UNIFORM CONVERGENCE AND INTEGRATION: A COUNTER-EXAMPLE

This note is motivated by the question: if α_{n} converges uniformly to α on $[a, b]$ is it true that $\int_{a}^{b} f d \alpha=\lim _{n \rightarrow \infty} \int_{a}^{b} f d \alpha_{n}$? We construct an example showing the answer is negative, in contrast to Theorem 7.16 in Rudin's book. Specifically, we prove the following.
Lemma 0.1. There exists a sequence of monotone increasing functions $\alpha_{n}:[0,1] \rightarrow$ \mathbb{R} that converge uniformly on $[0,1]$ to a monotone increasing function $\alpha:[0,1] \rightarrow \mathbb{R}$ and there exists a function $f:[0,1] \rightarrow \mathbb{R}$ such that f is integrable on $[0,1]$ with respect to α_{n} for every n and $\int_{0}^{1} f d \alpha_{n}=0$ but f is not integrable on $[0,1]$ with respect to α.

The construction of these functions is a bit long and technical. The basic idea is that f will be 0 everywhere outside the Cantor set E and will be discontinuous at every point of E, and for every n the function α_{n} will be such that E can be covered with a finite number of intervals where the total cumulative change of α_{n} on these intervals can be made arbitrarily small, while the same will not be true of α. Each function α_{n} will be piecewise linear, and we will adjust α_{n} to obtain α_{n+1} by increasing the rate of change of α_{n} on a collection of intervals covering E (as n grows these intervals will have smaller width but be more numerous). The remainder of this note is devoted to providing a careful proof of the above fact.

Set $T_{0}=\{0\}$, inductively define $T_{n+1}=\left\{3 k: k \in T_{n}\right\} \cup\left\{3 k+2: k \in T_{n}\right\}$, and set $T=\bigcup_{n \in \mathbb{N}} T_{n}$.
Lemma 0.2. $\left|T_{n}\right|=2^{n}$ and $T \cap\left\{0,1, \ldots, 3^{n}\right\}=T_{n}$.
Proof. Since T_{n} consists of integers, the sets $\left\{3 k: k \in T_{n}\right\}$ and $\left\{3 k+2: k \in T_{n}\right\}$ are disjoint and each has cardinality $\left|T_{n}\right|$. So $\left|T_{n+1}\right|=2\left|T_{n}\right|$. Additionally, $\left|T_{0}\right|=$ $1=2^{0}$. So it follows from induction that $\left|T_{n}\right|=2^{n}$ for every n.

It suffices to show by induction that $T \cap\left\{0,1, \ldots, 3^{n}\right\} \subseteq T_{n} \subseteq\left\{0,1, \ldots, 3^{n}-1\right\}$. The base case $n=0$ is clear. So assume this is true for n. Then

$$
T_{n+1} \subseteq\left\{0,1, \ldots, 3 \cdot\left(3^{n}-1\right)+2\right\} \subseteq\left\{0,1, \ldots, 3^{n+1}-1\right\}
$$

Additionally, if $t \in T \cap\left\{0,1, \ldots, 3^{n+1}\right\}$ then either $t=0 \in T_{0} \subseteq T_{n+1}$ or else by definition of T there is $t^{\prime} \in T$ with $t \in\left\{3 t^{\prime}, 3 t^{\prime}+2\right\}$. It follows that $t^{\prime} \in$ $T \cap\left\{0,1, \ldots, 3^{n}\right\}$, so by our inductive assumption $t^{\prime} \in T_{n}$ and therefore $t \in T_{n+1}$. This completes the inductive step.

Let E denote the Cantor set. Recall that $E=\bigcap_{n=0}^{\infty} E_{n}$ where the E_{n} 's are defined inductively as follows: $E_{0}=[0,1]$, in general E_{n} is a finite union of pairwise disjoint intervals, and E_{n+1} is obtained from E_{n} by removing the middle-third of each those intervals.
Lemma 0.3. For every $n \geq 0$

$$
E_{n}=\bigcup_{k \in T_{n}}\left[\frac{k}{3^{n}}, \frac{k+1}{3^{n}}\right] \quad \text { and } \quad E_{n} \backslash E_{n+1}=\bigcup_{k \in T_{n}}\left(\frac{k+1 / 3}{3^{n}}, \frac{k+2 / 3}{3^{n}}\right) .
$$

Proof. When $n=0$ we have $T_{0}=\{0\}$ so $\bigcup_{k \in T_{n}}\left[\frac{k}{3^{n}}, \frac{k+1}{3^{n}}\right]=[0,1]=E_{0}$. Now inductively assume that $E_{n}=\bigcup_{k \in T_{n}}\left[\frac{k}{3^{n}}, \frac{k+1}{3^{n}}\right]$. Since E_{n+1} is obtained from E_{n} by removing the middle-third of each of the above intervals, we see $E_{n} \backslash E_{n+1}=$ $\bigcup_{k \in T_{n}}\left(\frac{k+1 / 3}{3^{n}}, \frac{k+2 / 3}{3^{n}}\right)$ and

$$
\begin{aligned}
E_{n+1} & =\bigcup_{k \in T_{n}}\left[\frac{k}{3^{n}}, \frac{k+1 / 3}{3^{n}}\right] \cup\left[\frac{k+2 / 3}{3^{n}}, \frac{k+1}{3^{n}}\right] \\
& =\bigcup_{k \in T_{n}}\left[\frac{3 k}{3^{n+1}}, \frac{3 k+1}{3^{n+1}}\right] \cup\left[\frac{3 k+2}{3^{n+1}}, \frac{3 k+3}{3^{n+1}}\right] \\
& =\bigcup_{k^{\prime} \in\left\{3 k: k \in T_{n}\right\} \cup\left\{3 k+2: k \in T_{n}\right\}}\left[\frac{k^{\prime}}{3^{n+1}}, \frac{k^{\prime}+1}{3^{n+1}}\right] \\
& =\bigcup_{k^{\prime} \in T_{n+1}}\left[\frac{k^{\prime}}{3^{n+1}}, \frac{k^{\prime}+1}{3^{n+1}}\right] .
\end{aligned}
$$

Fix an $\epsilon \in(0,1)$. For $t \in T$ and $x \in[0,1]$ define

$$
\beta_{\epsilon}(t+x)= \begin{cases}\frac{1-\epsilon}{2+\epsilon} \cdot x & \text { if } x \in[0,1 / 3] \\ 2 \cdot \frac{1-\epsilon}{2+\epsilon}(0.5-x) & \text { if } x \in(1 / 3,2 / 3) \\ \frac{1-\epsilon}{2+\epsilon} \cdot(x-1) & \text { if } x \in[2 / 3,1]\end{cases}
$$

and set $\beta_{\epsilon}(y)=0$ for all $y \in[0,+\infty) \backslash\{t+x: t \in T, x \in[0,1]\}$.
Lemma 0.4. Let $m \geq 0$ and $k \in T_{m}$. Then the function $\beta_{\epsilon}\left(3^{n} x\right)$ has constant value 0 for $x \in\left(\frac{k+1 / 3}{3^{m}}, \frac{k+2 / 3}{3^{m}}\right)$ when $n>m$ and has 0 net change on the interval $\left[\frac{k}{3^{m}}, \frac{k+1}{3^{m}}\right]$ when $n \geq m$.

Proof. If $x \in\left(\frac{k+1 / 3}{3^{m}}, \frac{k+2 / 3}{3^{m}}\right)$ then by Lemma $0.3 x \in E_{m} \backslash E_{m+1} \subseteq[0,1] \backslash E_{n}$. On the other hand, if $\beta_{\epsilon}\left(3^{n} x\right) \neq 0$ then there is $k^{\prime} \in T$ with $3^{n} x \in\left[k^{\prime}, k^{\prime}+1\right]$, hence $x \in\left[\frac{k^{\prime}}{3^{n}}, \frac{k^{\prime}+1}{3^{n}}\right]$ and $k^{\prime} \leq 3^{n} x \leq 3^{n}$. Therefore $k^{\prime} \in T_{n}$ by Lemma 0.2 and $x \in E_{n}$ by Lemma 0.3 . This proves the first claim. Finally, the last claim holds since $3^{n} \cdot \frac{k}{3^{m}}=3^{n-m} k \in T$ and $3^{n} \cdot \frac{k+1}{3^{m}}$ is 1 plus

$$
\begin{aligned}
3^{n-m} k+3^{n-m}-1 & =3^{n-m} k+3^{n-m-1} \cdot 2+3^{n-m-2} \cdot 2+\ldots+3 \cdot 2+2 \\
& =3(3(\cdots(3(3 k+2)+2) \cdots+2)+2)+2 \in T
\end{aligned}
$$

Lemma 0.5. Let $\phi:[0,1] \rightarrow \mathbb{R}$ be a linear increasing function with net change $\lambda=\phi(1)-\phi(0)$. Then the function $\phi(x)+\lambda \cdot \beta_{\epsilon}(x)$ also increases by λ on $[0,1]$ and is linear on each of the intervals $[0,1 / 3],[1 / 3,2 / 3],[2 / 3,1]$. Moreover, it increases by $\lambda(2+\epsilon)^{-1}$ on each of the intervals $[0,1 / 3]$ and $[2 / 3,1]$ and increases by $\lambda \epsilon(2+\epsilon)^{-1}$ on the interval $[1 / 3,2 / 3]$.

Proof. Since ϕ is linear we deduce from the point-slope formula that

$$
\phi(x)=\phi(0)+\lambda x=\phi(1)+\lambda(x-1)=\phi(0.5)+\lambda(x-0.5)
$$

for all $x \in[0,1]$. So for $x \in[0,1 / 3]$ we have

$$
\phi(x)+\lambda \cdot \beta_{\epsilon}(x)=\phi(0)+\lambda x+\lambda \cdot \frac{1-\epsilon}{2+\epsilon} \cdot x=\phi(0)+\lambda \cdot \frac{3}{2+\epsilon} \cdot x
$$

implying an increase by $\lambda(2+\epsilon)^{-1}$ on $[0,1 / 3]$. Similarly, for $x \in[2 / 3,1]$ we have
$\phi(x)+\lambda \cdot \beta_{\epsilon}(x)=\phi(1)+\lambda(x-1)+\lambda \cdot \frac{1-\epsilon}{2+\epsilon} \cdot(x-1)=\phi(1)+\lambda \cdot \frac{3}{2+\epsilon} \cdot(x-1)$, implying an increase by $\lambda(2+\epsilon)^{-1}$ on $[2 / 3,1]$. Lastly, for $x \in[1 / 3,2 / 3]$
$\phi(x)+\lambda \cdot \beta_{\epsilon}(x)=\phi(0.5)+\lambda(x-0.5)+2 \lambda \cdot \frac{1-\epsilon}{2+\epsilon} \cdot(0.5-x)=\phi(0.5)+\lambda \cdot \frac{3 \epsilon}{2+\epsilon} \cdot(x-0.5)$,
implying an increase by $\lambda \epsilon(2+\epsilon)^{-1}$ on $[1 / 3,2 / 3]$.

For $n \geq 1$ choose $\epsilon_{n}>0$ small enough that $2\left(2+\epsilon_{n}\right)^{-1}>2^{-2^{-n}}$. For $x \in[0,1]$ define

$$
\alpha(x)=x+\sum_{k=1}^{\infty}\left(\prod_{i=1}^{k-1}\left(2+\epsilon_{i}\right)^{-1}\right) \cdot \beta_{\epsilon_{k}}\left(3^{k-1} x\right)
$$

and let α_{n} be the $n^{\text {th }}$ partial sum

$$
\alpha_{n}(x)=x+\sum_{k=1}^{n}\left(\prod_{i=1}^{k-1}\left(2+\epsilon_{i}\right)^{-1}\right) \cdot \beta_{\epsilon_{k}}\left(3^{k-1} x\right)
$$

Lemma 0.6. Let $n \geq 0$. The interval $[0,1]$ is the union of the pairwise disjoint intervals

$$
\left[\frac{k}{3^{n}}, \frac{k+1}{3^{n}}\right] \quad\left(k \in T_{n}\right) \text { and }\left(\frac{k+1 / 3}{3^{m}}, \frac{k+2 / 3}{3^{m}}\right) \quad\left(0 \leq m<n, k \in T_{m}\right) .
$$

The function α_{n} is monotone increasing and is linear on each of the above intervals. Moreover, α_{n} increases by $\prod_{i=1}^{n}\left(2+\epsilon_{i}\right)^{-1}$ on each of the intervals $\left[\frac{k}{3^{n}}, \frac{k+1}{3^{n}}\right], k \in$ T_{n}, and increases by $\epsilon_{m} \cdot \prod_{i=1}^{m}\left(2+\epsilon_{i}\right)^{-1}$ on each of the intervals $\left(\frac{k+1 / 3}{3^{m}}, \frac{k+2 / 3}{3^{m}}\right)$, $0 \leq m<n, k \in T_{m}$.

Proof. We have

$$
\left(E_{0} \backslash E_{1}\right) \cup\left(E_{1} \backslash E_{2}\right) \cup \cdots \cup\left(E_{n-1} \backslash E_{n}\right) \cup E_{n}=E_{0}=[0,1]
$$

with the sets appearing in the above union disjoint with one another. By Lemma $0.3 E_{n}$ is the union of the disjoint intervals $\left[\frac{k}{3^{n}}, \frac{k+1}{3^{n}}\right]$ for $k \in T_{n}$, and for each $m<n$ the set $E_{m} \backslash E_{m+1}$ is the union of the disjoint intervals $\left(\frac{k+1 / 3}{3^{m}}, \frac{k+2 / 3}{3^{m}}\right)$ for $k \in T_{m}$. This proves the first claim.

We prove the remaining claims by induction. First consider the base case $n=1$. The function $\phi(x)=x$ increases by $\lambda=1$ on $[0,1]$, so by Lemma $0.5 \alpha_{1}(x)=x+$ $\beta_{\epsilon_{1}}(x)$ is linear on each interval $[0,1 / 3],[1 / 3,2 / 3],[2 / 3,1]$, increases by $\left(2+\epsilon_{1}\right)^{-1}$ on each of the intervals $[0,1 / 3]$ and $[2 / 3,1]$, and increases by $\epsilon_{1}\left(2+\epsilon_{1}\right)^{-1}$ on $(1 / 3,2 / 3)$.

Now inductively assume that α_{n} increases by $\prod_{i=1}^{n}\left(2+\epsilon_{i}\right)^{-1}$ on each of the intervals $\left[\frac{k}{3^{n}}, \frac{k+1}{3^{n}}\right], k \in T_{n}$, increases by $\epsilon_{m} \cdot \prod_{i=1}^{m}\left(2+\epsilon_{i}\right)^{-1}$ on each of the intervals $\left(\frac{k+1 / 3}{3^{m}}, \frac{k+2 / 3}{3^{m}}\right), 0 \leq m<n, k \in T_{m}$, and is moreover linear on each of these intervals.

Consider an interval $\left[\frac{k}{3^{n}}, \frac{k+1}{3^{n}}\right]$ where $k \in T_{n}$. For $u \in[0,1]$ define $\phi(u)=$ $\alpha_{n}\left(\frac{k+u}{3^{n}}\right)$. Then ϕ is linear and increases by $\prod_{i=1}^{n}\left(2+\epsilon_{i}\right)^{-1}$ on $[0,1]$. Notice that

$$
\begin{aligned}
\alpha_{n+1}\left(\frac{k+u}{3^{n}}\right) & =\alpha_{n}\left(\frac{k+u}{3^{n}}\right)+\left(\prod_{i=1}^{n}\left(2+\epsilon_{i}\right)^{-1}\right) \beta_{\epsilon_{n+1}}\left(3^{n} \cdot \frac{k+u}{3^{n}}\right) \\
& =\phi(u)+\left(\prod_{i=1}^{n}\left(2+\epsilon_{i}\right)^{-1}\right) \beta_{\epsilon_{n+1}}(k+u) \\
& =\phi(u)+\left(\prod_{i=1}^{n}\left(2+\epsilon_{i}\right)^{-1}\right) \beta_{\epsilon_{n+1}}(u),
\end{aligned}
$$

where the final equality holds since $k \in T$. By combining the final line of the above equation with Lemma 0.5 we find that α_{n+1} increases by $\prod_{i=1}^{n+1}\left(2+\epsilon_{i}\right)^{-1}$ on each of the intervals (A) $\left[\frac{k}{3^{n}}, \frac{k+1 / 3}{3^{n}}\right]=\left[\frac{3 k}{3^{n+1}}, \frac{3 k+1}{3^{n+1}}\right]$ and (B) $\left[\frac{k+2 / 3}{3^{n}}, \frac{k+1}{3^{n}}\right]=\left[\frac{3 k+2}{3^{n+1}}, \frac{3 k+3}{3^{n+1}}\right]$, increases by $\epsilon_{n+1} \prod_{i=1}^{n+1}\left(2+\epsilon_{i}\right)^{-1}$ on (C) $\left[\frac{k+1 / 3}{3^{n}}, \frac{k+2 / 3}{3^{n}}\right]$, and is linear on each of these intervals. Notice that the intervals (A) and (B) just described, as $k \in T_{n}$ varies, coincide with the intervals $\left[\frac{k^{\prime}}{3^{n+1}}, \frac{k^{\prime}+1}{3^{n+1}}\right]$ as $k^{\prime} \in T_{n+1}$ varies (by Lemma 0.3), and the intervals (C), as $k \in T_{n}$ varies, coincide with the intervals $\left(\frac{k+1 / 3}{3^{m}}, \frac{k+2 / 3}{3^{m}}\right)$ as $k \in T_{m}$ varies with $m=n<n+1$.

Next consider an interval $\left(\frac{k+1 / 3}{3^{m}}, \frac{k+2 / 3}{3^{m}}\right)$ where $k \in T_{m}$ and $m<n$. By our inductive hypothesis α_{n} is linear on this interval and increases by $\epsilon_{m} \cdot \prod_{i=1}^{m}\left(2+\epsilon_{i}\right)^{-1}$ on this interval. Since Lemma 0.4 tells us $\beta_{\epsilon_{n+1}}\left(3^{n} x\right)=0$ for all x in this interval, it follows that α_{n+1} is equal to α_{n} on this interval. Therefore α_{n+1} is linear on $\left(\frac{k+1 / 3}{3^{m}}, \frac{k+2 / 3}{3^{m}}\right)$ and increases by $\epsilon_{m} \cdot \prod_{i=1}^{m}\left(2+\epsilon_{i}\right)^{-1}$ on this interval.

By induction, we conclude that the claim holds for all n.
Lemma 0.7. The functions $\left(\alpha_{n}\right)$ converge uniformly to α on $[0,+\infty)$.
Proof. Notice that for every $x \geq 0$

$$
\left|\beta_{\epsilon}(x)\right| \leq \frac{1-\epsilon}{2+\epsilon} \cdot \frac{1}{3}<\frac{1}{2} \cdot \frac{1}{3}
$$

So uniform convergence follows from the Weierstrass M-test (Theorem 7.10) since $\sum_{k=1}^{\infty} \frac{1}{3} \cdot \frac{1}{2^{k}}$ converges and

$$
\left|\left(\prod_{i=1}^{k-1}\left(2+\epsilon_{i}\right)^{-1}\right) \cdot \beta_{\epsilon_{k}}\left(3^{k-1} x\right)\right| \leq 2^{-(k-1)}\left|\beta_{\epsilon_{k}}\left(3^{k-1} x\right)\right| \leq \frac{1}{3} \cdot \frac{1}{2^{k}} .
$$

Corollary 0.8. α is monotone increasing and for every $m \geq 0$ and $k \in T_{m}$ we have

$$
\alpha\left(\frac{k+1}{3^{m}}\right)-\alpha\left(\frac{k}{3^{m}}\right)=\prod_{i=1}^{m}\left(2+\epsilon_{i}\right)^{-1}
$$

Proof. Lemma 0.6 tells us that each α_{n} is monotone increasing. So if $y>x$ then $\alpha_{n}(y)-\alpha_{n}(x) \geq 0$ for every n and $\alpha(y)-\alpha(x)=\lim _{n \rightarrow \infty}\left(\alpha_{n}(y)-\alpha_{n}(x)\right) \geq 0$. Thus α is monotone increasing. Next, from Lemma 0.6 we obtain $\alpha_{m}\left(\frac{k+1}{3^{m}}\right)-\alpha_{m}\left(\frac{k}{3^{m}}\right)=$ $\prod_{i=1}^{m}\left(2+\epsilon_{i}\right)^{-1}$, and Lemma 0.4 implies that $\beta_{\epsilon_{n}}\left(3^{n-1} \cdot \frac{k+1}{3^{m}}\right)-\beta_{\epsilon_{n}}\left(3^{n-1} \cdot \frac{k}{3^{m}}\right)=0$
for all $n>m$. Consequently, for all $n \geq m$

$$
\alpha_{n}\left(\frac{k+1}{3^{m}}\right)-\alpha_{n}\left(\frac{k}{3^{m}}\right)=\alpha_{m}\left(\frac{k+1}{3^{m}}\right)-\alpha_{m}\left(\frac{k}{3^{m}}\right)=\prod_{i=1}^{m}\left(2+\epsilon_{i}\right)^{-1} .
$$

Taking the limit as $n \rightarrow \infty$ completes the proof.
Define $f:[0,1] \rightarrow \mathbb{R}$ by the rule

$$
f(x)= \begin{cases}1 & \text { if } \exists n \exists k \in T_{n} x=\frac{k}{3^{n}} \\ 1 & \text { if } \exists n \exists k \in T_{n} x=\frac{k+1}{3^{n}} \\ 0 & \text { otherwise }\end{cases}
$$

Notice that $\frac{k}{3^{n}}, \frac{k+1}{3^{n}}$ are in the Cantor set E for every n and every $k \in T_{n}$. Thus $f(x)=0$ for all $x \in[0,1] \backslash E$.

Lemma 0.9. For every $q \geq 0, f$ is integrable on $[0,1]$ with respect to α_{q} and $\int_{0}^{1} f d \alpha_{q}=0$.

Proof. By Lemma 0.6 we can break $[0,1]$ into a finite number of sub-intervals on which α_{q} is linear. Letting A be the maximum slope among these linear pieces, we have $\left|\alpha_{q}(x)-\alpha_{q}(y)\right| \leq A|x-y|$ for all $x, y \in[0,1]$. Let $\epsilon>0$ and pick an integer m with $\left(\frac{2}{3}\right)^{m}<\frac{\epsilon}{A}$. Consider the partition $P=\left\{0=x_{0}<x_{1}<\ldots<x_{n}=1\right\}$ where $n=3^{m}$ and $x_{i}=\frac{i}{3^{m}}$ for all $0 \leq i \leq n$. Set $I=\left\{k+j: k \in T_{m}, j=-1,0,1\right\}$ and notice that for $1 \leq i \leq n$ Lemma 0.3 implies that $\left[x_{i-1}, x_{i}\right] \cap E_{m} \neq \varnothing \Leftrightarrow i \in I$. Since f has constant value 0 on $[0,1] \backslash E_{m} \subseteq[0,1] \backslash E$, it follows that $M_{i}=0$ for all $i \in\{1,2, \ldots, n\} \backslash I$. Additionally, for every $1 \leq i \leq n$ we have $0 \leq m_{i} \leq M_{i} \leq 1$. So

$$
0 \leq L\left(P, f, \alpha_{q}\right) \leq U\left(P, f, \alpha_{q}\right) \leq \sum_{i \in I} \Delta\left(\alpha_{q}\right)_{i} \leq \sum_{i \in I} A \cdot \Delta x_{i}
$$

For every i we have $\Delta x_{i}=\frac{1}{3^{m}}$ and Lemma 0.2 gives $|I| \leq 3\left|T_{m}\right|=3 \cdot 2^{m}$. Therefore

$$
U\left(P, f, \alpha_{q}\right) \leq|I| \cdot A \cdot \frac{1}{3^{m}}=3 A \cdot\left(\frac{2}{3}\right)^{m}<\epsilon
$$

We conclude that f is integrable on $[0,1]$ with respect to α_{q} and $\int_{0}^{1} f d \alpha_{q}=0$.
Lemma 0.10. f is not integrable on $[0,1]$ with respect to α.
Proof. Let P be any partition of $[0,1]$, say $P=\left\{0=x_{0}<x_{1}<\cdots<x_{n}=1\right\}$. Let i be the set of indices $1 \leq i \leq n$ satisfying $\left[x_{i-1}, x_{i}\right] \cap E \neq \varnothing$, and let K be the compact set given by the union of the intervals $\left[x_{i-1}, x_{i}\right]$ for $i \in\{1,2, \ldots, n\} \backslash I$. Then $\bigcap_{m \in \mathbb{N}}\left(E_{m} \cap K\right)=E \cap K=\varnothing$, so the Corollary to Theorem 2.36 implies that there is m with $E_{m} \cap K=\varnothing$. In other words, $E_{m} \subseteq \bigcup_{i \in I}\left[x_{i-1}, x_{i}\right]$. By choosing a larger m if necessary, we can assume that $\frac{1}{3^{m}}<\min \left\{\Delta x_{i}: 1 \leq i \leq n\right\}$.

If $i \in I$ then $E_{m} \cap\left[x_{i-1}, x_{i}\right] \supseteq E \cap\left[x_{i-1}, x_{i}\right] \neq \varnothing$, so by Lemma 0.3 there is $k \in T_{m}$ with $\left[\frac{k}{3^{m}}, \frac{k+1}{3^{m}}\right] \cap\left[x_{i-1}, x_{i}\right] \neq \varnothing$. Since $\frac{1}{3^{m}}<\Delta x_{i}$, we have either $\frac{k}{3^{m}}$ or $\frac{k+1}{3^{m}}$ lies in $\left[x_{i-1}, x_{i}\right]$. So f attains a value of 1 somewhere on $\left[x_{i-1}, x_{i}\right]$ and thus $M_{i}=1$ for every $i \in I$. Therefore $U(P, f, \alpha) \geq \sum_{i \in I} \Delta(\alpha)_{i}$. On the other hand, for every $1 \leq i \leq n$ the set $\left[x_{i-1}, x_{i}\right]$ is uncountable while f has value 1 at only a countable number of points. So f attains a value of 0 on $\left[x_{i-1}, x_{i}\right]$ and $m_{i}=0$ for every $1 \leq i \leq n$. Therefore $L(P, f, \alpha)=0$.

From Lemma 0.3 we have

$$
\bigcup_{i \in I}\left[x_{i-1}, x_{i}\right] \supseteq E_{m}=\bigcup_{k \in T_{m}}\left[\frac{k}{3^{m}}, \frac{k+1}{3^{m}}\right] .
$$

Therefore, since α is monotone increasing,

$$
\sum_{i \in I} \Delta(\alpha)_{i} \geq \sum_{k \in T_{m}} \alpha\left(\frac{k+1}{3^{m}}\right)-\alpha\left(\frac{k}{3^{m}}\right)
$$

and Corollary 0.8 and Lemma 0.2 imply

$$
\sum_{k \in T_{m}} \alpha\left(\frac{k+1}{3^{m}}\right)-\alpha\left(\frac{k}{3^{m}}\right)=\left|T_{m}\right| \cdot \prod_{i=1}^{m}\left(2+\epsilon_{i}\right)^{-1}=\prod_{i=1}^{m} 2 \cdot\left(2+\epsilon_{i}\right)^{-1}
$$

Recalling that we chose ϵ_{i} to satisfy $2\left(2+\epsilon_{i}\right)^{-1}>2^{-2^{-i}}$, we conclude that

$$
\sum_{i \in I} \Delta(\alpha)_{i} \geq \prod_{i=1}^{m} 2^{-2^{-i}}=2^{-\sum_{i=1}^{m} 2^{-i}}>2^{-1}=\frac{1}{2}
$$

Therefore $U(P, f, \alpha) \geq \sum_{i \in I} \Delta(\alpha)_{i}>\frac{1}{2}$ while $L(P, f, \alpha)=0$. We conclude that f is not integrable on $[0,1]$ with respect to α.

