
UNIFORM CONVERGENCE AND INTEGRATION: A

COUNTER-EXAMPLE

This note is motivated by the question: if αn converges uniformly to α on [a, b]

is it true that
∫ b
a
f dα = limn→∞

∫ b
a
f dαn? We construct an example showing the

answer is negative, in contrast to Theorem 7.16 in Rudin’s book. Specifically, we
prove the following.

Lemma 0.1. There exists a sequence of monotone increasing functions αn : [0, 1]→
R that converge uniformly on [0, 1] to a monotone increasing function α : [0, 1]→ R
and there exists a function f : [0, 1] → R such that f is integrable on [0, 1] with

respect to αn for every n and
∫ 1

0
f dαn = 0 but f is not integrable on [0, 1] with

respect to α.

The construction of these functions is a bit long and technical. The basic idea
is that f will be 0 everywhere outside the Cantor set E and will be discontinuous
at every point of E, and for every n the function αn will be such that E can be
covered with a finite number of intervals where the total cumulative change of αn
on these intervals can be made arbitrarily small, while the same will not be true
of α. Each function αn will be piecewise linear, and we will adjust αn to obtain
αn+1 by increasing the rate of change of αn on a collection of intervals covering E
(as n grows these intervals will have smaller width but be more numerous). The
remainder of this note is devoted to providing a careful proof of the above fact.

Set T0 = {0}, inductively define Tn+1 = {3k : k ∈ Tn} ∪ {3k + 2 : k ∈ Tn}, and
set T =

⋃
n∈N Tn.

Lemma 0.2. |Tn| = 2n and T ∩ {0, 1, . . . , 3n} = Tn.

Proof. Since Tn consists of integers, the sets {3k : k ∈ Tn} and {3k + 2 : k ∈ Tn}
are disjoint and each has cardinality |Tn|. So |Tn+1| = 2|Tn|. Additionally, |T0| =
1 = 20. So it follows from induction that |Tn| = 2n for every n.

It suffices to show by induction that T ∩{0, 1, . . . , 3n} ⊆ Tn ⊆ {0, 1, . . . , 3n− 1}.
The base case n = 0 is clear. So assume this is true for n. Then

Tn+1 ⊆ {0, 1, . . . , 3 · (3n − 1) + 2} ⊆ {0, 1, . . . , 3n+1 − 1}.
Additionally, if t ∈ T ∩ {0, 1, . . . , 3n+1} then either t = 0 ∈ T0 ⊆ Tn+1 or else
by definition of T there is t′ ∈ T with t ∈ {3t′, 3t′ + 2}. It follows that t′ ∈
T ∩ {0, 1, . . . , 3n}, so by our inductive assumption t′ ∈ Tn and therefore t ∈ Tn+1.
This completes the inductive step. �

Let E denote the Cantor set. Recall that E =
⋂∞
n=0En where the En’s are

defined inductively as follows: E0 = [0, 1], in general En is a finite union of pairwise
disjoint intervals, and En+1 is obtained from En by removing the middle-third of
each those intervals.

Lemma 0.3. For every n ≥ 0

En =
⋃
k∈Tn

[
k

3n
,
k + 1

3n

]
and En \ En+1 =

⋃
k∈Tn

(
k + 1/3

3n
,
k + 2/3

3n

)
.

1



2 UNIFORM CONVERGENCE AND INTEGRATION: A COUNTER-EXAMPLE

Proof. When n = 0 we have T0 = {0} so
⋃
k∈Tn

[ k3n ,
k+1
3n ] = [0, 1] = E0. Now

inductively assume that En =
⋃
k∈Tn

[ k3n ,
k+1
3n ]. Since En+1 is obtained from En

by removing the middle-third of each of the above intervals, we see En \ En+1 =⋃
k∈Tn

(k+1/3
3n , k+2/3

3n ) and

En+1 =
⋃
k∈Tn

[
k

3n
,
k + 1/3

3n

]
∪
[
k + 2/3

3n
,
k + 1

3n

]
=
⋃
k∈Tn

[
3k

3n+1
,

3k + 1

3n+1

]
∪
[

3k + 2

3n+1
,

3k + 3

3n+1

]
=

⋃
k′∈{3k:k∈Tn}∪{3k+2:k∈Tn}

[
k′

3n+1
,
k′ + 1

3n+1

]

=
⋃

k′∈Tn+1

[
k′

3n+1
,
k′ + 1

3n+1

]
. �

Fix an ε ∈ (0, 1). For t ∈ T and x ∈ [0, 1] define

βε(t+ x) =


1−ε
2+ε · x if x ∈ [0, 1/3]

2 · 1−ε2+ε (0.5− x) if x ∈ (1/3, 2/3)
1−ε
2+ε · (x− 1) if x ∈ [2/3, 1]

and set βε(y) = 0 for all y ∈ [0,+∞) \ {t+ x : t ∈ T, x ∈ [0, 1]}.

Lemma 0.4. Let m ≥ 0 and k ∈ Tm. Then the function βε(3
nx) has constant

value 0 for x ∈ (k+1/3
3m , k+2/3

3m ) when n > m and has 0 net change on the interval

[ k3m ,
k+1
3m ] when n ≥ m.

Proof. If x ∈ (k+1/3
3m , k+2/3

3m ) then by Lemma 0.3 x ∈ Em \ Em+1 ⊆ [0, 1] \ En.
On the other hand, if βε(3

nx) 6= 0 then there is k′ ∈ T with 3nx ∈ [k′, k′ + 1],

hence x ∈ [ k
′

3n ,
k′+1
3n ] and k′ ≤ 3nx ≤ 3n. Therefore k′ ∈ Tn by Lemma 0.2 and

x ∈ En by Lemma 0.3. This proves the first claim. Finally, the last claim holds
since 3n · k

3m = 3n−mk ∈ T and 3n · k+1
3m is 1 plus

3n−mk + 3n−m − 1 = 3n−mk + 3n−m−1 · 2 + 3n−m−2 · 2 + . . .+ 3 · 2 + 2

= 3(3(· · · (3(3k + 2) + 2) · · ·+ 2) + 2) + 2 ∈ T. �

Lemma 0.5. Let φ : [0, 1] → R be a linear increasing function with net change
λ = φ(1)−φ(0). Then the function φ(x)+λ ·βε(x) also increases by λ on [0, 1] and
is linear on each of the intervals [0, 1/3], [1/3, 2/3], [2/3, 1]. Moreover, it increases
by λ(2+ε)−1 on each of the intervals [0, 1/3] and [2/3, 1] and increases by λε(2+ε)−1

on the interval [1/3, 2/3].

Proof. Since φ is linear we deduce from the point-slope formula that

φ(x) = φ(0) + λx = φ(1) + λ(x− 1) = φ(0.5) + λ(x− 0.5)

for all x ∈ [0, 1]. So for x ∈ [0, 1/3] we have

φ(x) + λ · βε(x) = φ(0) + λx+ λ · 1− ε
2 + ε

· x = φ(0) + λ · 3

2 + ε
· x,
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implying an increase by λ(2 + ε)−1 on [0, 1/3]. Similarly, for x ∈ [2/3, 1] we have

φ(x) + λ · βε(x) = φ(1) + λ(x− 1) + λ · 1− ε
2 + ε

· (x− 1) = φ(1) + λ · 3

2 + ε
· (x− 1),

implying an increase by λ(2 + ε)−1 on [2/3, 1]. Lastly, for x ∈ [1/3, 2/3]

φ(x)+λ·βε(x) = φ(0.5)+λ(x−0.5)+2λ· 1− ε
2 + ε

·(0.5−x) = φ(0.5)+λ· 3ε

2 + ε
·(x−0.5),

implying an increase by λε(2 + ε)−1 on [1/3, 2/3]. �

For n ≥ 1 choose εn > 0 small enough that 2(2 + εn)−1 > 2−2
−n

. For x ∈ [0, 1]
define

α(x) = x+

∞∑
k=1

(
k−1∏
i=1

(2 + εi)
−1

)
· βεk(3k−1x)

and let αn be the nth partial sum

αn(x) = x+

n∑
k=1

(
k−1∏
i=1

(2 + εi)
−1

)
· βεk(3k−1x).

Lemma 0.6. Let n ≥ 0. The interval [0, 1] is the union of the pairwise disjoint
intervals[

k

3n
,
k + 1

3n

]
(k ∈ Tn) and

(
k + 1/3

3m
,
k + 2/3

3m

)
(0 ≤ m < n, k ∈ Tm).

The function αn is monotone increasing and is linear on each of the above intervals.
Moreover, αn increases by

∏n
i=1(2 + εi)

−1 on each of the intervals [ k3n ,
k+1
3n ], k ∈

Tn, and increases by εm ·
∏m
i=1(2 + εi)

−1 on each of the intervals (k+1/3
3m , k+2/3

3m ),
0 ≤ m < n, k ∈ Tm.

Proof. We have

(E0 \ E1) ∪ (E1 \ E2) ∪ · · · ∪ (En−1 \ En) ∪ En = E0 = [0, 1],

with the sets appearing in the above union disjoint with one another. By Lemma
0.3 En is the union of the disjoint intervals [ k3n ,

k+1
3n ] for k ∈ Tn, and for each m < n

the set Em \ Em+1 is the union of the disjoint intervals (k+1/3
3m , k+2/3

3m ) for k ∈ Tm.
This proves the first claim.

We prove the remaining claims by induction. First consider the base case n = 1.
The function φ(x) = x increases by λ = 1 on [0, 1], so by Lemma 0.5 α1(x) = x +
βε1(x) is linear on each interval [0, 1/3], [1/3, 2/3], [2/3, 1], increases by (2+ε1)−1 on
each of the intervals [0, 1/3] and [2/3, 1], and increases by ε1(2+ε1)−1 on (1/3, 2/3).

Now inductively assume that αn increases by
∏n
i=1(2 + εi)

−1 on each of the

intervals [ k3n ,
k+1
3n ], k ∈ Tn, increases by εm ·

∏m
i=1(2 + εi)

−1 on each of the intervals

(k+1/3
3m , k+2/3

3m ), 0 ≤ m < n, k ∈ Tm, and is moreover linear on each of these
intervals.



4 UNIFORM CONVERGENCE AND INTEGRATION: A COUNTER-EXAMPLE

Consider an interval [ k3n ,
k+1
3n ] where k ∈ Tn. For u ∈ [0, 1] define φ(u) =

αn(k+u3n ). Then φ is linear and increases by
∏n
i=1(2 + εi)

−1 on [0, 1]. Notice that

αn+1

(
k + u

3n

)
= αn

(
k + u

3n

)
+

(
n∏
i=1

(2 + εi)
−1

)
βεn+1

(
3n · k + u

3n

)

= φ(u) +

(
n∏
i=1

(2 + εi)
−1

)
βεn+1(k + u)

= φ(u) +

(
n∏
i=1

(2 + εi)
−1

)
βεn+1

(u),

where the final equality holds since k ∈ T . By combining the final line of the above
equation with Lemma 0.5, we find that αn+1 increases by

∏n+1
i=1 (2 + εi)

−1 on each

of the intervals (A) [ k3n ,
k+1/3
3n ] = [ 3k

3n+1 ,
3k+1
3n+1 ] and (B) [k+2/3

3n , k+1
3n ] = [ 3k+2

3n+1 ,
3k+3
3n+1 ],

increases by εn+1

∏n+1
i=1 (2 + εi)

−1 on (C) [k+1/3
3n , k+2/3

3n ], and is linear on each of
these intervals. Notice that the intervals (A) and (B) just described, as k ∈ Tn
varies, coincide with the intervals [ k′

3n+1 ,
k′+1
3n+1 ] as k′ ∈ Tn+1 varies (by Lemma 0.3),

and the intervals (C), as k ∈ Tn varies, coincide with the intervals (k+1/3
3m , k+2/3

3m )
as k ∈ Tm varies with m = n < n+ 1.

Next consider an interval (k+1/3
3m , k+2/3

3m ) where k ∈ Tm and m < n. By our

inductive hypothesis αn is linear on this interval and increases by εm ·
∏m
i=1(2+εi)

−1

on this interval. Since Lemma 0.4 tells us βεn+1
(3nx) = 0 for all x in this interval,

it follows that αn+1 is equal to αn on this interval. Therefore αn+1 is linear on

(k+1/3
3m , k+2/3

3m ) and increases by εm ·
∏m
i=1(2 + εi)

−1 on this interval.
By induction, we conclude that the claim holds for all n. �

Lemma 0.7. The functions (αn) converge uniformly to α on [0,+∞).

Proof. Notice that for every x ≥ 0

|βε(x)| ≤ 1− ε
2 + ε

· 1

3
<

1

2
· 1

3
.

So uniform convergence follows from the Weierstrass M-test (Theorem 7.10) since∑∞
k=1

1
3 ·

1
2k

converges and∣∣∣∣∣
(
k−1∏
i=1

(2 + εi)
−1

)
· βεk(3k−1x)

∣∣∣∣∣ ≤ 2−(k−1)|βεk(3k−1x)| ≤ 1

3
· 1

2k
. �

Corollary 0.8. α is monotone increasing and for every m ≥ 0 and k ∈ Tm we
have

α

(
k + 1

3m

)
− α

(
k

3m

)
=

m∏
i=1

(2 + εi)
−1.

Proof. Lemma 0.6 tells us that each αn is monotone increasing. So if y > x then
αn(y)−αn(x) ≥ 0 for every n and α(y)−α(x) = limn→∞(αn(y)−αn(x)) ≥ 0. Thus
α is monotone increasing. Next, from Lemma 0.6 we obtain αm(k+1

3m )− αm( k
3m ) =∏m

i=1(2 + εi)
−1, and Lemma 0.4 implies that βεn(3n−1 · k+1

3m )− βεn(3n−1 · k
3m ) = 0
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for all n > m. Consequently, for all n ≥ m

αn

(
k + 1

3m

)
− αn

(
k

3m

)
= αm

(
k + 1

3m

)
− αm

(
k

3m

)
=

m∏
i=1

(2 + εi)
−1.

Taking the limit as n→∞ completes the proof. �

Define f : [0, 1]→ R by the rule

f(x) =


1 if ∃n ∃k ∈ Tn x = k

3n

1 if ∃n ∃k ∈ Tn x = k+1
3n

0 otherwise.

Notice that k
3n ,

k+1
3n are in the Cantor set E for every n and every k ∈ Tn. Thus

f(x) = 0 for all x ∈ [0, 1] \ E.

Lemma 0.9. For every q ≥ 0, f is integrable on [0, 1] with respect to αq and∫ 1

0
f dαq = 0.

Proof. By Lemma 0.6 we can break [0, 1] into a finite number of sub-intervals on
which αq is linear. Letting A be the maximum slope among these linear pieces, we
have |αq(x)−αq(y)| ≤ A|x− y| for all x, y ∈ [0, 1]. Let ε > 0 and pick an integer m
with ( 2

3 )m < ε
A . Consider the partition P = {0 = x0 < x1 < . . . < xn = 1} where

n = 3m and xi = i
3m for all 0 ≤ i ≤ n. Set I = {k + j : k ∈ Tm, j = −1, 0, 1}

and notice that for 1 ≤ i ≤ n Lemma 0.3 implies that [xi−1, xi]∩Em 6= ∅⇔ i ∈ I.
Since f has constant value 0 on [0, 1]\Em ⊆ [0, 1]\E, it follows that Mi = 0 for all
i ∈ {1, 2, . . . , n} \ I. Additionally, for every 1 ≤ i ≤ n we have 0 ≤ mi ≤ Mi ≤ 1.
So

0 ≤ L(P, f, αq) ≤ U(P, f, αq) ≤
∑
i∈I

∆(αq)i ≤
∑
i∈I

A ·∆xi.

For every i we have ∆xi = 1
3m and Lemma 0.2 gives |I| ≤ 3|Tm| = 3 ·2m. Therefore

U(P, f, αq) ≤ |I| ·A ·
1

3m
= 3A ·

(
2

3

)m
< ε.

We conclude that f is integrable on [0, 1] with respect to αq and
∫ 1

0
f dαq = 0. �

Lemma 0.10. f is not integrable on [0, 1] with respect to α.

Proof. Let P be any partition of [0, 1], say P = {0 = x0 < x1 < · · · < xn = 1}.
Let i be the set of indices 1 ≤ i ≤ n satisfying [xi−1, xi]∩E 6= ∅, and let K be the
compact set given by the union of the intervals [xi−1, xi] for i ∈ {1, 2, . . . , n} \ I.
Then

⋂
m∈N(Em ∩K) = E ∩K = ∅, so the Corollary to Theorem 2.36 implies that

there is m with Em ∩K = ∅. In other words, Em ⊆
⋃
i∈I [xi−1, xi]. By choosing a

larger m if necessary, we can assume that 1
3m < min{∆xi : 1 ≤ i ≤ n}.

If i ∈ I then Em ∩ [xi−1, xi] ⊇ E ∩ [xi−1, xi] 6= ∅, so by Lemma 0.3 there is
k ∈ Tm with [ k3m ,

k+1
3m ] ∩ [xi−1, xi] 6= ∅. Since 1

3m < ∆xi, we have either k
3m or

k+1
3m lies in [xi−1, xi]. So f attains a value of 1 somewhere on [xi−1, xi] and thus
Mi = 1 for every i ∈ I. Therefore U(P, f, α) ≥

∑
i∈I ∆(α)i. On the other hand,

for every 1 ≤ i ≤ n the set [xi−1, xi] is uncountable while f has value 1 at only a
countable number of points. So f attains a value of 0 on [xi−1, xi] and mi = 0 for
every 1 ≤ i ≤ n. Therefore L(P, f, α) = 0.
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From Lemma 0.3 we have⋃
i∈I

[xi−1, xi] ⊇ Em =
⋃
k∈Tm

[
k

3m
,
k + 1

3m

]
.

Therefore, since α is monotone increasing,∑
i∈I

∆(α)i ≥
∑
k∈Tm

α

(
k + 1

3m

)
− α

(
k

3m

)
,

and Corollary 0.8 and Lemma 0.2 imply∑
k∈Tm

α

(
k + 1

3m

)
− α

(
k

3m

)
= |Tm| ·

m∏
i=1

(2 + εi)
−1 =

m∏
i=1

2 · (2 + εi)
−1.

Recalling that we chose εi to satisfy 2(2 + εi)
−1 > 2−2

−i

, we conclude that∑
i∈I

∆(α)i ≥
m∏
i=1

2−2
−i

= 2−
∑m

i=1 2−i

> 2−1 =
1

2
.

Therefore U(P, f, α) ≥
∑
i∈I ∆(α)i >

1
2 while L(P, f, α) = 0. We conclude that f

is not integrable on [0, 1] with respect to α. �


