows that (fn(t)) is a Cauchy sequence in R. Since R is Cauchy complete, it follows that there
is a real number f(t) such that fn(t) → f(t). Thus we have found a pointwise limit for (fn). We
must prove that fn →u f . To that end, fix ε > 0, and let N be chosen so that |fn(x)− fm(x)| < ε

2
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for all n,m ≥ N . Since fm(x) → f(x), there is some Nx so that |fm(x) − f(x)| < ε
2

for all
m ≥ Nx. Thus, taking n ≥ N and m ≥ max{N,Nx}, we have

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)| < ε

2
+
ε

2
= ε.

Although the set of allowed m depends on x, this makes no difference to the final statement: we
see that when n ≥ N (which is independent of x) |fn(x)− f(x)| < ε. Thus fn →u f . �
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2. Lecture 14: May 12, 2016

In Example 10.2, we saw that a sequence of continuous (even smooth) functions can have a
pointwise limit that is discontinuous. That is: pointwise limits of functions do not preserve limits
in general. The following theorem shows that uniform convergence does preserve limits, and hence
continuity.

THEOREM 10.9. Let E be a subset of a metric space, and let fn →u f on E. Let x ∈ E ′, and
suppose that the following limits exist for all n:

lim
t→x

fn(t) = an.

then the sequence (an) converges to limt→x f(t). In particular, if fn are all continuous at a point
x, then their uniform limit f is also continuous at x.

PROOF. Fix ε > 0, and choose N so that |fn(t)− fm(t)| < ε
2

for all t ∈ E and all n,m ≥ N .
By the Squeeze Theorem, it follows that |an − am| ≤ ε

2
< ε for all n,m ≥ N . Thus, we have

proved that (an) is a Cauchy sequence in R, and therefore converges to some limit a. Then we
have, for each t ∈ E,

|f(t)− a| ≤ |f(t)− fn(t)|+ |fn(t)− an|+ |an − a|.
Since fn →u f , we can choose N1 such that |f(t) − fn(t)| < ε

3
for all n ≥ N1 and t ∈ E.

As an → a, we can choose N2 so that |an − a| < ε
3

for all n ≥ N2. Now, for any given n ≥
max{N1, N2}, since limt→x fn(t) = an, we can choose some δ > 0 so that for all t ∈ Bδ(x)\{x},
|fn(t) − an| < ε

3
. Thus, for this choice of δ, we see that |f(t) − a| < ε

3
+ ε

3
+ ε

3
= ε when

0 < |t− x| < δ, and we have shown that limt→x f(t) = a as claimed.
For the final statement: if fn is continuous at x, then an = limt→x fn(t) = fn(x). The

conclusion is then is that fn(x) converges to limt→x f(t); but by definition fn(x) → f(x), so
f(x) = limt→x f(t), and ergo f is continuous at x. �

We can now put together Proposition 10.8 and Theorem 10.9, with Example 5.2(4), to yield
the following.

COROLLARY 10.10. Let X be a metric space, and let Cb(X) denote the set of real-valued
bounded continuous functions on X . Then du(f, g) = supx∈X |f(x) − g(f)| is a complete metric
on Cb(X).

PROOF. We know that du is a metric on the set of bounded functions, and therefore on the
subset Cb(X). Let (fn) be a Cauchy sequence in this metric space. By Proposition 10.8, (fn)
converges uniformly to some function f . Since the fn are all continuous, so is f by Theorem
10.9. Moreover, since fn →u f , there is some N so that supx |fN(x) − f(x)| < 1, and so
|f(x)| < |fN(x)| + 1 for all x ∈ X . But fN is bounded by, say, M , and so |f(x)| ≤ M + 1, so
f is also bounded. Thus there is a limit f of (fn) in Cb(X), proving that this is a complete metric
space. �

REMARK 10.11. The set Cb(X) plays a central role in analysis and probability theory. It is
also worth noting that it is a vector space: if f, g ∈ Cb(X) then so is f + g, and λf ∈ Cb(X) for
all λ ∈ R. The metric du(f, g) = supx |f(x)− g(x)| comes from a norm on this vector space: the
uniform norm ‖f‖u = supx |f(x)|; then du(f, g) = ‖f − g‖u. (Another common notation for the
uniform norm is ‖f‖∞.) In addition to the properties of a metric, the norm also has homogeneity:
‖λf‖u = |λ|‖f‖u. We will discuss this and other norms on functions further in later lectures.
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Let us examine again Example 10.2, where a sequence fn(x) = 1
(1+x2)n

of continuous functions
converges pointwise to a discontinuous function f = 1{0}. By Theorem 10.9, it must be true that
the convergence is non-uniform. Indeed, let ε > 0. For x 6= 0, we want to find the smallest Nx so
that |fn(x)− f(x)| = fn(x) < ε. So we want

1

(1 + x2)n
< ε ⇐⇒ (1 + x2)n >

1

ε
⇐⇒ n >

ln(1/ε)

ln(1 + x2)
.

Hence, the smallest Nx is

Nx =

⌈
ln(1/ε)

ln(1 + x2)

⌉
.

As x approaches 0, 1 + x2 → 1, and ln(1 + x2)→ 0; hence Nx →∞ as x→ 0. Therefore, there
can be no uniform N that works for all x. We see directly that (fn) does not converge uniformly.

On the other hand, it is entirely possible for a sequence of functions (fn) to converge point-
wise but non-uniformly to a continuous function. Example 10.4 demonstrates this: the functions
fn(x) = nx(1 − x2)n tend to 0 for each x, so the limit is continuous; however, using calculus,
we can easily check that the only critical points of the polynomial fn are x = ± 1√

2n+1
, and that

furthermore the maximum value of fn on [0, 1] is achieved at the critical point in that interval,
where the value is

fn

(
1√

2n+ 1

)
=

n√
2n+ 1

(
2n

2n+ 1

)n
.

Now (
2n

2n+ 1

)n
=

(
1− 1

2n+ 1

)n
→ e−1/2

and n√
2n+1

→ ∞, so we see that sup0≤x≤1 fn(x) → ∞ as n → ∞ (which is suggested by Figure
3). Thus, supx |fn(x)− 0| → ∞, which means that fn 6→u 0, even though the limit 0 turns out to
be continuous. We can see this phenomenon with a simpler example.

EXAMPLE 10.12. Let fn : (0, 1)→ R be given by fn(x) = 1
nx+1

. For each n, fn is a continuous
function (it is continuous on R except at−1/n which is not in (0, 1)). For each fixed x, fn(x)→ 0
as n→∞, so the pointwise limit of these continuous functions is, again, continuous. Nevertheless,
note that fn(1/n) = 1

2
for all n, so supx∈(0,1) |fn(x) − 0| ≥ 1

2
; in fact, fn extends continuously to

[0, 1], and on this interval the maximum is fn(0) = 1, so supx∈(0,1) fn(x) = 1. In any case, this
means that fn 6→u 0 uniformly on (0, 1).

There is one situation where the converse of Theorem 10.9 does hold: that pointwise conver-
gence of a sequence of continuous functions to a continuous function implies uniform convergence.
This next result is “Dini’s monotone convergence theorem”.

THEOREM 10.13 (Dini’s Monotone Convergence Theorem). Let K be a compact set, and let
(fn) be a sequence of real-valued continuous functions on K. Suppose that the pointwise limit
f = limn→∞ fn is continuous, and furthermore that fn(x) ≥ fn+1(x) for all x ∈ K. Then
fn →u f on K.

Note: since fn →u f iff −fn →u −fn, we could instead assume that fn ≤ fn+1 and get the same
conclusion.

PROOF. Set gn = fn − f . Then gn → 0 pointwise, gn is continuous, and gn ≥ gn+1. Our
goal is to prove that gn →u 0. Fix ε > 0, and let Kn ⊂ K be the set of points Kn 3 x where
gn(x) ≥ ε; i.e. Kn = g−1

n ([ε,∞)). Since gn is continuous and [ε,∞) is closed, it follows that Kn
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FIGURE 4. The function fn(x) = 1
nx+1

on x ∈ (0, 1), for n = 1, 2, 5, 10, 100.

is a closed subset of the compact set K, so Kn is compact. Now, since gn ≥ gn+1, if gn+1(x) ≥ ε,
then gn(x) ≥ ε, meaning that Kn+1 ⊆ Kn. So (Kn) is a nested sequence of compact sets. If they
were all nonempty, Proposition 5.33 would imply that

⋂
nKn is nonempty. However, given any

fixed x ∈ K, we know that gn(x) → 0, which means that gn(x) < ε for all large n, which means
that x /∈ Kn for all large n. Thus,

⋂
nKn = ∅, and so it follows that the Kn = ∅ for some n;

since they are nested, this means there is some N so that Kn = ∅ for all n ≥ N . This means that,
for all x ∈ K, gn(x) < ε for all n ≥ N ; note that this N is uniform in x. As gn(x) is a decreasing
sequence with limit 0, it follows that gn(x) ≥ 0, and so we have |gn(x)− 0| < ε for all n ≥ N and
x ∈ K. This says precisely that gn →u 0. �

REMARK 10.14. Note that the sequence fn(x) = 1
nx+1

of Example 10.12 is actually a de-
creasing sequence of continuous functions, with a continuous limit, and yet the convergence is not
uniform; this highlights the necessity of the compactness of the domain. Indeed, in that example,
the functions fn all extend continuously to the compact set K = [0, 1], but the pointwise limit
function on that domain is limn→∞ fn = 1{0} (since fn(0) = 1 for all n), which is not continuous.

Now we have a good idea of when continuity passes to the limit, and why Example 10.2
failed to transfer continuity to its limit: in general, one should have uniform convergence to pass
continuity to the limit. Let us now reconsider Example 10.4, fn(x) = nx(1−x2)n, which converges
pointwise to 0 on [0, 1], a perfectly integrable function, but

∫ 1

0
fn 6→

∫ 1

0
0. As we saw above, the

convergence isn’t uniform. In fact, if we don’t have uniform convergence, it can be worse still: it’s
possible for the pointwise limit of a sequence of integrable functions to be non-integrable.

EXAMPLE 10.15. The rational numbers Q are countable; in particular, it is possible to enu-
merate those rational numbers in [0, 1]: Q ∩ [0, 1] = {q1, q2, q3, . . .}. Consider the function
fn =

∑n
j=1 1{qj}. That is:

fn(x) =

{
1, x ∈ {q1, q2, . . . , qn}
0, otherwise
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The function fn is continuous at all points other than {q1, q2, . . . , qn}, which is a finite set; there-
fore, by Theorem 9.12, fn ∈ R. Also, for any ε > 0, build the partition Πn containing the points
0, 1, and all points qj ± ε

2n
(possibly shrinking smaller if any qj is closer to 0 or 1 than ε

2n
). Then

on the n intervals [qj − ε
2n
, qj + ε

2n
], the supremum of fn is 1 and the infimum is 0; on all the other

intervals, fn is constantly 0, and so we have

U(fn,Πn) = n ·
(
ε

2n
− −ε

2n

)
= ε, L(fn,Πn) = 0.

Since we can do this for any ε > 0, it follows that U(fn) = L(fn) = 0, so
∫ 1

0
fn = 0 for each n.

However, notice that limn→∞ fn = 1Q∩[0,1] is Dirichlet’s function of Example 6.11. Indeed,
for any rational number q ∈ Q ∩ [0, 1], there is some m ∈ N with q = qm, and so fn(q) = 1 for
all n ≥ m; on the other hand, if x is irrational, fn(x) = 0 for all n. As we showed in Example
9.6, the limit function limn→∞ fn is not Riemann integrable, even though all the functions fn are,
with integral 0. So this is not a matter of “mass escaping to infinity” as in Example 10.4; pointwise
limits simply do not preserve integrability in general.
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3. Lecture 15: May 17, 2016

As with continuity, to avoid the kinds of pathologies in Example 10.15, in general we require
uniform convergence for integrals to play nicely with limits.

THEOREM 10.16. Let a < b in R, let α : [a, b] → R be monotone increasing, and suppose
fn ∈ R(α) for each n. If fn →u f on [a, b], then f ∈ R(α), and

lim
n→∞

∫ b

a

|fn − f | dα = 0.

In particular, it follows that

lim
n→∞

∫ b

a

fn dα =

∫ b

a

f dα.

PROOF. For each n, let εn = supx∈[a,b] |fn(x) − f(x)|; by assumption, εn → 0 as n → ∞.
Note that

fn(x)− εn ≤ f(x) ≤ fn(x) + εn, ∀x ∈ [a, b].

Since f1 is bounded, this means f is bounded, so its upper and lower sums are well-defined. Given
any partition Π, taking sup and inf of all terms on each subinterval and multiplying by ∆αj , we
get

L(fn − εn,Π, α) ≤ L(f,Π, α) ≤ U(f,Π, α) ≤ U(fn + εn,Π, α).

Also, since L(g,Π, α) is clearly linear in g, using the usual telescoping sum we find that Taking
supΠ in the first inequality, infΠ in the third inequality, and using the fact that L(f, α) ≤ U(f, α),
we have

L(fn − εn, α) ≤ L(f, α) ≤ U(f, α) ≤ U(fn + εn, α). (10.1)
Since fn ± εn ∈ R(α), the upper and lower integrals are equal, and by linearity of the integral we
have ∫ b

a

(fn ± εn) dα =

∫ b

a

fn dα± εn[α(b)− α(a)]. (10.2)

Putting (10.1) and (10.2) together, we see that L(f, α) and U(f, α) are both in the interval[∫ b

a

fn dα− εn[α(b)− α(a)],

∫ b

a

fn, dα + εn[α(b)− α(a)]

]
. (10.3)

In particular, it follows that the difference between these two is ≤ the length of the interval, so

0 ≤ U(f, α)− L(f, α) ≤ 2εn[α(b)− α(a)].

This is true for all n, and εn → 0 as n → ∞, so it follows that U(f, α) − L(f, α) = 0, i.e.
f ∈ R(α). Now, since

∫ b
a
f dα = U(f, α) is in the interval in (10.3), we have∣∣∣∣∫ f dα−

∫
fn dα

∣∣∣∣ ≤ εn[α(b)− α(a)].

Since εn → 0, it follows that
∫ b
a
fn dα →

∫ b
a
f dα as claimed. But we also easily see the stronger

claim: since |fn(x)− f(x)| ≤ εn for all x,∫
|fn − f | dα ≤

∫
εn dα = εn[α(b)− α(a)]→ 0.

This concludes the proof. �
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REMARK 10.17. Referring to Homework 7, this means that the metric distance d1(fn, f)→ 0,
provided that fn →u f ; i.e. uniform convergence is stronger than R1 convergence.

As we noted before proving Dini’s monotone convergence theorem, continuity can be pre-
served under limits even without uniform convergence. Similarly, it is possible for the integral to
be preserved under pointwise limits even if uniform convergence fails. In general, uniform conver-
gence is the best tool to prove that the integral interchanges with limits, but there are some tools
that work in a more general framework. We state a result here that is due to Arzelà, originally
proved in 1885.

THEOREM 10.18 (Arzelà’s Montone and Dominated Convergence Theorems). Let (fn) be a
sequence of functions in R on [a, b], and suppose that there is a pointwise limit fn → f such that
f ∈ R on [a, b]. Suppose additionally that either

(a) (fn) is monotone: (fn(x))∞n=1 is either monotone increasing for all x or monotone de-
creasing for all x; or

(b) (fn) is uniformly bounded: there is some constant M so that |fn(x)| ≤ M for all x ∈
[a, b].

Then
∫ b

a

|fn − f | dα→ 0 as n→∞, and in particular
∫ b

a

fn dα→
∫ b

a

f dα.

Theorem 10.18 can be a powerful tool for analyzing limits of integrals, but it is important to
note that you must know that the pointwise limit function is integrable a priori. As Example 10.15
shows, this can fail, even when the sequence fn is monotone or uniformly bounded (both of which
are true for that example). Theorem 10.16, with stronger conditions, gives the integrability of
the limit function for free, and so we will rely on this in most cases (when uniform convergence
actually holds).

We will not prove Theorem 10.18 presently. Although it is possible to give a proof based
only on what we have developed so far (essentially a complicated iterative argument using Dini’s
monotone convergence theorem), it is quite intricate and tricky. More’s the point, this theorem
really belongs in the domain of measure theory: in the theory of the stronger Lebesgue integral,
both the statement and the proof of the theorem are much easier (the Lebesgue integrability of the
limit function comes for free, and the proof is only a few lines long once one has the power of
measure theory at hand).

Now that we have seen that continuity and integration behave well under uniform limits, we
turn our attention to derivatives. However, let us consider again Example 10.3, fn(x) = sin(nx)√

n
.

We saw that this sequence tends to 0, and in fact it tends to 0 uniformly: |fn(x)| ≤ 1√
n

, so we can
make |fn(x)| < ε for all x by choosing n (uniformly in x) bigger than 1

ε2
. But, as we saw in that

example, the derivative f ′n is very badly behaved, not having a pointwise limit as n → ∞. So, it
will certainly not be true that fn →u f tells us much about the limit of f ′n, or even whether the
limit exists.

In fact, more or less the best we can do in general is to cheat and do it backwards: if we already
know that f ′n converges uniformly, then it nearly follows that fn converges uniformly to some
differentiable f , and then f ′ is the uniform limit of the f ′n. Even this is not true as stated, though:
for example you could have fn = n is constant for each n; then f ′n = 0 certainly converges
uniformly to 0, but fn does not converge at all. If we rule out this kind of uniform blow up by
insisting that fn(x0) converges at least at one point x0, we do get a true theorem.
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THEOREM 10.19. Let fn ∈ C1[a, b] be a sequence of continuously differentiable functions.
Suppose there is at least one point x0 ∈ [a, b] where fn(x0) converges. If f ′n →u g on [a, b], then
there is a C1 function f on [a, b] with fn →u f , and f ′ = g.

In fact, a stronger theorem holds true: we need not assume that the functions fn are C1, only
differentiable; then the conclusion is that the function f is differentiable and f ′ = g. The proof of
this stronger theorem is much more complicated (though still reasonable); we choose the slightly
weaker statement to give a very nice proof based on the Fundamental Theorem of Calculus.

PROOF. Let us agree to the convention that
∫ s
t
f = −

∫ t
s
f if s < t. By the Fundamental

Theorem of Calculus, for each x ∈ [a, b] we have∫ x

x0

f ′n(t) dt = fn(x)− fn(x0).

Since f ′n →u g on [a, b], we also have f ′n →u g on [x0, x] (or [x, x0] if x < x0), and so by Theorem
10.16, it follows that

∫ x
x0
f ′n →

∫ x
x0
g. By assumption limn→∞ fn(x0) = y0 exists. Thus, we have

fn(x) = fn(x0) +

∫ x

x0

f ′n(t) dt→ y0 +

∫ x

x0

g(t) dt. (10.4)

By Theorem 10.9, since f ′n is continuous, so is the uniform limit g. Hence, by the Fundamental
Theorem of Calculus, the function F (x) =

∫ x
x0
g(t) dt is C1 with F ′ = g. Set f = y0 + F , which

is also C1 with f ′ = F ′ = g, and (10.4) says that fn → f pointwise.
Thus fn converges pointwise to a C1 function f with f ′ = g. We are left to show that the

convergence is uniform. Again we apply the Fundamental Theorem of Calculus: for each x,

fn(x)− f(x) =

[
fn(x0) +

∫ x

x0

f ′n(t) dt

]
−
[
y0 +

∫ x

x0

g(t) dt

]
= [fn(x0)− y0] +

∫ x

x0

[f ′n − g].

Thus

sup
x∈[a,b]

|fn(x)− f(x)| ≤ |fn(x0)− y0|+ sup
x∈[a,b]

∣∣∣∣∫ x

x0

[f ′n − g]

∣∣∣∣ .
The first term tends to 0 by assumption; for the second term, let εn = supx∈[a,b] |f ′n(x) − g(x)|.
Then ∣∣∣∣∫

x0

[f ′n − g]

∣∣∣∣ ≤ ∫ x

x0

|f ′n − g| ≤
∫ x

x0

εn = εn|x− x0| ≤ (b− a)εn.

This is true uniformly in x. So, since εn → 0 by assumption, we have

sup
x∈[a,b]

|fn(x)− f(x)| ≤ |fn(x0)− y0|+ (b− a)εn → 0.

Thus fn →u f , concluding the proof. �

Theorem 10.19 is really a theorem about antiderivatives, not derivatives. In general, without a
priori knowledge of the uniform convergence of the derivative f ′n, we cannot use converge prop-
erties of fn to conclude anything about f ′n. (We will see a little later how extreme this statement
is: we can construct a sequence of C∞ functions fn that converges uniformly to a function that
is nowhere differentiable!) There is one important large class of functions for which we can use
Theorem 10.19 to conclude smoothness. To get there, we must firs talk a little about series of
functions.
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DEFINITION 10.20. Let fn : E → R be a sequence of real-valued functions defined on a
common set E. For each x ∈ E, let sn(x) =

∑n
j=1 fj(x). If the sequence sn : E → R converges

pointwise, we denote the limit limn→∞ sn =
∑

n fn. If sn converge uniformly, we say that the
series

∑
n fn converges uniformly.

EXAMPLE 10.21. Consider the functions fn(x) = x2

(1+x2)n
; these are the same as Example 10.2,

modified with a factor of x2. We showed in that Example that 1
(1+x2)n

converges to 0 pointwise
except at 0, where it converges to 1; hence, here fn(x)→ 0 pointwise for all x, so there is a chance
that the series converges. Consider the series

∑∞
n=0 fn. For x = 0, this is just the sum of 0, so

we get 0; for x 6= 0, we have x2 times a geometric series with ratio r = 1
1+x2

< 1, so the series
converges:

∞∑
n=0

fn(x) = x2

∞∑
n=0

(
1

1 + x2

)n
= x2 · 1

1− 1
1+x2

= 1 + x2, for x 6= 0.

Thus, the series converges pointwise to the function (1 + x2)1x 6=0. From Theorem 10.9, it follows
that the series does not converge uniformly: the functions fn are all continuous, hence so are the
partial sums sn, but the limit function is discontinuous at 0.

EXAMPLE 10.22. On the other hand, consider the straightforward geometric series: let fn(x) =
xn. For |x| < 1, we know that

∑∞
n=0 fn(x) = 1

1−x ≡ s(x). The limit function is not continuous
at 1, and so we can conclude that the convergence of

∑
n x

n is not uniform on the whole interval
(−1, 1). Indeed, we have

s(x)−
n∑
j=0

xj =
∞∑

j=n+1

xj = xn+1

∞∑
k=0

xj = xn+1s(x)

and so ∣∣∣∣∣s(x)−
n∑
j=0

xj

∣∣∣∣∣ =
|x|n+1

1− x
.

The supremum of this function on (−1, 1) is∞ for all n, so the series does not converge uniformly.
However, if we restrict the domain to (−1, 1 − δ] for any δ ∈ (0, 1), we have 1 − x ≥ δ and
|x|n ≤ (1− δ)n, so

sup
−1<x≤1−δ

∣∣∣∣∣s(x)−
n∑
j=0

xj

∣∣∣∣∣ ≤ (1− δ)n

δ

and this uniform bound tends to 0. Thus, the series
∑

n x
n converges uniformly on (−1, 1− δ] for

each δ.

Example 10.22 demonstrates an important, simple technique, which goes under the name the
Weierstrass M -test.

LEMMA 10.23 (Weierstrass M -test). Let fn : E → R be real-valued functions. Suppose that,
for each n, there is a constant 0 ≤ Mn < ∞ so that fn(x) ≤ Mn for all x ∈ E. If

∑
nMn < ∞,

then
∑

n fn converges uniformly.

PROOF. Let sn(x) =
∑n

j=1 fj(x). For any m > n, we have

|sm(x)− sn(x)| =

∣∣∣∣∣
m∑

j=n+1

fj(x)

∣∣∣∣∣ ≤
m∑

j=n+1

|fj(x)| ≤
m∑

j=n+1

Mj.
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Since the sequence Sn =
∑n

j=1 Mj converges, it follows that it is Cauchy, so for any ε > 0 there is
some N such that |Sm−Sn| < ε for m > n ≥ N . But Sm−Sn =

∑m
j=n+1 Mj , and so we see that

the sequence of functions (sn)∞n=1 is uniformly Cauchy (since N was chosen independently of x).
The result now follows from Proposition 10.8. �

In Example 10.22, the functions fn(x) = xn are bounded only by 1 on (−1, 1), and the series∑
n 1 is not convergent, so the Weierstrass M -test does not apply. But if we restrict the domain to

[−1 + δ, 1 − δ], we have |fn(x)| = |x|n ≤ (1 − δ)n, and the series
∑

n(1 − δ)n = 1
1−(1−δ) = 1

δ
is

convergent for δ > 0; so we do get uniform convergence on this interval. (The explicit computation
in Example 10.22 showed that we can even include the interval close to −1; this does not follow
from the Weierstrass M -test.)
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4. Lecture 16: May 19, 2016

Example 10.22 gives a case where a uniform limit of smooth functions is smooth. We will
shortly explore what features of this example make that possible, but it is important to stress that
smoothness of a uniform limit is not guaranteed by smoothness of the sequence of functions. To
demonstrate just how far from true that would be, we have the following example which shocked
the mathematical world when it was discovered by Weierstrass in 1872.

THEOREM 10.24. Let 0 < a < 1, and choose a positive odd integer b large enough that
π

ab−1
< 2

3
(i.e. ab > 1 + 3π

2
). For example, take a = 1

2
and b = 11. Define the function W : R→ R

by

W (x) =
∞∑
n=0

an cos(bnπx).

Then W is uniformly continuous on R, but is differentiable at no point.

A complete proof of Theorem 10.24 (which is 3 pages long) is posted to the course website as
a separate document. It gets a little involved in the precise details, but the key idea is as follows:
first, W is continuous because the partial sums (n = 0 up to n = N ) are continuous (in fact they
are C∞), and the series converges uniformly because |an cos(bnπx)| ≤ |a|n which is summable
(cf. the Weierstrass M -test); hence the uniform limit function W is continuous by Theorem 10.9.
However, the terms have very high frequency oscillations (with amplitudes damping out), which
makes the derivative larger and larger, much like in Example 10.3.

Rudin presents a simplified example of a continuous, nowhere-differentiable function which is
also constructed as a uniformly convergent series. Its disadvantage is that the terms in the series
are not differentiable: they have increasingly dense sets of sharp corners which might lead one to
believe it is this proliferation of non-smooth points that results in the non-smoothness of the limit
functions. This is not the case; the problem is the oscillations, which can be accomplished with
smooth functions, cf. Theorem 10.24 above. We will nevertheless present Rudin’s example here
for completeness.

THEOREM 10.25. Let ϕ : R → R be the continuous function defined by ϕ(x) = |x| for
−1 ≤ x ≤ 1, and extended periodically to satisfy ϕ(x+ 2) = ϕ(x) for all x ∈ R. Then define

R(x) =
∞∑
n=0

(
3

4

)n
ϕ(4nx).

The function R is continuous on R, but nowhere differentiable.

PROOF. The continuity of ϕ yields the continuity of all the partial sums, and then the uniform
convergence of the series via the Weierstrass M -test yields continuity of R, as described above for
Weierstrass’s function W . We will now show, for any given x ∈ R, that R is not differentiable at
x. To do so, we will construct a sequence δm → 0 so that

lim
m→∞

∣∣∣∣R(x+ δm)−R(x)

δm

∣∣∣∣ =∞. (10.5)

Well, for any δ ∈ R,∣∣∣∣R(x+ δ)−R(x)

δ

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=0

(
3

4

)n
ϕ(4n(x+ δ))− ϕ(4nx)]

δ

∣∣∣∣∣ .
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Denote this inside difference quotient as γn(δ):

γn(δ) =
ϕ(4nx+ 4nδ)− ϕ(4nx)

δ
.

If 4nδ is an even integer, then since ϕ is 2-periodic, we’ll have γn(δ) = 0. In fact, for a given m,
we define

δm = ±1

2
· 1

4m

(where the sign ± will be chosen depending on x in a moment). Then |4nδm| = 22(n−m)−1, so
4nδm is an even integer for all n > m, and so γn(δm) = 0 for n > m. This means that∣∣∣∣R(x+ δm)−R(x)

δm

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=0

(
3

4

)n
γn(δm)

∣∣∣∣∣ =

∣∣∣∣∣
m∑
n=0

(
3

4

)n
γn(δm)

∣∣∣∣∣ .
We now apply the reverse triangle inequality to get∣∣∣∣R(x+ δm)−R(x)

δm

∣∣∣∣ ≥ (3

4

)n
|γm(δm)| −

m−1∑
n=0

(
3

4

)n
|γn(δm)|. (10.6)

For the positive term |γm(δm)|, note that 4mδm = ±1
2
, so

|γm(δm)| =
|ϕ(4mx± 1

2
)− ϕ(4mx)|
|δm|

.

Since the interval [4mx − 1
2
, 4mx + 1

2
] has length 1, it contains at most one integer in its interior.

We now choose the sign of δm so that there is no integer between 4mx ± 1
2

and 4mx. Note that
the function ϕ is linear with slope ±1 on any interval between two integers; thus, with this choice,
ϕ(4mx± 1

2
)− ϕ(4mx) = ±1

2
. Thus

|γm(δm)| =
| ± 1

2
|

|δm|
= 4m.

For the other (negative) terms in (10.6), we use the following fact: for all s, t ∈ R, |ϕ(s)−ϕ(t)| ≤
|s− t|. When there is no integer between s and t this is true with equality (as noted above); if there
is an integer between them, this follows from the reverse triangle inequality ||s| − |t|| ≤ |s − t|.
Thus, in general, we have

|γn(δ)| = |ϕ(4nx+ 4nδ)− ϕ(4nx)|
|δ|

≤ |4
nδ|
|δ|

= 4n.

So the negative terms in (10.6) all satisfy

−|γn(δm)| ≥ −4n.

Thus, (10.6) yields∣∣∣∣R(x+ δm)−R(x)

δm

∣∣∣∣ ≥ (3

4

)m
· 4m −

m−1∑
n=0

(
3

4

)n
· 4n = 3m −

m−1∑
n=0

3n =
1

2
(3m + 1).

In summary, there is a sequence δm → 0 so that |R(x+δm)−R(x)
δm

| → ∞. It follows that R′(x) does
not exist. �
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Let us turn back, now, to a setting where uniformly convergent series of smooth functions do,
in the end, turn out to be smooth. We can generalize the idea of Example 10.22 to study power
series, the biggest and most important class of functions in Calculus.

DEFINITION 10.26. Let (an) be a sequence of real (or complex) numbers. The associated
power series is the function defined by

f(x) =
∞∑
n=0

anx
n

defined on the set of those x for which the series converges.

Of course, the definition might be silly: it might be that there are no x (other than 0, for
which the series becomes finite f(0) = a0) converges. For example, f(x) =

∑∞
n=0 n

nxn has
this property: no matter how small |x| is, nn|x|n = (n|x|)n → ∞ as n → ∞ (since, by the
Archmidean property, n|x| > 1 for all large n). However, making use of the Root Test, we can
find a huge collection of nontrivial power series.

THEOREM 10.27. Let (an) be a sequence in R or C, and let R = 1
lim sup |an|1/n

> 0 (defined
to be∞ if the lim sup is 0). Then the power series

∑
n cnx

n converges uniformly on any compact
subset of (−R,R).

The number R is called the radius of convergence of the power series.

PROOF. Let K ⊂ (−R,R) be a compact subset. Since K is closed and bounded, there is some
σ < R so that K ⊆ [−σ, σ] (this follows from the fact that |K| is closed and bounded, and since
(−R,R) is open, σ = sup |K| < R). For all x ∈ K, we therefore have |anxn| ≤ |an|σn. Note
that lim sup |anσn|1/n = σ lim sup |an|1/n. If R = ∞, this is 0; otherwise it is σ

R
< 1. Hence,

by the Root Test, the series
∑

n |an|σn converges. The result now follows from the Weierstrass
M -test. �

We can now prove the power series are differentiable, and in fact C∞.

THEOREM 10.28. Let f(x) =
∑∞

n=0 anx
n be a power series with radius of convergence R.

Then f ∈ C∞(−R,R), and for all k f (k) is given by the following power series, which also has
radius of convergence R:

f (k)(x) =
∞∑
n=k

n(n− 1) · · · (n− k + 1)anx
n−k. (10.7)

PROOF. We begin with the case k = 1. Define

g(x) =
∞∑
n=1

nanx
n−1

for those x for which the series converges. (We can reindex to make this an explicit power series,
but it’s more convenient not to do so at the moment.) Applying the Root Test, the series converges
provided lim sup |nanxn−1|1/n converges. If x = 0 this is clear; if |x| > 0, then by Proposition
2.30,

|xn−1|1/n = |x|
n−1
n = |x|1+ 1

n−1 → |x|.
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By the same proposition, n1/n → 1. Thus, applying Proposition 2.29,

lim sup
n→∞

|nanxn−1|1/n ≤ lim sup
n→∞

n1/n · lim sup
n→∞

|x|1+ 1
n−1 · lim sup |an|1/n =

|x|
R
.

Hence, if |x| < R, the the Root Test guarantees that the series defining g(x) converges. What’s
more, following the proof of Theorem 10.27, if σ < R, for any x ∈ [−σ, σ] we have |nanxn−1| ≤
n|an|σn−1, and since σ/R < 1, the above shows that the series

∑
n nanσ

n−1 converges. Thus, by
the Weierstrass M -test, the series g converges uniformly on [−σ, σ]. Thus g is the uniform limit
of the partial sums gn(x) =

∑n
j=1 jajx

j−1. These are polynomials; note that that gn = f ′n where
fn(x) =

∑n
j=0 ajx

j . By Theorem 10.27, fn converges uniformly to f on [−σ, σ]. So we have
C1[−σ, σ] functions fn that converge at many points to f , and fn ∈ C1[−σ, σ] with f ′n →u g. By
Theorem 10.19, it follows that f ∈ C1[−σ, σ], with f ′ = g.

We can now proceed by induction. Suppose we have shown that f ∈ Ck, with f (k) given by
(10.7). Let us reindex the sum to give

f (k)(x) =
∞∑
m=0

n(n− 1) · · · (m+ 1)am+kx
m

by assumption having the same radius of convergenceR. Set bm = n(n−1) · · · (m+1)am+k; then
h = f (k) is a new power series h(x) =

∑∞
m=0 bmx

m with radius of convergenceR, and so applying
the base case above to h, we find that h isC1 on (−R,R) with derivative h′(x) =

∑∞
m=1 mbmx

m−1.
But this means that f is Ck+1 on (−R,R) with derivative

f (k+1)(x) = h′(x) =
∞∑
m=1

m · [n(n− 1) · · · (m+ 1)am+k]x
m−1

and reindexing again this gives

f (k+1)(x) =
∞∑

n=k+1

n(n− 1) · · · (n− k)anx
n−k−1

which is precisely (10.7) at k → k + 1. This concludes the induction, and the proof. �

REMARK 10.29. Theorem 10.28 says that power series can be differentiated “term by term”:
we can pretend the series terminates finitely and differentiate it precisely as if it were a polynomial.

Functions that are given by a convergent power series are called analytic. Actually, we are
being too restrictive here: everything above is for power series centered at 0; we can just as well
discuss power series like

∑
n an(x − x0)n centered at any point x0 ∈ R. A function is called

analytic on a domain if, at each point x0 in the domain, it has a power series expansion centered at
x0 with positive radius of convergence. The preceding two theorems are about functions analytic
at 0. It is a theorem (which we could cover at this point, but won’t) that if f has a power series
centered at x0 with radius of convergence R, then f is analytic on (x0 − R, x0 + R) (and perhaps
beyond): i.e. we can “re-center” the power series. For our present purposes, we will be content
only with power series centered at 0.
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5. Lecture 17: May 24, 2016

Theorem 10.28 says that analytic functions are C∞. The converse is generally false: there are
(many) C∞ functions that are not analytic. To see examples, we first need to connect analyticity
with Taylor’s theorem.

COROLLARY 10.30. If f is analytic in a neighborhood of 0, then it is given by its Taylor series

f(x) =
∞∑
n=0

f (n)(0)

n!
xn.

In particular, analytic functions have unique power series expansions.

PROOF. Let f be given by a convergent power series f(x) =
∑∞

n=0 anx
n. By Theorem 10.28,

we may compute f (k)(0) = k!ak. This yields the result. �

REMARK 10.31. Regarding uniqueness: the above shows that if two power series agree on
a neighborhood of 0, then they have the same coefficients and so are equal everywhere on their
common domain of convergence. In fact, much more than this is true: it turns out that if two
power series agree on any set that has a limit point, then they are equal everywhere. This is a
connectedness result that we could cover here, but is best left to a course on complex variables.

Combining this with Taylor’s theorem, we can get a sense of what should be true in order for a
C∞ function to be analytic.

PROPOSITION 10.32. Let f ∈ C∞(−R,R). Suppose that, for each σ ∈ (0, R),
1

k!
sup
|x|,|ξ|≤σ

|f (k)(ξ)xk| → 0 as k →∞.

Then f is analytic on (−R,R).

PROOF. By Taylor’s theorem, for each x ∈ [−σ, σ] and each k ∈ N, there is some point ξ(x, k)
between 0 and x such that

f(x) =
k−1∑
n=0

f (n)(0)

n!
xn +

1

k!
f (k)(ξ(x, k))xk.

Subtracting, taking absolute values, and taking sup over |x| ≤ σ yields

sup
|x|≤σ

∣∣∣∣∣f(x)−
k−1∑
n=0

f (n)(0)

n!
xn

∣∣∣∣∣ ≤ 1

k!
sup
|x|≤σ
|f (k)(ξ(x, k))xk| ≤ 1

k!
sup
|x|,|ξ|≤σ

|f (k)(ξ)xk| → 0.

Thus, the Taylor polynomials T k−1
0 f converge uniformly to f on [−σ, σ] for any σ < R. Since

T k−1
0 f also converges to the Taylor series, it follows that f is given by its convergent Taylor series

on (−R,R) as claimed. �

The condition of Proposition 10.32 is stronger than absolutely necessary for a function to be
analytic, but in practice it is the easiest way to verify that a given function is analytic.

EXAMPLE 10.33. Suppose that E : (−R,R)→ R is a function which satisfies

E(x+ y) = E(x)E(y) for all x, y ∈ (−R,R) such that x+ y ∈ (−R,R).

Note then that for any x ∈ (−R,R), E(x) = E(x + 0) = E(x)E(0), so E(x)(E(0)− 1) = 0 for
all x. Thus, either E(x) = 0 for all x, or E(0) = 1. In the latter (non-boring) case, let us make the
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additional assumption that E is differentiable at 0. (This assumption must be added: it does not
follow from the functional equation E(x + y) = E(x)E(y).) Then E ′(0) = limt→0

E(t)−1
t

exists.
We can then compute for any x ∈ (−R,R), taking t small enough that x+ t ∈ (−R,R),

E ′(x) = lim
t→0

E(x+ t)− E(x)

t
= lim

t→0

E(x)E(t)− E(x)

t
= E(x) lim

t→0

E(t)− 1

t
= E ′(0)E(x).

So E is differentiable at all points in its domain, and setting λ = E ′(0), E satisfies the differential
equation E ′(x) = λE(x) for all x. Iterating this, we see that E ′′(x) = λ2E(x), E ′′′(x) = λ3E(x),
and in generalE(k)(x) = λkE(x). SinceE is defined on (−R,R), this shows thatE ∈ Ck(−R,R)
for all k, so in fact E ∈ C∞(−R,R). What’s more, for any σ < R, we have

1

k!
sup
|x|,|ξ|≤σ

|E(k)(ξ)xk| = |λ|
k

k!
sup
|x|,|ξ|≤σ

|E(ξ)xk| = (|λ|σ)k

k!
sup
|ξ|≤σ
|E(ξ)|.

Since E is C∞(−R,R), it is certainly continuous on the compact interval [−σ, σ], hence bounded
there. What’s more, the sequence (|λ|σ)k

k!
tends to 0 as k →∞ (this follows from arguments similar

to the proof of Lemma 4.20). Hence, by Proposition 10.32, E is analytic in (−R,R).
We can now compute the Taylor series expansion of E: we have E(n)(0) = λnE(0) = λn, and

so

E(x) =
∞∑
n=0

λn

n!
xn.

Note that the coefficients an = λn

n!
satisfy an+1

an
= λn+1

(n+1)!
· n!
λn

= λ
n+1
→ 0, and hence by Lemma

4.14, lim sup |an|1/n = 0 as well. By Theorem 10.27, it follows that the power series expansion
for E actually converges uniformly on all of R (i.e. the radius of converge R can be taken to be
R =∞).

In the special case λ = 1, we thus define the exponential function

exp(x) =
∞∑
n=0

xn

n!
.

This function is analytic on R; the more general function E above is then simply E(x) = exp(λx).
Comparing to Example 4.19, note that the number e is given by e = exp(1). We began this
discussion with the property E(x+ y) = E(x)E(y), and we concluded that any function with this
property that happens to be differentiable at 0 must be analytic on R and have the form E(x) =
exp(λx) for some λ ∈ R (or, recalling that we discarded the boring case E(x) = 0, we could
have the constant 0 function as well). That doesn’t prove that the function exp has this property
(a priori, it could be true that there is no such differentiable function); but actually, exp does have
the given property. It is possible to prove this by manipulating power series, but it is much more
elegant to prove this using a differential equation approach; this is an exercise on Homework 9.

Hence, we do know that exp(x+y) = exp(x) exp(y) for all x, y ∈ R. From this, it then follows
that exp(n) = en for positive integers n; then exp(−n)en = exp(−n+n) = 1, so exp(−n) = e−n;
and moreover (exp(1/m))m = exp(m · 1/m) = exp(1) = e, so exp(1/m) = e1/m. Combining
these shows that if q ∈ Q then exp(q) = eq. Since both exp and x 7→ ex are continuous functions,
that agree on the dense set Q in R, we see that exp(x) = ex.

EXAMPLE 10.34. The functions cos and sin are defined geometrically as follows: for θ ∈
[0, 2π), (cos θ, sin θ) is the point on the unit circle such that the arclength of the circle curve from
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(0, 0) to (cos θ, sin θ) is θ. (This is how angles are actually defined: angle θ means arclength θ on
a unit circular arc.) From this definition, it is fun and not difficult to prove the following facts:

• | sin θ| ≤ 1 and | cos θ| ≤ 1, and cos2 θ+ sin2 θ = 1 (by definition: (cos θ, sin θ) is a point
on the unit circle).

• limθ→0(cos θ, sin θ) = (1, 0). (Follows from the fact that the circle is a continuous curve.)

• limθ→0
sin θ
θ

= 1, and limθ→0
1−cos θ

θ
= 0. (The first follows by the Squeeze Theorem

applied to the inequality cos θ < sin θ
θ

< 1 for θ small, which can be deduced from a
triangle diagram.)

• If θ+φ ∈ [0, 2π), then sin(θ+φ) = sin θ cosφ+cos θ sinφ and cos(θ+φ) = cos θ cosφ−
sin θ sinφ. (These follow from more intricate triangle diagrams.)

• Extending cos and sin to all of R by declaring them to be 2π-periodic, all of the above
properties continue to hold for the extended functions.

From these facts (whose fun proofs have been known since Ancient Greece, and you should lookup
on the interwebz), it is straightforward to deduce that sin and cos are differentiable functions on R,
with sin′ = cos and cos′ = − sin. For example, we have

sin′(θ) = lim
φ→0

sin(θ + φ)− sin θ

φ
= lim

φ→0

sin θ cosφ+ cos θ sinφ− sin θ

φ

= sin θ lim
φ→0

cosφ− 1

φ
+ cos θ lim

φ→0

sinφ

φ
= cos θ.

We therefore have a repeating pattern of derivatives: sin(k) and cos(k) are all among the four func-
tions {± sin,± cos}. In particular, this means that all derivatives exist, so sin and cos are C∞, and
moreover all the derivatives are bounded by 1. Thus, applying Proposition 10.32, we have for any
σ ∈ R

1

k!
sup
|x|,|ξ|≤σ

| sin(k)(ξ)xk| ≤ σk

k!
→ 0, and

1

k!
sup
|x|,|ξ|≤σ

| cos(k)(ξ)xk| ≤ σk

k!
→ 0.

Thus, sin and cos are analytic on R. We can then compute their Taylor series: since sin(0) = 0
and cos(0) = 1, this gives the familiar

sinx = x− x3

3!
+
x5

5!
− · · · =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

cosx = 1− x2

2!
+
x4

4!
− · · · =

∞∑
n=0

(−1)n
x2n

(2n)!
.

In both cases, the coefficient ak of xk is either 0 or ± 1
k!

, and it follows that lim sup |ak|1/k = 0; so,
as with the exponential function, the Taylor series of the trigonometric functions cos and sin have
radius of convergence∞.

REMARK 10.35. Power series make sense for complex variables as well, since the series∑
n anz

n can be made sense of (in terms of the complex modulus) as a limit in a metric space.
In that wider context, the power series of exp z, cos z, and sin z all make perfect sense as conver-
gent series in C. Using the fact that the sequence in follows the pattern (1, i,−1,−i) repeated,
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which mirrors the derivative pattern of cos and sin, it is easy to check from the power series that

eiθ = cos θ + i sin θ.

The special case θ = π gives Euler’s famous formula eiπ = −1, or eiπ + 1 = 0. More generally,
one can check from the power series that, for all z ∈ C, exp(iz) = cos(z) + i sin(z). Manipulating
this, one can express cos and sin in terms of exp:

cos(z) =
1

2
[exp(iz) + exp(−iz)], sin(z) =

1

2i
[exp(iz)− exp(−iz)].

Thus, the trigonometric functions and the exponential function are really just different (complex)
linear combinations of the same function. A full understanding of this topic requires a deeper
development of complex variables, which we leave to a separate course on the subject.

EXAMPLE 10.36. Consider the function

f(x) =

{
e−1/x x > 0

0 x ≤ 0.

This function is C∞ on (0,∞) and (−∞, 0). For x < 0, f (k)(x) = 0 for all k, of course. For
x > 0, it is a little messy to compute all the derivatives; the first few are

f ′(x) =
1

x2
e−1/x, f ′′(x) =

(
− 2

x3
+

1

x4

)
e−1/x, f (3)(x) =

(
6

x4
− 6

x5
+

1

x6

)
e−1/x.

In general, there is a polynomial pk of degree 2k so that f (k)(x) = pk(1/x)e−1/x. This is easily
proved by induction. The base case k = 0 is immediate, and the cases k = 1, 2, 3 are explicitly
done above. Assuming we’ve proved it up to level k, we compute that f (k+1)(x) is equal to

d

dx
f (k)(x) =

d

dx
[pk(1/x)e−1/x] = −p

′
k(1/x)

x2
e−1/x + pk(1/x)

e−1/x

x2
=
pk(1/x)− p′k(1/x)

x2
e−1/x.

Set pk+1(t) = t2[pk(t) − p′k(t)]; then we’ve shown that f (k+1)(x) = pk+1(1/x)e−1/x. Since pk is
a polynomial of degree 2k, p′k is a polynomial of degree 2k − 1, and so pk+1 is a polynomial of
degree 2k + 2 = 2(k + 1), demonstrating the inductive claim.

Thus, we have seen that f (k)(x) is a (finite) linear combination of terms of the form x−me−1/x

for x 6= 0. Now, from the power series expansion for exp, we have for t > 0

et =
∞∑
n=0

tm

m!
>

tn+1

(n+ 1)!
.

Thus e−t = 1
et
< (m+1)!

tm+1 for any m, when t > 0. Taking t = 1/x shows that

x−me−1/x =
e−1/x

xm
<

(m+ 1)!

(1/x)m+1
· 1

xm
= (m+ 1)!x

and this tends to 0 as x → 0+. This limx→0+ f
(k)(x) = 0 for all k; also, since f (k)(x) = 0 for

x < 0, limx→0− f
(k)(x) = 0. In addition

lim
x→0+

f (k)(x)− 0

x
= lim

x→0+

1

x
pk(1/x)e−1/x = 0

using the same argument as above; and of course the left limit of the difference quotient is also 0.
Thus, f (k) is actually continuous at 0, with value 0, for all k.
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So we see that f ∈ C∞(R), and that f (k)(0) = 0 for all k. Its Taylor series centered at 0 is
thus (T0f)(x) = 0. But this does not converge to the function’s value for any x > 0: f(x) > 0 for
all x > 0. Thus, although the radius of convergence of the Taylor series is∞, it does not actually
converge to the value of the function on any interval around 0 – the remainder term does not tend
to 0.

There are several important points to glean from this example. First, we see f is an example of
a C∞ function that is not analytic. Second, this demonstrates that it is very important, when trying
to prove that a function is analytic, to show that the remainder term in Taylor’s theorem tends to 0;
it is not enough to check that the Taylor series has positive radius of convergence, as it may not in
fact converge to the function! Third: there exist C∞ functions that are 0 on an interval; this was not
clear before this example. In fact, we can finesse this and produce an example of a C∞c function: a
function which is C∞ smooth, and also “compactly-supported”, meaning that it is 0 outside some
compact interval. Indeed, with f as above, just take

ψ(x) = f(x)f(1− x).

When x ≤ 0, f(x) = 0 so ψ(x) = 0; when x ≥ 1, f(1− x) = 0 so ψ(x) = 0; on the other hand,
ψ(x) > 0 for x ∈ (0, 1), and of course ψ ∈ C∞. This is a typical example of a “bump function”,
and the existence of such smooth, compactly supported functions is of utmost important to analysis
and geometry.

FIGURE 5. The function f on [0, 1
2
] (left), and the bump function ψ on [0, 1] (right).

Notice that f(x) is extremely flat as x→ 0.

REMARK 10.37. Example 10.36 gives a function that is C∞ but fails to be analytic at a point.
It is, however, analytic at all other points, as the function

1

x
=

1

λ
· 1

1− (1− x/λ)
=

1

λ

∞∑
n=0

(1− x/λ)n =
∞∑
n=0

(−1)nλn−1(x− λ)n

has a convergent power series expansion with radius of convergence 1
λ

centered at any point λ > 0;
and since exp is analytic, so is the composition exp(−1/x) (as can easily be proved by manipulat-
ing power series algebraically).
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In the spirit of pathologies we’ve studied in this class, we might wonder if one can produce a
function that is C∞ but not analytic at any point. Indeed, such functions exist, and they are abun-
dant (there is a precise sense in which “most” C∞ functions are nowhere analytic). For example,
it can be shown that the series

f(x) =
∞∑
n=0

e−2n/2 cos(2nx)

converges to C∞ function on R such that the radius of convergence of the Taylor series of f
centered at any point is 0. For a non-contrived example from probability theory, let Xn be an
infinite sequence of independent random variables each having the uniform distribution on [0, 1].
Set

X =
∞∑
n=1

2−nXn.

Then X is a random variable taking values in [0, 1]. In 1966, J. Fabius showed that the cumulative
distribution function F (x) = P(X ≤ x) is a C∞ function which is analytic nowhere. Indeed, he
showed that F is differentiable on (0, 1) with F ′(x) = 2F (2x) when 0 ≤ x ≤ 1

2
(and F (1− x) =

1 − F (x) for 1
2
≤ x ≤ 1). Iterating this shows that F is C∞, similarly to how we showed exp

is C∞; but the scalings by 2 inside and outside the function have the effect that the Taylor series
coefficients of F centered at any point (other than 0 and 1) blow up so fast that the radius of
convergence is always 0. You can find a nice picture of Fabius’s function on Wikipedia.
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6. Lecture 18: May 26, 2016

We’ve now seen a large class of functions (analytic functions) that are uniform limits of smooth
functions, and are themselves smooth. This is to be contrasted with Weierstrass’s function, cf.
Theorem 10.24, which is a uniform limit of smooth functions, yet is itself nowhere differentiable.
Now, analytic functions are uniform limits of polynomials, so you might be tempted to believe
that polynomials are somehow special with regard to uniform limits. In fact, nothing could be
farther from the truth: we will soon see that every continuous function (including Weierstrass’s
nowhere differentiable function) on a compact interval is a uniform limit of polynomials. To prove
this, we will first develop a ubiquitous and useful tool called convolution which is widely used to
approximate functions by smoother functions. Convolution is built using integration; as a first step,
we present the following results on continuity and differentiability of functions given by integrating
a two-variable kernel.

LEMMA 10.38. Let K ⊆ Rd be a compact set, a < b in R, and α : [a, b] → R be monotone
increasing. Let f : K × [a, b]→ R be a continuous function. Define F : K → R by

F (x) =

∫ b

a

f(x, t) dα(t).

Then F is a continuous function.

The proof of this Lemma is an exercise on Homework 9.
Now, consider the special case that K is also a compact interval, and suppose that f(x, t)

is differentiable in the x variable. Under mild additional conditions, it turns out that F is then
differentiable in the x variable, and we can compute its derivative by differentiating under the
integral sign.

THEOREM 10.39. Let u < v and a < b in R, and let α : [a, b] → R be monotone increasing.
Let f : [u, v] × [a, b] → R be a continuous function. Suppose also that for each fixed t ∈ [a, b],
the function s 7→ f(s, t) is differentiable on (u, v), and that the function fs(s, t) = ∂

∂s
f(s, t) is

continuous. Then F (s) =
∫ b
a
f(s, t) dα(t) is differentiable on (u, v), and F ′(s) =

∫ b
a
fs(s, t) dα(t).

I.e.
d

ds

∫ b

a

f(s, t) dα(t) =

∫ b

a

∂

∂s
f(s, t) dα(t).

PROOF. For s ∈ (u, v), choose δ > 0 small enough that [s − δ, s + δ] ⊂ (u, v). Then for
|h| < δ, f(s+ h, t) is well-defined, and we have for 0 < |h| ≤ δ

F (s+ h)− F (s)

h
=

∫ b

a

f(s+ h, t)− f(s, t)

h
dα(t).

Now, define a function g : [s− δ, s+ δ]× [a, b]→ R by

g(h, t) =

∫ 1

0

fs(s+ rh, t) dr.

Notice that g(0, t) = fs(s, t), while for 0 < |h| ≤ δ, since fs is continuous, we may apply the
Fundamental Theorem of Calculus and the chain rule to compute that

g(h, t) =
f(s+ h, t)− f(s, t)

h
.
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The function (h, t, r) 7→ fs(s + rh, t) is continuous, and so Applying Lemma 10.38 with r as the
integration variable, we conclude that g is continuous. We can then apply Lemma 10.38 once more,
this time to g with t as the variable of integration, with the conclusion that h 7→

∫ b
a
g(h, t) dα(t) is

continuous, and in particular at h = 0. Thus

lim
h→0

F (s+ h)− F (s)

h
= lim

h→0

∫ b

a

g(h, t) dα(t) =

∫ b

a

g(0, t) dα(t) =

∫ b

a

fs(s, t) dα(t).

This concludes the proof. �

Now, let us define the convolution of two functions.

DEFINITION 10.40. Let f, g : R → R be functions that are both Riemann integrable on all
compact intervals. Then for each fixed y, the function y 7→ f(x − y) and y 7→ g(x − y) are
also Riemann integrable on all compact intervals, as can be readily checked. Thus the function
y 7→ f(x−y)g(y) is Riemann integrable on all compact intervals. Since one of f and g is 0 outside
some compact set, the same is true of the function y 7→ f(x− y)g(y). If this integrand is 0 outside
[a, b], the convolution f ∗ g : R→ R is defined by

(f ∗ g)(x) =

∫ b

a

f(x− y)g(y) dy.

The value of (f∗g)(x) does not depend on which a < b are chosen, provided that y 7→ f(x−y)g(y)
is 0 outside [a, b].

The (closure of) the set where a function is nonzero is called its support. The last comment is that
we are really just integrating over the support of y 7→ f(x − y)g(y); if we integrate over a larger
interval, it makes no difference to the value since the integrand is 0 outside its support.

One property of convolution that may not be obvious from the definition is that it doesn’t matter
what order you convolve the functions.

LEMMA 10.41. For f, g as in Definition 10.40, and any x ∈ R, (f ∗ g)(x) = (g ∗ f)(x).

PROOF. Fix x, and choose a < b so that f(x − y)g(y) = 0 for y /∈ [a, b]. In the integral
defining (f ∗ g)(x), we make the change of variables t = x− y. Then dt = −dy, and we have

(f ∗ g)(x) =

∫ b

a

f(x− y)g(y) dy =

∫ x−b

x−a
f(t)g(t− x) (−dt) =

∫ x−a

x−b
g(t− x)f(t) dt.

Since f(x− y)g(y) = 0 when y /∈ [a, b], it follows that g(t− x)f(t) = 0 when t /∈ [x− b, x− a].
Since the definition of convolution does not depend on which interval outside the support of the
integrand is used, it follows that the last integral is equal to (g ∗ f)(x). �

So convolution is a symmetric operation on functions, which produces a new function. The
question is: what kind of function is f ∗ g? Let’s consider a few examples.

EXAMPLE 10.42. For δ > 0, let fδ = 1
2δ
1[−δ,δ]. This function is 0 outside the compact interval

[−δ, δ], and is Riemann integrable on all compact intervals. If g is any Riemann integrable function,
we compute that

(fδ ∗ g)(x) =

∫ δ

−δ
g(x− y)fδ(y) dy =

∫ δ

−δ
g(x− y)

1

2δ
dy =

1

2δ

∫ x+δ

x−δ
g(t) dt

where we have made the change of variables x− y = t in the last step. So: fδ ∗ g is the “running
average” of g: for each x, it replaces g(x) with the average value g takes on [−δ, δ]. Notice that if



6. LECTURE 18: MAY 26, 2016 159

g is continuous, the Fundamental Theorem of Calculus shows that fδ ∗ g is differentiable at all x:
letting G(x) =

∫ x
0
g(t) dt, we have

(fδ ∗ g)(x) =
G(x+ δ)−G(x− δ)

2δ
.

It follows then that limδ→0(fδ ∗ g)(x) = g(x) for all x. In fact,

sup
x∈R
|(fδ ∗ g)(x)− g(x)| = sup

x∈R

∣∣∣∣ 1

2δ

∫ x+δ

x−δ
g(t) dt− g(x)

∣∣∣∣ = sup
x∈R

∣∣∣∣ 1

2δ

∫ x+δ

x−δ
[g(t)− g(x)] dt

∣∣∣∣
≤ 1

2δ
sup
x∈R

∫ x+δ

x−δ
|g(t)− g(x)| dt.

Now, suppose that g is uniformly continuous. Fix ε > 0, and let δ0 > 0 be (uniformly) small
enough that |g(t)− g(s)| < ε whenever |s− t| < δ0. Then for all δ ≤ δ0, we have

sup
x∈R
|(fδ ∗ g)(x)− g(x)| ≤ 1

2δ
sup
x∈R

∫ x+δ

x−δ
ε dt = ε.

Thus, we see that (fδ ∗ g) →u g as δ → 0 in this case. (We have thus far only defined uniform
convergence for a sequence of functions, but the definition makes sense with the natural modifi-
cations for a family of functions depending on a continuous parameter like δ. Alternatively, you
could interpret the above as saying that the sequence, say, f1/n ∗ g converges uniformly to g.)

Note, in this example, that if we start with a continuous g, the convolution fδ ∗ g is actually
differentiable, even though fδ is discontinuous, and g need not be differentiable. While we don’t
always get a “step up” like this, it is true that the convolution of two functions is always at least as
smooth as the smoothest of the two.

LEMMA 10.43. Let f : R → R be a Ck function, and let g : [a, b] → R be continuous; extend
g to R by setting g = 0 outside [a, b]. Then f ∗ g is Ck on R, and (f ∗ g)(k) = f (k) ∗ g.

The proof of Lemma 10.43 is an exercise on Homework 10.
Example 10.42 shows that convolution can be used to produce an averaging operation on a

function, and this is more or less the way we will always use it. In fact, we can generalize the same
properties to a wide class of function sequences called approximate identities.

LEMMA 10.44. Let ψn : R → R for n ∈ N be a sequence of functions that are non-negative,
all supported in a given compact interval, such that

∫
ψn(y) dy = 1 for all n, and such that

for each δ > 0, lim
n→∞

∫
|y|>δ

ψn(y) dy = 0. (10.8)

(Such sequences are called approximate identities.) If f is a continuous function on R, then ψn ∗ f
converges uniformly to f on compact subsets of R.

One easy way to achieve the conditions of an approximate identity sequence is to let the support
interval of ψn shrink to 0, and then normalize the functions to each have integral 1, such as in
Example 10.42. But, as we will see below, it is sometimes convenient not to assume this; we only
need that the total mass of ψn is asymptotically concentrated in an arbitrarily small neighborhood
of 0.
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PROOF. Let r > 0 be large enough that all the supports of all the ψn are contained in [−r, r].
Since

∫ r
−r ψn(y) dy = 1, we can write f(x) =

∫ r
−r f(x)ψn(y) dy for any n. Then

|(ψn ∗ f)(x)− f(x)| =
∣∣∣∣∫ r

−r
ψn(y)[f(x− y)− f(x)] dy

∣∣∣∣ ≤ ∫ r

−r
ψn(y)|f(x− y)− f(x)| dy.

Now, let K ⊂ R be compact; then K ⊆ [−s, s] for some s > 0. For all x ∈ K, therefore, x− y is
contained in [−r − s, r + s] for all |y| ≤ r. Since f is continuous on R, it is uniformly continuous
on [−r− s, r+ s]. Fix ε > 0, and select a uniform δ > 0 (with δ < r+ s) so that |f(s)− f(t)| < ε

2

for |s− t| < δ with s, t ∈ [−r − s, r + s]. Then we can breakup the integral∫ r

−r
ψn(y)|f(x−y)−f(x)| dy =

∫ δ

−δ
ψn(y)|f(x−y)−f(x)| dy+

∫
δ<|y|≤r

ψn(y)|f(x−y)−f(x)| dy.

For the first term, x− y and x are contained in [−r − s, r + s] and |(x− y)− x| = |y| < δ. Thus,
|f(x − y) − f(x)| < ε

2
in that term. For the second term, let M = max{f(t) : |t| ≤ r + s}; then

|f(x− y)− f(x)| ≤ 2M for |y| ≤ r. In total, then, we have

sup
x∈K
|(ψn ∗ f)(x)− f(x)| ≤

∫ δ

−δ
ψn(y) · ε

2
dy +

∫
δ<|y|≤r

ψn(y) · 2M dy

≤ ε

2
+ 2M

∫
|y|>δ

ψn(y) dy.

By (10.8), we may choose N (uniform in x) large enough that the remaining integral is < ε
4M

for
n ≥ N . This shows that ψn ∗ f →u f on K, as desired. �

By Lemma 10.43, if the approximate identity sequence ψn consists of all smooth functions (say
C∞), then the functions ψn ∗ f will all be C∞ as well, no matter how rough f is. This is a very
important technique: it is always possible to approximate any continuous function f uniformly by
smooth functions.
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7. Lecture 19: May 31, 2016

We will momentarily use Lemma 10.44 to approximate any continuous function uniformly
by polynomials. To see how, we note that convolving any function f with a polynomial p yields a
polynomial. In fact, we only need p to be equal to a polynomial on a certain compact set determined
by the support of f ; p can be anything we like outside this. To makes things simple, we take the
support of f to be [0, 1].

LEMMA 10.45. If f is Riemann integrable and supported in [0, 1], and if p : [−1, 1] → R is
equal to a polynomial on this domain, then p ∗ f is a polynomial on [0, 1].

PROOF. Because p is a polynomial on [−1, 1], by applying the binomial theorem, we see that
for x, y ∈ [−1, 1], (x, y) 7→ p(x−y) is a polynomial in two variables. In particular, we can expand

p(x− y) =
d∑

k=0

ak(y)xk

where d is the degree of p, and ak are single-variable polynomials. Now, by definition (p∗f)(x) =∫ 1

0
p(x − y)f(y) dy; for x, y ∈ [0, 1], the difference x − y is in [−1, 1], where p is a polynomial.

Then using the linearity of the integral, we have

(p ∗ f)(x) =

∫ 1

0

p(x− y)f(y) dy =

∫ 1

0

d∑
k=0

ak(y)xkf(y) dy =
d∑

k=0

xk
∫ 1

0

ak(y)f(y) dy.

The polynomial ak(·) is Riemann integrable on [0, 1], as is f , so it follows that these integrated
coefficients are finite real numbers, and this shows that for x ∈ [0, 1] x 7→ p ∗ f(x) is a polynomial
function. �

REMARK 10.46. In general, if f is supported in a given compact set K, for this proof to work
we see that p has to equal a polynomial on K −K: the set of all points of the form x − y where
x, y ∈ K. If p is simply a polynomial everywhere, this is certainly true, but it will be advantageous
to allow p to equal a polynomial in some interval and be identically 0 outside that interval.

Combining Lemmas 10.44 and 10.45 allows us to prove the Weierstrass approximation theo-
rem.

THEOREM 10.47 (Weierstrass Approximation Theorem). Let a < b in R, and let f ∈ C[a, b].
There exists a sequence of polynomials pn with pn →u f .

PROOF. We will use an approximate identity sequence, and invoke Lemma 10.44. To do so
requires extending f to be continuous on all of R. We take care of this, at the same time shifting
all the action into the unit interval, by translating and dilating. Indeed, if we define

f̃(x) = f(a+ x(b− a))− (f(a) + x[f(b)− f(a)]) ,

then f̃ is continuous on [0, 1] and f̃(0) = f̃(1) = 0. Hence we can extend f̃ continuously to R
by setting it equal to 0 outside [0, 1]. Once we find polynomials p̃n uniformly approximating f̃ ,
it follows that the polynomials q̃n(x) = p̃n(x) + f(a) + x[f(b) − f(a)] uniformly approximate
f(a+ x(b− a)), and by translating and dilating back, pn(x) = q̃n(x−a

b−a ) uniformly approximate f ,
as the reader and easily verify. We will henceforth replace the notation f̃ with f , and assume that
f is continuous on R and supported in [0, 1].
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The proof now simply consists in showing there exists an approximate identity sequence con-
sisting of polynomials on [−1, 1]. There are many; the most well known is the sequence of Bern-
stein polynomials, defined by

ψn(x) =
1

cn
(1− x2)n1[−1,1](x), where cn ≡

∫ 1

−1

(1− x2)n dx.

By Lemma 10.45, ψn ∗ f is a polynomial function on [0, 1] for each n. It is immediately verifiable

FIGURE 6. The Bernstein polynomials ψn, for n = 1, 2, 5, 10, 100.

than ψn is non-negative, supported in [−1, 1] for all n, and normalized so that
∫ 1

−1
ψn(y) dy = 1.

To show that {ψn} is an approximate identity, we need to show all the mass of ψn concentrates
near 0. To that end, fix δ ∈ (0, 1). We note that∫ 1

0

(1− x2)n dx ≥
∫ δ

0

(1− x2)n dx ≥
∫ δ

0

x

δ
(1− x2)n dx

since x
δ
≤ 1 for x ∈ [0, δ]. By the same reasoning, we have∫ 1

δ

(1− x2)n dx ≤
∫ 1

δ

x

δ
(1− x2)n dx.

Since ψn(x) = ψn(−x), we therefore have∫
|x|>δ

ψn(x) dx = 2

∫ 1

δ

1

cn
(1− x2)n dx ≤ 2

δcn

∫ 1

δ

x(1− x2)n dx.

Similarly

cn =

∫ 1

−1

(1− x2)n dx = 2

∫ 1

0

(1− x2)n dx ≥ 2

∫ δ

0

x

δ
(1− x2)n dx.

Putting these together gives

∫
|x|>δ

ψn(x) ≤

∫ 1

δ

x(1− x2)n dx∫ δ

0

x(1− x2)n dx

.
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Making the change of variables u = 1− x2 gives du = −2x dx, and so this ratio becomes∫ 1

δ

x(1− x2)n dx∫ δ

0

x(1− x2)n dx

=

∫ 1−δ2

0

un du∫ 1

1−δ2
un du

=
(1− δ2)n+1

1− (1− δ2)n+1
.

The reader can now quickly check that this tends to 0 as n→∞.
Thus, we have shown that ψn is an approximate identity sequence. Invoking Lemma 10.44, it

follows that pn = ψn∗f converges to f uniformly on [0, 1]. But, as shown above following Lemma
10.45, pn is a polynomial function on [0, 1]. This completes the proof. �

The Weierstrass approximation theorem is a very useful tool for theoretical computations. But
in many instances it would be better to work with a different class of functions more adapted to
the problem at hand. The question then becomes: what’s so special about polynomials that allows
them to uniformly approximate continuous functions? Can we find other families of nice functions
that uniformly approximate continuous functions?

This was answered with a resounding yes!, by Marshall Stone in 1937. Stone was a towering
intellect at the University of Chicago who attracted other world-class faculty there and turned that
department into one of the best in the country; the period when he was most active there was called
the “Stone Age”.

Here are the properties of the family of polynomial functions on a compact set that turn out to
be responsible for their uniform density in the continuous functions.

DEFINITION 10.48. Let F be a collection of real (or complex) valued functions all defined on
some set X .

• F is an algebra if it is closed under pointwise addition, scalar multiplication, and point-
wise multiplication. That is: given f, g ∈ F and λ ∈ R (or C), the functions f + g, λf ,
and fg are also in F .
• If the functions in F are C-valued, say that F is self-adjoint if it is closed under complex

conjugation: for each f ∈ F , f is also in F .
• We say F separates points if, for any pair x 6= y in X , there is some function f ∈ F

such that f(x) 6= f(y).
• F is said to vanish nowhere if there is no single point x ∈ X such that f(x) = 0 for all
f ∈ F .

These properties all hold for polynomials: polynomials are in fact the smallest algebra of
functions that contain both constant functions and the function f(x) = x; they separate points
since the function f(x) = x does this for any pair of distinct points; and they vanish nowhere since
they contain constant non-zero functions. Stone realized that these properties are all that is needed
to guarantee that a family F of functions can be used to uniformly approximate all continuous
functions on a compact metric space X . His original proof was quite complicated; here we will
present a simplified for of his proof that he published in Mathematics Magazine in 1948. First, let
us use the language of metric spaces from the beginning.

Let X be a compact metric space. By the extreme values theorem, any function f : X → R (or
C) is bounded (for the complex case, just consider the real-valued function |f |, which is continuous
as well, so achieves its maximum on X). Thus, the uniform “metric”

du(f, g) = sup
x∈X
|f(x)− g(x)|
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is a genuine metric on C(X). Then saying that a sequence fn of functions in C(X) uniformly
approximates a function f ∈ C(X) means that du(fn, f)→ 0 as n→∞; in other words, fn → f
in the metric space (C(X), du). Hence, in this language, the Weierstrass approximation theorem
says that every function f ∈ C[a, b] is the uniform limit of some sequence pn of polynomials
on [a, b]: i.e. in the metric space (C[a, b], du), the set of polynomials is a dense set. We usually
summarize this by calling them uniformly dense. In other words, if P[a, b] denotes the set of
polynomial functions, then the uniform closure of P[a, b] (the closure of this set in the metric
space (C[a, b], du) is call of C[a, b].

THEOREM 10.49 (Stone–Weierstrass Approximation Theorem). Let A be an algebra of real
(or complex) valued functions on a compact metric space X . Suppose that A is self-adjoint,
separates points, and vanishes nowhere. Then A is uniformly dense in C(X).

Note: if A consists of real valued functions, it is automatically self-adjoint, since f = f for any
real valued function. In fact, the complex case follows fairly easily from the real case, as follows.

PROOF OF C-VALUED STONE-WEIERSTRASS, ASSUMING R-VALUED CASE. Let A satisfy
all the conditions of the theorem. Consider the set of real valued functions in A :

AR = {u ∈ A : u is real valued}.
Since A is closed under sum and product, so is AR (because the sum and product of real valued
functions are real valued), and AR is also closed under scalar multiplication by R: if λ ∈ R and
u ∈ AR, then u ∈ A so λu ∈ A , but this function is also real valued, so it is in AR; thus AR is an
algebra.

We will now show that AR separates points and vanishes nowhere; to do so, we need to use
the self-adjointness of A . Since f ∈ A for each f ∈ A , and since A is a vector space, A also
contains Ref and Imf for each f ∈ A :

Ref =
f + f

2
, Imf =

f − f
2i

.

Thus AR contains Ref and Imf for all f ∈ A . (Without this assumption, AR could be very small;
indeed, it could consist only of the 0 function.) Now, let x 6= y in X; then there is some f ∈ A
such that f(x) 6= f(y). This means that either Ref(x) 6= Ref(y) or Imf(x) 6= Imf(y); in either
case, there is some element of AR that assigns different values to x and y, so AR separates points.
Similarly, given any x ∈ X , there is some f ∈ A with f(x) 6= 0; thus one of Ref(x) and Imf(x)
is non-zero, and so some element of AR does not vanish at x. Thus AR vanishes nowhere.

Hence AR is a real algebra that separates points and vanishes nowhere; once we have proven
the Stone–Weierstrass approximation theorem for such real algebras, it will follow that AR is uni-
formly dense in the real-valued continuous functions on X . But then for any continuous function
f : X → C, taking u = Ref and v = Imf , we can find un ∈ AR with un →u u and vn ∈ AR with
vn →u v; thus fn ≡ un + ivn →u u + iv = f , and since A is a C algebra containing un and vn,
fn = un + ivn ∈ A . Hence A is uniformly dense in the continuous complex valued functions on
X . �

This leaves us to prove the real case: that any algebra of functions that separates points and
vanishes nowhere is uniformly dense in C(X). We will prove this in a series of lemmas. The first
is that the uniform closure of an algebra is, itself, an algebra.

LEMMA 10.50. Let A be an algebra of bounded real-valued functions on a compact set X .
Then the uniform closure A of A is also an algebra.
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PROOF. Let f, g ∈ A , and let λ ∈ R. By definition of uniform closure, there are sequences
fn, gn ∈ A with fn →u f and gn →u g. Since A is an algebra, fn + λgn ∈ A for each n. Now

du(fn + λgn, f + λg) = sup
x∈X
|(fn(x) + λgn(x))− (f(x) + λg(x))|

≤ sup
x∈X
|fn(x)− f(x)|+ λ sup

x∈X
|gn(x)− g(x)|

= du(fn, f) + λdu(gn, g).

Since du(fn, f) → 0 and du(gn, g) → 0, it then follows that du(fn + λgn, f + λg) → 0; hence
f + λg is in the uniform closure of A . This shows that A is closed under addition and scalar
multiplication.

For pointwise multiplication, we first make the following observation: there is a uniform (in n)
constantM so that supn |fn| < M . Indeed, since fn →u f , there is someN so that sup |fn−f | < 1
for all n ≥ N ; thus |fn(x) − f(x)| < 1 and so using the reverse triangle inequality |fn(x)| ≤
1 + |f(x)|, so in fact sup |fn| < 1 + sup |f |. Thus, since all the fn and f are by assumption
bounded, we can take M = max{sup |f1|, sup |f2|, . . . , sup |fN |, 1 + sup |f |}. With that in hand,
we estimate

|fngn− fg| = |fngn− fng+ fng− fg| ≤ |fngn− fng|+ |fng− fg| ≤ |fn||gn− g|+ |fn− f ||g|.

Fix a constant M as above so that sup |fn| < M for all n; then

sup |fngn − fg| ≤M sup |gn − g|+ sup |fn − f | sup |g|.

Since gn →u g and fn →u f , and since M and sup |g| <∞, it follows that sup |fngn − fg| → 0,
and so fngn →u fg. As A is an algebra, fngn ∈ A for each n, and this proves that the product
fg is in the uniform closure of A . Thus A is closed under pointwise multiplication, and we have
completed the proof that A is an algebra. �

REMARK 10.51. The above proof applies equally well to complex valued functions, but we
will only need the statement for real valued functions.

The real part of Theorem 10.49 is the statement that a real subalgebra of C(X) that separates
points and vanishes nowhere is dense in C(X). In light of Lemma 10.50, we can rephrase this as
follows: If A ⊆ C(X) is a uniformly closed algebra that separates points and vanishes nowhere,
then A = C(X). This is the statement we will now aim to prove. We need two more lemmas first.

LEMMA 10.52. Let X be a compact metric space, and let A ⊆ C(X) be a uniformly closed
algebra. Then for each f ∈ A , |f | ∈ A as well. Consequently, if f, g ∈ A , then max{f, g} and
min{f, g} are in A as well.

A brief note on notation: max{f, g} is the function max{f, g}(x) = max{f(x), g(x)}; similar for
min. These functions are continuous whenever f and g are; this is not hard to see directly, but it
will also follow easily from their representations in the following proof.

PROOF. Let M = supx∈X |f(x)|. Applying the Weierstrass approximation Theorem 10.47 to
the function a(x) = |x| on the compact interval [−M,M ], we can find a sequence of polynomials
pn such that sup|t|≤M ||t| − pn(t)| → 0. Note that, since |0| = 0, it follows that pn(0)→ 0; hence,
replacing pn with pn − p(0) if necessary, we may assume that pn(0) = 0 for all n. It follows that
pn ◦ f is in A : indeed, if pn(t) = a1t+ a2t

2 + · · ·+ ant
n, then pn ◦ f = a1f + a2f

2 + · · ·+ anf
n,
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and since A is an algebra containing f , this is also an element of A . Moreover, for any x ∈ X ,
f(x) ∈ [−M,M ], and so |pn(f(x))− |f(x)|| ≤ sup|t|≤M ||t| − pn(t)|; hence

sup
x∈X
|pn(f(x))− |f(x)|| ≤ sup

|t|≤M
||t| − pn(t)| → 0.

So |f | is the uniform limit of the function pn ◦ f , which are all in A ; since A is uniformly closed,
it follows that |f | ∈ A as claimed.

The second statement follows from the fact that

max{f, g} =
f + g + |f − g|

2
and min{f, g} =

f + g − |f − g|
2

which can be easily checked with a case analysis. �

REMARK 10.53. An algebra of functions which is also closed under the max and min opera-
tions is sometimes called a lattice. Note that |f | = max{f, 0} − min{f, 0}, so being a lattice is
equivalent to being closed under absolute value.

We need one final lemma about spaces of functions that vanish nowhere and separate points.

LEMMA 10.54. Let A be an algebra of functions that separates points and vanishes nowhere.
Then for any x 6= y in A and any a, b ∈ R, there is a function fx→ay→b ∈ A with fx→ay→b (x) = a and
fx→at→b (y) = b.

PROOF. Let V = {(f(x), f(y)) : f ∈ A } ⊆ R2; our goal is to show that V = R2. First note
that, since A is a vector space, so is V : for any points v and w in V and any λ ∈ R, there are
functions f, g ∈ A with v = (f(x), f(y)) and w = (g(x), g(y)), and so

v + λw = (f(x), f(y)) + λ(g(x), g(y)) = ((f + λg)(x), (f + λg)(y)) .

As A is a vector space, f + λg ∈ A , and so v + λw ∈ V .
Thus V ⊆ R2 is a vector space. We assume for a contradiction that it is a strict subspace. Since

A vanishes nowhere, there is some function f ∈ A with f(x) 6= 0 and also some function g with
g(y) 6= 0; hence V is not contained in either coordinate axis of R2, and V is not the 0 space. If V 6=
R2, it is therefore 1 dimensional, and is spanned by some vector V = span{(s, t)} where s, t 6= 0.
In particular, there is some function f ∈ A with (f(x), f(y)) = (s, t). Since A is an algebra,
f 2 ∈ A as well, and notice that V 3 (f 2(x), f 2(y)) = (s2, t2). Thus (s2, t2) ∈ span{(s, t)}. It
follows that

0 = det

[
s t
s2 t2

]
= st2 − s2t = st(s− t).

Since st 6= 0, it follows that s = t. But that means that (f(x), f(y)) ∈ span{(s, s)} for all f ∈ A ;
in particular, f(x) = f(y) for all f ∈ A . This contradicts the assumption that A separates points.
Hence, it must be that in fact V = R2, as claimed. �

We are finally in a position to complete the proof of Theorem 10.49.

PROOF OF THE REAL PART OF THEOREM 10.49. Fix some F ∈ C(X). Fix a point x ∈ X .
For any point y ∈ X , by Lemma 10.54, there is a function fxy = f

x→F (x)
y→F (y) ∈ A that takes the same

values on x, y as F . Fix ε > 0. Since F and fxy are continuous at y, there is a neighborhood Vy of
y so that fxy (u) > F (y)− ε

2
and F (u) < F (y) + ε

2
for all u ∈ Vy. In particular

fxy (u) > F (u)− ε for all u ∈ Vy.
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Now, X is compact, and {Vy : y ∈ X} covers X , so there is a finite subcover Vy1 , Vy2 , . . . , Vym .
Now, define

fx = max{fxy1 , f
x
y2
, . . . , fxym}.

By (induction on) Lemma 10.52, fx ∈ A . By construction, fxyj > F − ε on Vyj , and hence
fx ≥ fxyj > F − ε on Vyj for each j; since the Vyj cover X , it follows that

fx(y) > F (y)− ε for all y ∈ X.
All the function fxy satisfy fxy (x) = F (x), and so also fx(x) = F (x). Since fx and F are continu-
ous, there is a neighborhood Vx of x such that fx(u) < F (x) + ε for all u ∈ Ux. Now, again, since
{Ux : x ∈ X} form a cover of X , and X is compact, there is a finite subcover Ux1 , Ux2 , . . . , Uxk .
Define

f = min{fx1 , fx2 , . . . , fxk}.
Again by (induction on) Lemma 10.52, f ∈ A . Since fxj < F + ε on Uxj for each j, it follows
that f ≤ fxj < F + ε on Uj for all j. Since the Uj cover X , it follows that

f(y) < F (y) + ε for all y ∈ X. (10.9)

But also f(y) = min{fx1(y), . . . , fxk(y)} and fxj(y) > F (y)− ε for each j, so we also have

f(y) > F (y)− ε for all y ∈ X. (10.10)

Combining (10.9) and (10.10), we see that for each ε > 0, there is a function f ∈ A with
|f − F | < ε. Taking this for each ε = 1

n
, we can therefore construct a sequence of functions

fn ∈ A with du(fn, F ) < 1
n

; hence fn →u F . But fn ∈ A , and A is uniformly closed; thus
the uniform limit F is in A . As F was an arbitrary function in C(X), we have thus proven that
C(X) ⊆ A ; the reverse containment is clear (since A is assumed to be an algebra of continuous
functions), and the proof is complete. �

EXAMPLE 10.55. Let d ∈ N, and let X ⊂ Rd be a compact set. Then the set P(X) of
polynomial functions (in d variables) on X is a real algebra (it is the smallest algebra containing
the functions 1 and xj for 1 ≤ j ≤ d) that vanishes nowhere (since it contains all constants) and
separates points (since it contains the functions x1, x2, . . . , xd). Thus, by the Stone–Weierstrass
approximation theorem, P(X) is uniformly dense in C(X). This can be proved directly following
a multivariate generalization of our proof of the Weierstrass Approximation Theorem 10.47 with
an approximate identity sequence of d-variable polynomials. But it is not necessary to do this now
that we have the Stone–Weierstrass theorem.

EXAMPLE 10.56. Let [a, b] be a compact interval, and let κ : [a, b] → R be any continuous
one-to-one function. Then κ alone separates points: for any x 6= y in [a, b], κ(x) 6= κ(y). Let
A = {p ◦ κ : p is a polynomial}. Then A is an algebra (it is the smallest algebra containing 1
and κ) which separates points (since κ does) and vanishes nowhere (since it contains the constant
function 1). Hence, by the Stone–Weierstrass theorem, A is uniformly dense in C[a, b]. For
example: the set of all functions of the form a0 + a1e

λx + a2e
2λx + · · ·+ ame

mλx for some λ 6= 0
and a0, . . . , am ∈ R can be used to uniformly approximate any continuous function on compact
interval, because x 7→ eλx is one-to-one for any λ 6= 0.

EXAMPLE 10.57. Consider the set T of trigonometric polynomials defined on [−π, π):

T =

{
x 7→

m∑
k=−m

ake
ikx : ak ∈ C

}
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This set can be expressed as the set of complex polynomials in eix and e−ix, and is therefore an
algebra. It vanishes nowhere since it contains the constant function 1, and it separates points of
[−π, π) since the function x 7→ eix = (cosx, sinx) is one-to-one on this interval. This algebra is
also self-adjoint: for f(x) =

∑m
k=−m ake

ikx, f(x) =
∑m

k=−m ake
−ikx =

∑m
k=−m a−ka

ikx ∈ T .
Hence, by the Stone–Weierstrass approximation theorem, T is uniformly dense in C[−π, t] for
any t < π. It is not, however, uniformly dense in C[−π, π], since all elements f ∈ T satisfy
f(−π) = f(π). In fact, T is uniformly dense in the continuous 2π-periodic functions on R: those
continuous functions f satisfying f(x) = f(x+ 2π) for all x ∈ R.

Noting that the map x 7→ eix is continuous from [−π, π] onto the unit circle S, and is one-to-
one except at the endpoints, we should really think of T as an algebra of functions on S, which is
compact; the fact that S “wraps around” takes care of the periodicity requirement automatically. It
might be tempting to think that T is then just the restriction of the algebra of 2-variable polyno-
mials on the plane to the compact subset S ⊂ R2, but this is not so: T must contain both positive
and negative powers of eix in order to be closed under conjugation. If this is omitted, and we
consider the subalgebra T+ of those functions of the form

∑m
k=0 ake

ikx, the resulting algebra is not
uniformly dense in C(S), as Homework 10 asks you to show.

REMARK 10.58. The trigonometric polynomials of the last example are uniformly dense in
C(S). The uniform metric is stronger than the “L2-metric” discussed in some homework exercises:
if fn is a sequence of trigonometric polynomials uniformly approximating f ∈ C(S), we also have

d2(fn, f)2 =

∫ π

−π
|fn(x)− f(x)|2 dx→ 0.

The nice thing about this metric is that it respects the structure of the trigonometric polynomials
very nicely. It turns out that, in the d2 metric, approximating functions using T closely resembles
power series: one can find an approximating sequence fn ∈ T where fn is of “degree” n (meaning
containing eikx for |k| ≤ n) and such that fn − fn−1 contains only scalar e±nx. This leads the
way to series representations of continuous (and more general) functions on S using trigonometric
polynomials: these are called Fourier series, and form a powerful underpinning of huge swaths of
analysis, and applied science (e.g. signal processing). Unfortunately, we will not have time to do
this subject justice in this course, and it will have to be left to a future course.
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8. Lecture 20: June 2, 2016

We began these notes with the construction of R: a complete metric space. One of our earliest
results was that the field Q of rational numbers is dense in R. Later, we defined compactness (in a
general metric space), and proved that compact sets are closed and bounded; and then we proved
the Heine–Borel theorem: that the compact subsets of the metric space R are precisely those that
are closed and bounded.

In the last few lectures at the end of these notes, we’ve been considering the metric space C(X)
of continuous functions on a compact metric space X , equipped with the uniform metric du. In
Corollary 10.10, we showed that this metric space is complete. (In fact, we showed a more general
result: even if X is not compact, the metric space Cb(X) of bounded continuous functions on X is
complete in the du metric; when X is compact, Cb(X) = C(X) by the extreme values theorem.)
In the previous lecture, we proved the Stone–Weierstrass approximation theorem, which gives a
characterization of a class of dense subsets of C(X): like Q in R, they have an algebraic character.

The topic of this, our final lecture, is the analog of the Heine–Borel theorem for the metric
space C(X). Since C(X) is a metric space, we know that compact subsets must be closed and
bounded. To be clear: this means closed and bounded in terms of du; for emphasis, we may refer
to these properties as uniformly closed and uniformly bounded.

DEFINITION 10.59. Let X be compact, and let F ⊆ C(X) be a subset. Say F is uniformly
bounded if there is a constant M so that, for all f ∈ F , supx∈X |f(x)| ≤ M . Say that F is
uniformly closed if, given any sequence (fn) in F such that there is a function f ∈ C(X) with
fn →u f , it follows that f ∈ F .

Again, these are just the usual metric space notions of “bounded” and “closed” with respect to the
metric du. (Since C(X) is complete, we can also characterize uniformly closed as equivalent to
uniformly Cauchy: any Cauchy sequence in F has a uniform limit in F .)

Propositions 5.27 and 5.30 show that any compact set in C(X) must be uniformly closed
and uniformly bounded. However, unlike the the case of compact sets in R (cf. the Heine–Borel
theorem), these two conditions alone are not enough to guarantee compactness in C(X). We can
show this using an example similar in spirit to Example 5.32(2).

EXAMPLE 10.60. Let Bu(X) = {f ∈ C(X) : supx∈X |f(x)| ≤ 1} denote the closed unit ball
in C(X). This set is uniformly bounded by 1, and it is closed: if fn ∈ Bu(X) and fn →u f ,
then fn(x) → f(x) for each x, and since |fn(x)| ≤ 1, it follows from the Squeeze Theorem that
|f(x)| ≤ 1 for each x ∈ X , so supx∈X |f(x)| ≤ 1 and f ∈ Bu(X).

However, for most X , Bu(X) is not compact. Take the example X = [0, 1], and let fn(x) =
1

nx+1
as in Example 10.12. These functions are all in Bu(X) since supx∈[0,1] |fn(x)| = fn(0) = 1.

But (fn) has no uniformly convergent subsequence. Indeed, if it did, say fnk →u f , then by
Theorem 10.9, the uniform limit f would be continuous on [0, 1]. However, we have shown (cf.
Example 10.12) that fn converges pointwise to the function 1{0} on [0, 1], and hence the subse-
quence fnk also converges pointwise to this discontinuous function. Since uniform convergence
implies pointwise convergence, it follows that f = 1{0}, which contradicts Theorem 10.9.

So in C(X), even closed balls tend not to be compact; being closed and bounded is simply not
enough to imply compactness. It turns out that there is one additional, natural condition which is
needed: equicontinuity.
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DEFINITION 10.61. Let F ⊆ C(X) be a collection of functions. We say F is equicontinuous
if, for each ε > 0, there is a δ > 0 so that for all x, y ∈ X and all f ∈ F , |f(x) − f(y)| < ε
whenever d(x, y) < δ.

Equicontinuity is the ultimate in uniformity of continuity. We upgraded the definition of continuity
of a function to uniform continuity by insisting that the δ window for each ε tolerance can be chosen
independently of the point x under consideration; this new notion of equicontinuity says that, not
only that, we must be able to pick the same δ window for all functions f ∈ F simultaneously.

REMARK 10.62. Some textbooks refer to the property of Definition 10.61 as uniform equiconti-
nuity. One might also define equicontinuity of a family F ⊆ C(X) at a point x ∈ X to mean that,
for each ε > 0, there is a δ = δ(ε, x) so that, for all y ∈ Bδ(x) and all f ∈ F , |f(y)− f(x)| < ε;
then F could be called equicontinuous on X if it is equicontinuous at each point. If X is not a
compact metric space, this is strictly weaker than our definition, as it allows δ to vary with x (with
no necessary positive lower bound), while it is uniform in F . However, since we are primarily
concerned with compact X , it will turn out to make no difference: just as continuity implies uni-
form continuity on a compact set, so too pointwise equicontinuity implies uniform equicontinuity
on a compact set.

EXAMPLE 10.63. (1) If F ⊂ C(X) is a finite collection of uniformly continuous func-
tions, F = {f1, f2, . . . , fm}, then F is equicontinuous: for each ε > 0, and each
1 ≤ j ≤ m, we can choose a δj > 0 so that |fj(x) − fj(y)| < ε whenever d(x, y) < δj;
then δ ≡ min{δ1, δ2, . . . , δm} > 0 works for all the functions in F simultaneously.

(2) Fix α ∈ (0, 1], and consider the set Cα(X) of α-Hölder continuous functions on X:
f ∈ Cα(X) iff ‖f‖Cα(X) <∞, where

‖f‖Cα(X) = sup
x 6=y

|f(x)− f(y)|
d(x, y)α

.

(When α = 1, this gives the Lipschitz functions on X; this should not be confused with
continuously differentiable functions, also denoted C1, which don’t even make sense on
a general metric space X .)

The set Cα(X) ⊂ C(X) is generally not equicontinuous. For example, taking X =
[0, 1], for each λ > 0, the function fλ(x) = λx is Lipschitz with Lipschitz constant λ,
hence also Cα for all α ∈ (0, 1]. (The reader should compute that ‖fλ‖Cα[0,1] = λ for
all α ∈ (0, 1].) However, we can compute the largest δ that works for fλ: in order for
ε > |fλ(x) − fλ(y)| = λ|x − y|, we must take |x − y| < ε/λ, and so the largest δ for fλ
is δ = ε/λ. Since infλ>0 ε/λ = 0, there is no uniform δ that works for all f ∈ Cα[0, 1].

However, if we uniformly bound the size of the α-Hölder norm, the set becomes
equicontinuous. For fixed M ∈ (0,∞), let Cα

M(X) denote the set of functions f ∈
Cα(X) with ‖f‖Cα(X) ≤ M . Then for f ∈ Cα

M(X), |f(x) − f(y)| ≤ Md(x, y)α for all
x, y. Hence, for any ε > 0, take δ = ( ε

M
)1/α, which is uniform over X and Cα

M(X). For
any x, y ∈ X and f ∈ Cα

M(X), if d(x, y) < δ then

|f(x)− f(y)| ≤Md(x, y)α < Mδα = M

[( ε

M

)1/α
]α

= ε.

This shows Cα
M(X) is equicontinuous.
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(3) The collection of functions {fn} on [0, 1] with fn(x) = 1
nx+1

is not equicontinuous. It is
possible to show this directly, by computing the modulus of continuity (the largest δ that
works uniformly for a given ε > 0) of fn and showing that it tends to 0 as n → ∞; but
this is really quite complicated. In fact, we will soon prove our main theorem relating
equicontinuity to compactness in C(X), and from this and Example 10.60 it will follow
that {fn} is not equicontinuous.

Our final main theorem is the following characterization of compact sets in C(X).

THEOREM 10.64 (Arzelà–Ascoli). Let X be a compact metric space, and consider the metric
space C(X) equipped with the uniform metric. A subset K ⊂ C(X) is compact if and only if K is
uniformly closed, uniformly bounded, and equicontinuous.

This theorem was first proved in the context of the metric space X = [0, 1] (or any compact
interval in R). The sufficiency of equicontinuity was proved by Ascoli in 1884; in 1895, Arzelà
proved that equicontinuity is also a necessary condition, and gave the first complete proof that
would be considered rigorous by today’s standards. Theorem 10.64 as stated, on a compact metric
space, was first proved in this level of generality by Fréchet in 1906.

We begin by proving the “only if” direction: if K ⊂ C(X) is compact, then it is uniformly
closed, uniformly bounded, and equicontinuous. We know the first two conditions must hold since
compact sets are closed and bounded in any metric space; hence, we need only show equicontinu-
ity.

PROOF OF (=⇒) IN THEOREM 10.64. We argue by contradiction: supposeK is compact, but
not equicontinuous. This means there is some ε > 0 so that, for all δ > 0, we can find points
x, y ∈ X and some function f ∈ K such that d(x, y) < δ and yet |f(x) − f(y)| ≥ ε. We let
δ = 1

n
for n ∈ N, and select such xn, yn, fn; so (xn) and (yn) are squences in X , and (fn) is a

sequence of functions in K. Now, X is compact, so the sequences (xn) and (yn) have convergent
subsequences; by choosing them successively, we can find a common subsequential index set {nk}
so that xnk → x and ynk → y for some x, y ∈ X . Since d(xnk , ynk) <

1
nk
→ 0, it follows that in

fact x = y.
Now, K is compact in (C(X), du), and so the sequence (fnk) has a uniformly convergent

subsequence fnkm ≡ gm; that is, there is some g ∈ K with gm →u g. Let um = xnkm and
vm = ynkm ; then um → x and vm → x, and we have

|gm(um)− gm(vm)| = |fnkm (xnkm )− fnkm (ynkm )| ≥ ε for all m.

It then follows that

ε ≤ |gm(um)− gm(vm)| ≤ |gm(um)− g(x)|+ |g(x)− gm(vm)| for all m. (10.11)

Since gm →u g and um → x, it follows (from a homework problem) that gm(um) → g(x).
Similarly gm(vm)→ g(x). Thus |gm(um)−g(x)|+ |g(x)−gm(vm)| → 0; this contradicts (10.11),
concluding the proof. �

We now proceed to prove the “if” direction of Theorem 10.64. To do so, we need two general
lemmas. The first, which could have been done back in Chapter 5, shows that compact metric
spaces have countable dense subsets, generalizing the density of the rationals in any compact
interval.
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LEMMA 10.65. Let X be a compact metric space. There exists a countable set E ⊆ X such
that E = X .

PROOF. For each n ∈ N, consider the collection Un = {B1/n(x) : x ∈ X}. Each Un is an
open cover of X (as each x is contained in, for example, B1/n(x)). Since X is compact, there is a
finite subcover B1/n(x1

n), B1/n(x2
n), . . . , B1/n(xknn ).

Let E = {xjn : n ∈ N, 1 ≤ j ≤ kn}. Then E is countable: it is a countable union (over n) of
the finite sets {x1

n, x
2
n, . . . , x

kn
n }. Now fix ε > 0, and let x ∈ X . If n ∈ N with 1

n
< ε, then since

{B1/n(xnj ) : 1 ≤ j ≤ kn} cover X , there is some j with x ∈ B1/n(xnj ). That is: d(x, xnj ) < 1
n
< ε.

This shows that, for each ε > 0 and x ∈ X , there is some point t ∈ E (t = xnj ) with d(x, t) < ε.
Thus E is dense in X . �

The second required lemma is one of the several general results that go under the name ”Cantor
diagonalization”.

LEMMA 10.66. Let (fn) be a sequence of real (or complex) valued functions on a countable set
E. Suppose that (fn) is pointwise bounded: for each t ∈ E, the sequence (fn(t))n∈N is bounded.
Then there is a uniform (over E) increasing index set {nk}k∈N of positive integers such that the
subsequence (fnk(t)) that converges for all t ∈ E.

PROOF. The only tricky thing about this proof is making the notation readable. To do so,
we slightly reformulate how we think about a subsequence. A sequence (an) in R is a function
a : N → R, where we write a(n) = an. A subsequence of (an) is usually thought of as a new
sequence (bk) (meaning a function b : N → R) which is defined by bk = ank for some increasing
infinite sequence of integers n1 < n2 < n3 < · · · . We could just as well think of this subsequence
as the restriction of the function a to the infinite subset Γ = {n1, n2, n3, . . .} ⊆ N. This is the
perspective we take presently.

To begin, enumerate the countable set E = {t1, t2, t3, . . .}. By assumption, (fn(t1)) is a
bounded sequence in R (or C), so it follows from the Heine–Borel theorem that it has a convergent
subsequence: this means there is an infinite subset Γ1 ⊆ N so that the function Γ1 3 n 7→ fn(t1) is
a convergent sequence. Now, consider the subsequence Γ1 3 n 7→ fn(t2). This is a subsequence
of the full sequence (fn(t2)), which is bounded; hence it is a bounded sequence, and again by
the Heine–Borel theorem, it has a convergent subsequence. This means there is an infinite subset
Γ2 ⊆ Γ1 so that the function Γ2 3 n 7→ fn(t2) is a convergent sequence. Proceeding this way, by
induction, we produce a nested sequence of infinite sets N ⊇ Γ1 ⊇ Γ2 ⊇ Γ3 ⊇ · · · so that the
function Γk 3 n 7→ fn(tk) is a convergent sequence.

Now, we define an increasing sequence of positive integers {nk} as follows: n1 = min Γ1,
n2 = min(Γ2∩ (n1,∞)), n3 = min(Γ3∩ (n2,∞)), and in general nk = min(Γk ∩ (nk−1,∞)): i.e.
nk is the smallest element of Γk that is strictly bigger than nk−1; such an element exists since Γk is
infinite (otherwise, nk−1 would be an upper bound for Γk, which means Γk would be finite). (Note:
since Γk ⊆ Γk−1, min Γk ≥ min Γk−1, but it is possible that the two have the same minimum, and
we must have nk > nk−1 for each k.)

Now, by construction, nk ∈ Γk, and since the sets are nested, this means nk ∈ Γm for m ≤ k.
For any t ∈ E, there is some m with t = tm; thus, for all k ≥ m, nk ∈ Γm. This means that
(fnk(tm))∞k=m is a subsequence of Γm 3 n 7→ fn(tm), which is convergent; thus (fnk(tm))∞k=1 is
convergent for each m, as desired. �

REMARK 10.67. The only way pointwise boundedness of the (fn) on E was used was to
guarantee that each of the successive subsequences had a convergent subsequence. In fact, we
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could have simply stated this weaker condition as the premise to the lemma: it holds whenever
each sequence (fn(t)) has the property that every subsequence of it has a further subsequence that
is convergent. Since we will only need this lemma in the context of (uniformly bounded) functions,
we are content with the stronger hypothesis.

We are now in a position to prove the forward direction of the Arzelà–Ascoli theorem.

PROOF OF (⇐=) IN THEOREM 10.64. Let (fn) be a sequence in K. By Lemma 10.65, there
is a countable dense subset E ⊆ X . Since K is uniformly bounded, the functions fn are uniformly
bounded and hence pointwise bounded on E. Thus, by Lemma 10.66, there is a fixed subsequence
(fnk) that converges on all of E. Let gk = fnk ; we will prove that (gk) is uniformly Cauchy on X .
It then follows, since C(X) is complete, that gk →u g for some g ∈ C(X), and sinceK is assumed
to be uniformly closed, g ∈ K; this will thus conclude the proof that K is (sequentially) compact.

Fix ε > 0. By equicontinuity of K, choose a uniform δ > 0 so that for all x, y ∈ X and f ∈ K,
|f(x) − f(y)| < ε

3
whenever d(x, y) < δ; in particular, for all k |gk(x) − gk(y)| < ε

3
in this case.

Now, consider the collection {Bδ(t) : t ∈ E}. This is actually an open cover of all of X: since E
is dense in X , for any x ∈ X there is some t ∈ E with d(x, t) < δ, and thus t ∈ Bδ(t). Since X
is compact, there are finitely many points t1, . . . , tm ∈ E with {Bδ(tj) : 1 ≤ j ≤ m} covering X .
Since gk converges on E, (gk(x)) is Cauchy for each x ∈ E, so there are N1, N2, . . . , Nm so that
|gk(xj)− g`(xj)| < ε

3
for k, ` ≥ Nj; take N = max{N1, . . . , Nm}.

Now, let x ∈ X , and let k, ` ≥ N . There is some j ∈ {1, . . . ,m} with d(xj, x) < δ, and it
follows that |gk(x)− gk(xj)| < ε

3
for all k. Hence

|gk(x)− g`(x)| ≤ |gk(x)− gk(xj) + gk(xj)− g`(xj) + g`(xj)− g`(x)|
≤ |gk(x)− gk(xj)|+ |gk(xj)− g`(xj)|+ |g`(xj)− g`(x)|

<
ε

3
+ |gk(xj)− g`(xj)|+

ε

3
for all k, `. The middle term is also < ε

3
whenever k, ` ≥ N . This is true for all x, and so in

fact supx |gk(x) − g`(x)| < ε whenever k, ` ≥ N . This shows that (gk) is uniformly Cauchy,
completing the proof. �

As a side note: the Arzelà–Ascoli theorem is often stated with weaker conditions: K is compact
in C(X) iff it is equicontinuous, uniformly closed, and pointwise bounded: the last condition
means that, for each x, the set of numbers {f(x) : f ∈ K} is bounded. (In other words: there is
a function φ : X → [0,∞), not necessarily bounded, so that |f(x)| ≤ φ(x) for each x ∈ X and
each f ∈ K.) In fact, in the context of an equicontinuous family of functions on a compact metric
space, this already implies uniform boundedness.

PROPOSITION 10.68. Let F ⊆ C(X) be an equicontinuous family of functions that is point-
wise bounded. Then in fact F is uniformly bounded.

PROOF. Using equicontinuity with ε = 1, let δ > 0 be chosen uniformly so that for all f ∈ F
and all x, y ∈ X , d(x, y) < δ implies that |f(x) − f(y)| < 1. Now, the collection {Bδ(x) : x ∈
X} is an open cover of X , and hence contains a finite subcover: there is a finite set of points
x1, x2, . . . , xm with

⋃m
j=1Bδ(xk) = X . Now, since F is pointwise bounded, there are constants

C1, C2, . . . , Cm < ∞ so that |f(xj)| ≤ Cj for all f ∈ F . Let C = max{C1, . . . , Cm}. Then for
any x ∈ X , there is some j with d(xj, x) < δ, and so by equicontinuity |f(x)− f(xj)| < 1 for all
f ∈ F . But this means that |f(x)| ≤ |f(xj)|+ 1 ≤ Cj + 1 ≤ C + 1 for all x ∈ X and all f ∈ F ;
thus F is uniformly bounded by C + 1. �
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EXAMPLE 10.69. Consider again the functions fn(x) = 1
nx+1

on [0, 1]. They are continuous
and uniformly bounded. But, as shown in Example 10.60, there is no uniformly convergent sub-
sequence of (fn). It then follows that the set {fn} is uniformly closed: for let (gk) be a sequence
in the set {fn} that converges uniformly to some g ∈ C(X). Since gk ∈ {fn}, there is some nk
with gk = fnk . Suppose that lim supk→∞ nk =∞; then there is a subsequence of the nk that tends
to∞, which means there is a subsequence of fn that converges uniformly to g – a contradiction.
Thus lim supk→∞ nk < ∞; but since the nk are integers, this means that the set {nk : k ∈ N} is
finite. As the uniform distance between any two elements of fn is strictly positive, it follows that
if gk → g, we must have nk eventually constant, in which case g ∈ {fn}. Thus {fn} contains all
its uniform limits, and so it is uniformly closed.

Hence, the set {fn} is uniformly bounded and uniformly closed, and yet there is a sequence in
this set (namely the full sequence (fn)) that possesses no uniformly convergent subsequences. By
the Arzelà–Ascoli theorem, it follows that {fn} is not equicontinuous.

REMARK 10.70. The argument in the preceding example actually shows in great generality
that, to prove a set of uniformly bounded functions is not equicontinuous, it suffices to show that
it contains a sequence with no convergent subsequences. That sequence will then be uniformly
closed and uniformly bounded, and ergo not equicontinuous by the Arzelà–Ascoli theorem.

EXAMPLE 10.71. LetX be a compact metric space, let 0 < α ≤ 1 andM > 0, and let Cα
M(X)

be the space of α-Hölder continuous functions with Hölder constant ≤ M , cf. Example 10.63(2).
Since X is compact, it has finite diameter; thus, fixing some x0 ∈ X , we have for all x ∈ X

|f(x)| ≤ |f(x0)|+ |f(x)− f(x0)| ≤ |f(x0)|+Md(x, x0)α ≤ |f(x0)|+Mdiam(X)α.

This shows that Cα
M(X) is uniformly bounded. It is also uniformly closed: if fn ∈ Cα

M(X) and
fn →u f (or even if fn → f just pointwise), we have |f(x)− f(y)| = limn→∞ |fn(x)− fn(y)| ≤
Md(x, y)α by the Squeeze Theorem. Thus f ∈ Cα

M(X). We also showed, in Example 10.63(2),
that Cα

M(X) is equicontinuous. Hence, by the Arzelà–Ascoli theorem, this set is compact.
In particular, this shows that if (fn) is any sequence of Hölder continuous functions with uni-

formly bounded Hölder constants, then (fn) possesses a uniformly convergent subsequence.
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