UNIFORM CONVERGENCE AND INTEGRATION: A COUNTER-EXAMPLE

This note is motivated by the question: if α_n converges uniformly to α on [a, b] is it true that $\int_a^b f \, d\alpha = \lim_{n \to \infty} \int_a^b f \, d\alpha_n$? We construct an example showing the answer is negative, in contrast to Theorem 7.16 in Rudin's book. Specifically, we prove the following.

Lemma 0.1. There exists a sequence of monotone increasing functions $\alpha_n : [0,1] \rightarrow \mathbb{R}$ that converge uniformly on [0,1] to a monotone increasing function $\alpha : [0,1] \rightarrow \mathbb{R}$ and there exists a function $f : [0,1] \rightarrow \mathbb{R}$ such that f is integrable on [0,1] with respect to α_n for every n and $\int_0^1 f \ d\alpha_n = 0$ but f is not integrable on [0,1] with respect to α .

The construction of these functions is a bit long and technical. The basic idea is that f will be 0 everywhere outside the Cantor set E and will be discontinuous at every point of E, and for every n the function α_n will be such that E can be covered with a finite number of intervals where the total cumulative change of α_n on these intervals can be made arbitrarily small, while the same will not be true of α . Each function α_n will be piecewise linear, and we will adjust α_n to obtain α_{n+1} by increasing the rate of change of α_n on a collection of intervals covering E(as n grows these intervals will have smaller width but be more numerous). The remainder of this note is devoted to providing a careful proof of the above fact.

Set $T_0 = \{0\}$, inductively define $T_{n+1} = \{3k : k \in T_n\} \cup \{3k+2 : k \in T_n\}$, and set $T = \bigcup_{n \in \mathbb{N}} T_n$.

Lemma 0.2. $|T_n| = 2^n$ and $T \cap \{0, 1, \dots, 3^n\} = T_n$.

Proof. Since T_n consists of integers, the sets $\{3k : k \in T_n\}$ and $\{3k + 2 : k \in T_n\}$ are disjoint and each has cardinality $|T_n|$. So $|T_{n+1}| = 2|T_n|$. Additionally, $|T_0| = 1 = 2^0$. So it follows from induction that $|T_n| = 2^n$ for every n.

It suffices to show by induction that $T \cap \{0, 1, ..., 3^n\} \subseteq T_n \subseteq \{0, 1, ..., 3^n - 1\}$. The base case n = 0 is clear. So assume this is true for n. Then

 $T_{n+1} \subseteq \{0, 1, \dots, 3 \cdot (3^n - 1) + 2\} \subseteq \{0, 1, \dots, 3^{n+1} - 1\}.$

Additionally, if $t \in T \cap \{0, 1, \ldots, 3^{n+1}\}$ then either $t = 0 \in T_0 \subseteq T_{n+1}$ or else by definition of T there is $t' \in T$ with $t \in \{3t', 3t' + 2\}$. It follows that $t' \in T \cap \{0, 1, \ldots, 3^n\}$, so by our inductive assumption $t' \in T_n$ and therefore $t \in T_{n+1}$. This completes the inductive step.

Let E denote the Cantor set. Recall that $E = \bigcap_{n=0}^{\infty} E_n$ where the E_n 's are defined inductively as follows: $E_0 = [0, 1]$, in general E_n is a finite union of pairwise disjoint intervals, and E_{n+1} is obtained from E_n by removing the middle-third of each those intervals.

Lemma 0.3. For every $n \ge 0$

$$E_n = \bigcup_{k \in T_n} \left[\frac{k}{3^n}, \frac{k+1}{3^n} \right] \quad and \quad E_n \setminus E_{n+1} = \bigcup_{k \in T_n} \left(\frac{k+1/3}{3^n}, \frac{k+2/3}{3^n} \right).$$

Proof. When n = 0 we have $T_0 = \{0\}$ so $\bigcup_{k \in T_n} [\frac{k}{3^n}, \frac{k+1}{3^n}] = [0, 1] = E_0$. Now inductively assume that $E_n = \bigcup_{k \in T_n} [\frac{k}{3^n}, \frac{k+1}{3^n}]$. Since E_{n+1} is obtained from E_n by removing the middle-third of each of the above intervals, we see $E_n \setminus E_{n+1} = \bigcup_{k \in T_n} (\frac{k+1/3}{3^n}, \frac{k+2/3}{3^n})$ and

$$E_{n+1} = \bigcup_{k \in T_n} \left[\frac{k}{3^n}, \frac{k+1/3}{3^n} \right] \cup \left[\frac{k+2/3}{3^n}, \frac{k+1}{3^n} \right]$$
$$= \bigcup_{k \in T_n} \left[\frac{3k}{3^{n+1}}, \frac{3k+1}{3^{n+1}} \right] \cup \left[\frac{3k+2}{3^{n+1}}, \frac{3k+3}{3^{n+1}} \right]$$
$$= \bigcup_{k' \in \{3k:k \in T_n\} \cup \{3k+2:k \in T_n\}} \left[\frac{k'}{3^{n+1}}, \frac{k'+1}{3^{n+1}} \right]$$
$$= \bigcup_{k' \in T_{n+1}} \left[\frac{k'}{3^{n+1}}, \frac{k'+1}{3^{n+1}} \right].$$

Fix an $\epsilon \in (0, 1)$. For $t \in T$ and $x \in [0, 1]$ define

$$\beta_{\epsilon}(t+x) = \begin{cases} \frac{1-\epsilon}{2+\epsilon} \cdot x & \text{if } x \in [0, 1/3] \\ 2 \cdot \frac{1-\epsilon}{2+\epsilon} (0.5-x) & \text{if } x \in (1/3, 2/3) \\ \frac{1-\epsilon}{2+\epsilon} \cdot (x-1) & \text{if } x \in [2/3, 1] \end{cases}$$

and set $\beta_{\epsilon}(y) = 0$ for all $y \in [0, +\infty) \setminus \{t + x : t \in T, x \in [0, 1]\}.$

Lemma 0.4. Let $m \ge 0$ and $k \in T_m$. Then the function $\beta_{\epsilon}(3^n x)$ has constant value 0 for $x \in (\frac{k+1/3}{3^m}, \frac{k+2/3}{3^m})$ when n > m and has 0 net change on the interval $[\frac{k}{3^m}, \frac{k+1}{3^m}]$ when $n \ge m$.

Proof. If $x \in (\frac{k+1/3}{3^m}, \frac{k+2/3}{3^m})$ then by Lemma 0.3 $x \in E_m \setminus E_{m+1} \subseteq [0,1] \setminus E_n$. On the other hand, if $\beta_{\epsilon}(3^n x) \neq 0$ then there is $k' \in T$ with $3^n x \in [k', k'+1]$, hence $x \in [\frac{k'}{3^n}, \frac{k'+1}{3^n}]$ and $k' \leq 3^n x \leq 3^n$. Therefore $k' \in T_n$ by Lemma 0.2 and $x \in E_n$ by Lemma 0.3. This proves the first claim. Finally, the last claim holds since $3^n \cdot \frac{k}{3^m} = 3^{n-m} k \in T$ and $3^n \cdot \frac{k+1}{3^m}$ is 1 plus

$$3^{n-m}k + 3^{n-m} - 1 = 3^{n-m}k + 3^{n-m-1} \cdot 2 + 3^{n-m-2} \cdot 2 + \dots + 3 \cdot 2 + 2$$

= 3(3(\dots (3(3k+2)+2)\dots + 2) + 2) + 2 \epsilon T.

Lemma 0.5. Let $\phi : [0,1] \to \mathbb{R}$ be a linear increasing function with net change $\lambda = \phi(1) - \phi(0)$. Then the function $\phi(x) + \lambda \cdot \beta_{\epsilon}(x)$ also increases by λ on [0,1] and is linear on each of the intervals [0,1/3], [1/3,2/3], [2/3,1]. Moreover, it increases by $\lambda(2+\epsilon)^{-1}$ on each of the intervals [0,1/3] and [2/3,1] and increases by $\lambda\epsilon(2+\epsilon)^{-1}$ on the interval [1/3,2/3].

Proof. Since ϕ is linear we deduce from the point-slope formula that

$$\phi(x) = \phi(0) + \lambda x = \phi(1) + \lambda(x - 1) = \phi(0.5) + \lambda(x - 0.5)$$

for all $x \in [0, 1]$. So for $x \in [0, 1/3]$ we have

$$\phi(x) + \lambda \cdot \beta_{\epsilon}(x) = \phi(0) + \lambda x + \lambda \cdot \frac{1 - \epsilon}{2 + \epsilon} \cdot x = \phi(0) + \lambda \cdot \frac{3}{2 + \epsilon} \cdot x,$$

implying an increase by $\lambda(2+\epsilon)^{-1}$ on [0,1/3]. Similarly, for $x \in [2/3,1]$ we have

$$\phi(x) + \lambda \cdot \beta_{\epsilon}(x) = \phi(1) + \lambda(x-1) + \lambda \cdot \frac{1-\epsilon}{2+\epsilon} \cdot (x-1) = \phi(1) + \lambda \cdot \frac{3}{2+\epsilon} \cdot (x-1),$$

implying an increase by $\lambda(2+\epsilon)^{-1}$ on [2/3,1]. Lastly, for $x \in [1/3,2/3]$

$$\phi(x) + \lambda \cdot \beta_{\epsilon}(x) = \phi(0.5) + \lambda(x - 0.5) + 2\lambda \cdot \frac{1 - \epsilon}{2 + \epsilon} \cdot (0.5 - x) = \phi(0.5) + \lambda \cdot \frac{3\epsilon}{2 + \epsilon} \cdot (x - 0.5),$$

implying an increase by $\lambda \epsilon (2+\epsilon)^{-1}$ on [1/3, 2/3].

For $n \ge 1$ choose $\epsilon_n > 0$ small enough that $2(2 + \epsilon_n)^{-1} > 2^{-2^{-n}}$. For $x \in [0, 1]$ define

$$\alpha(x) = x + \sum_{k=1}^{\infty} \left(\prod_{i=1}^{k-1} (2+\epsilon_i)^{-1} \right) \cdot \beta_{\epsilon_k}(3^{k-1}x)$$

and let α_n be the n^{th} partial sum

$$\alpha_n(x) = x + \sum_{k=1}^n \left(\prod_{i=1}^{k-1} (2+\epsilon_i)^{-1} \right) \cdot \beta_{\epsilon_k}(3^{k-1}x).$$

Lemma 0.6. Let $n \ge 0$. The interval [0,1] is the union of the pairwise disjoint intervals

$$\left[\frac{k}{3^n}, \frac{k+1}{3^n}\right] \quad (k \in T_n) \text{ and } \left(\frac{k+1/3}{3^m}, \frac{k+2/3}{3^m}\right) \quad (0 \le m < n, \ k \in T_m).$$

The function α_n is monotone increasing and is linear on each of the above intervals. Moreover, α_n increases by $\prod_{i=1}^n (2+\epsilon_i)^{-1}$ on each of the intervals $[\frac{k}{3^n}, \frac{k+1}{3^n}]$, $k \in T_n$, and increases by $\epsilon_m \cdot \prod_{i=1}^m (2+\epsilon_i)^{-1}$ on each of the intervals $(\frac{k+1/3}{3^m}, \frac{k+2/3}{3^m})$, $0 \le m < n, \ k \in T_m$.

Proof. We have

$$(E_0 \setminus E_1) \cup (E_1 \setminus E_2) \cup \cdots \cup (E_{n-1} \setminus E_n) \cup E_n = E_0 = [0,1],$$

with the sets appearing in the above union disjoint with one another. By Lemma 0.3 E_n is the union of the disjoint intervals $\left[\frac{k}{3^n}, \frac{k+1}{3^n}\right]$ for $k \in T_n$, and for each m < n the set $E_m \setminus E_{m+1}$ is the union of the disjoint intervals $\left(\frac{k+1/3}{3^m}, \frac{k+2/3}{3^m}\right)$ for $k \in T_m$. This proves the first claim.

We prove the remaining claims by induction. First consider the base case n = 1. The function $\phi(x) = x$ increases by $\lambda = 1$ on [0, 1], so by Lemma 0.5 $\alpha_1(x) = x + \beta_{\epsilon_1}(x)$ is linear on each interval [0, 1/3], [1/3, 2/3], [2/3, 1], increases by $(2+\epsilon_1)^{-1}$ on each of the intervals [0, 1/3] and [2/3, 1], and increases by $\epsilon_1(2+\epsilon_1)^{-1}$ on (1/3, 2/3).

each of the intervals [0, 1/3] and [2/3, 1], and increases by $\epsilon_1(2+\epsilon_1)^{-1}$ on (1/3, 2/3). Now inductively assume that α_n increases by $\prod_{i=1}^n (2+\epsilon_i)^{-1}$ on each of the intervals $[\frac{k}{3n}, \frac{k+1}{3n}], k \in T_n$, increases by $\epsilon_m \cdot \prod_{i=1}^m (2+\epsilon_i)^{-1}$ on each of the intervals $(\frac{k+1/3}{3m}, \frac{k+2/3}{3m}), 0 \leq m < n, k \in T_m$, and is moreover linear on each of these intervals.

Consider an interval $\left[\frac{k}{3^n}, \frac{k+1}{3^n}\right]$ where $k \in T_n$. For $u \in [0,1]$ define $\phi(u) =$ $\alpha_n(\frac{k+u}{3^n})$. Then ϕ is linear and increases by $\prod_{i=1}^n (2+\epsilon_i)^{-1}$ on [0,1]. Notice that

$$\begin{aligned} \alpha_{n+1}\left(\frac{k+u}{3^n}\right) &= \alpha_n\left(\frac{k+u}{3^n}\right) + \left(\prod_{i=1}^n (2+\epsilon_i)^{-1}\right)\beta_{\epsilon_{n+1}}\left(3^n \cdot \frac{k+u}{3^n}\right) \\ &= \phi(u) + \left(\prod_{i=1}^n (2+\epsilon_i)^{-1}\right)\beta_{\epsilon_{n+1}}(k+u) \\ &= \phi(u) + \left(\prod_{i=1}^n (2+\epsilon_i)^{-1}\right)\beta_{\epsilon_{n+1}}(u), \end{aligned}$$

where the final equality holds since $k \in T$. By combining the final line of the above equation with Lemma 0.5, we find that α_{n+1} increases by $\prod_{i=1}^{n+1} (2+\epsilon_i)^{-1}$ on each of the intervals (A) $\left[\frac{k}{3^n}, \frac{k+1/3}{3^n}\right] = \left[\frac{3k}{3^{n+1}}, \frac{3k+1}{3^{n+1}}\right]$ and (B) $\left[\frac{k+2/3}{3^n}, \frac{k+1}{3^n}\right] = \left[\frac{3k+2}{3^{n+1}}, \frac{3k+3}{3^{n+1}}\right]$, increases by $\epsilon_{n+1} \prod_{i=1}^{n+1} (2+\epsilon_i)^{-1}$ on (C) $\left[\frac{k+1/3}{3^n}, \frac{k+2/3}{3^n}\right]$, and is linear on each of these intervals. Notice that the intervals (A) and (B) just described, as $k \in T_n$ varies, coincide with the intervals $\left[\frac{k'}{3^{n+1}}, \frac{k'+1}{3^{n+1}}\right]$ as $k' \in T_{n+1}$ varies (by Lemma 0.3), and the intervals (C), as $k \in T_n$ varies, coincide with the intervals $(\frac{k+1/3}{3^m}, \frac{k+2/3}{3^m})$

and the time tend of m = n < n + 1. Next consider an interval $\left(\frac{k+1/3}{3^m}, \frac{k+2/3}{3^m}\right)$ where $k \in T_m$ and m < n. By our inductive hypothesis α_n is linear on this interval and increases by $\epsilon_m \cdot \prod_{i=1}^m (2+\epsilon_i)^{-1}$ on this interval. Since Lemma 0.4 tells us $\beta_{\epsilon_{n+1}}(3^n x) = 0$ for all x in this interval, it follows that α_{n+1} is equal to α_n on this interval. Therefore α_{n+1} is linear on $(\frac{k+1/3}{3^m}, \frac{k+2/3}{3^m})$ and increases by $\epsilon_m \cdot \prod_{i=1}^m (2+\epsilon_i)^{-1}$ on this interval. By induction, we conclude that the claim holds for all n.

Lemma 0.7. The functions (α_n) converge uniformly to α on $[0, +\infty)$.

Proof. Notice that for every $x \ge 0$

$$|\beta_{\epsilon}(x)| \leq \frac{1-\epsilon}{2+\epsilon} \cdot \frac{1}{3} < \frac{1}{2} \cdot \frac{1}{3}$$

So uniform convergence follows from the Weierstrass M-test (Theorem 7.10) since $\sum_{k=1}^{\infty} \frac{1}{3} \cdot \frac{1}{2^k}$ converges and

$$\left| \left(\prod_{i=1}^{k-1} (2+\epsilon_i)^{-1} \right) \cdot \beta_{\epsilon_k} (3^{k-1}x) \right| \le 2^{-(k-1)} |\beta_{\epsilon_k} (3^{k-1}x)| \le \frac{1}{3} \cdot \frac{1}{2^k}.$$

Corollary 0.8. α is monotone increasing and for every $m \geq 0$ and $k \in T_m$ we have

$$\alpha\left(\frac{k+1}{3^m}\right) - \alpha\left(\frac{k}{3^m}\right) = \prod_{i=1}^m (2+\epsilon_i)^{-1}.$$

Proof. Lemma 0.6 tells us that each α_n is monotone increasing. So if y > x then $\alpha_n(y) - \alpha_n(x) \ge 0$ for every n and $\alpha(y) - \alpha(x) = \lim_{n \to \infty} (\alpha_n(y) - \alpha_n(x)) \ge 0$. Thus α is monotone increasing. Next, from Lemma 0.6 we obtain $\alpha_m(\frac{k+1}{3^m}) - \alpha_m(\frac{k}{3^m}) =$ $\prod_{i=1}^{m} (2+\epsilon_i)^{-1}$, and Lemma 0.4 implies that $\beta_{\epsilon_n} (3^{n-1} \cdot \frac{k+1}{3^m}) - \beta_{\epsilon_n} (3^{n-1} \cdot \frac{k}{3^m}) = 0$ for all n > m. Consequently, for all $n \ge m$

$$\alpha_n\left(\frac{k+1}{3^m}\right) - \alpha_n\left(\frac{k}{3^m}\right) = \alpha_m\left(\frac{k+1}{3^m}\right) - \alpha_m\left(\frac{k}{3^m}\right) = \prod_{i=1}^m (2+\epsilon_i)^{-1}.$$

Taking the limit as $n \to \infty$ completes the proof.

Define $f:[0,1] \to \mathbb{R}$ by the rule

$$f(x) = \begin{cases} 1 & \text{if } \exists n \ \exists k \in T_n \ x = \frac{k}{3^n} \\ 1 & \text{if } \exists n \ \exists k \in T_n \ x = \frac{k+1}{3^n} \\ 0 & \text{otherwise.} \end{cases}$$

Notice that $\frac{k}{3^n}, \frac{k+1}{3^n}$ are in the Cantor set E for every n and every $k \in T_n$. Thus f(x) = 0 for all $x \in [0, 1] \setminus E$.

Lemma 0.9. For every $q \ge 0$, f is integrable on [0,1] with respect to α_q and $\int_0^1 f \ d\alpha_q = 0$.

Proof. By Lemma 0.6 we can break [0,1] into a finite number of sub-intervals on which α_q is linear. Letting A be the maximum slope among these linear pieces, we have $|\alpha_q(x) - \alpha_q(y)| \leq A|x-y|$ for all $x, y \in [0,1]$. Let $\epsilon > 0$ and pick an integer m with $(\frac{2}{3})^m < \frac{\epsilon}{A}$. Consider the partition $P = \{0 = x_0 < x_1 < \ldots < x_n = 1\}$ where $n = 3^m$ and $x_i = \frac{i}{3^m}$ for all $0 \leq i \leq n$. Set $I = \{k + j : k \in T_m, j = -1, 0, 1\}$ and notice that for $1 \leq i \leq n$ Lemma 0.3 implies that $[x_{i-1}, x_i] \cap E_m \neq \emptyset \Leftrightarrow i \in I$. Since f has constant value 0 on $[0, 1] \setminus E_m \subseteq [0, 1] \setminus E$, it follows that $M_i = 0$ for all $i \in \{1, 2, \ldots, n\} \setminus I$. Additionally, for every $1 \leq i \leq n$ we have $0 \leq m_i \leq M_i \leq 1$. So

$$0 \le L(P, f, \alpha_q) \le U(P, f, \alpha_q) \le \sum_{i \in I} \Delta(\alpha_q)_i \le \sum_{i \in I} A \cdot \Delta x_i.$$

For every *i* we have $\Delta x_i = \frac{1}{3^m}$ and Lemma 0.2 gives $|I| \leq 3|T_m| = 3 \cdot 2^m$. Therefore

$$U(P, f, \alpha_q) \le |I| \cdot A \cdot \frac{1}{3^m} = 3A \cdot \left(\frac{2}{3}\right)^m < \epsilon.$$

We conclude that f is integrable on [0, 1] with respect to α_q and $\int_0^1 f \, d\alpha_q = 0$. \Box

Lemma 0.10. f is not integrable on [0,1] with respect to α .

Proof. Let P be any partition of [0,1], say $P = \{0 = x_0 < x_1 < \cdots < x_n = 1\}$. Let i be the set of indices $1 \leq i \leq n$ satisfying $[x_{i-1}, x_i] \cap E \neq \emptyset$, and let K be the compact set given by the union of the intervals $[x_{i-1}, x_i]$ for $i \in \{1, 2, \ldots, n\} \setminus I$. Then $\bigcap_{m \in \mathbb{N}} (E_m \cap K) = E \cap K = \emptyset$, so the Corollary to Theorem 2.36 implies that there is m with $E_m \cap K = \emptyset$. In other words, $E_m \subseteq \bigcup_{i \in I} [x_{i-1}, x_i]$. By choosing a larger m if necessary, we can assume that $\frac{1}{3^m} < \min\{\Delta x_i : 1 \leq i \leq n\}$.

If $i \in I$ then $E_m \cap [x_{i-1}, x_i] \supseteq E \cap [x_{i-1}, x_i] \neq \emptyset$, so by Lemma 0.3 there is $k \in T_m$ with $[\frac{k}{3^m}, \frac{k+1}{3^m}] \cap [x_{i-1}, x_i] \neq \emptyset$. Since $\frac{1}{3^m} < \Delta x_i$, we have either $\frac{k}{3^m}$ or $\frac{k+1}{3^m}$ lies in $[x_{i-1}, x_i]$. So f attains a value of 1 somewhere on $[x_{i-1}, x_i]$ and thus $M_i = 1$ for every $i \in I$. Therefore $U(P, f, \alpha) \ge \sum_{i \in I} \Delta(\alpha)_i$. On the other hand, for every $1 \le i \le n$ the set $[x_{i-1}, x_i]$ is uncountable while f has value 1 at only a countable number of points. So f attains a value of 0 on $[x_{i-1}, x_i]$ and $m_i = 0$ for every $1 \le i \le n$. Therefore $L(P, f, \alpha) = 0$.

From Lemma 0.3 we have

$$\bigcup_{i \in I} [x_{i-1}, x_i] \supseteq E_m = \bigcup_{k \in T_m} \left[\frac{k}{3^m}, \frac{k+1}{3^m} \right].$$

Therefore, since α is monotone increasing,

$$\sum_{i \in I} \Delta(\alpha)_i \ge \sum_{k \in T_m} \alpha\left(\frac{k+1}{3^m}\right) - \alpha\left(\frac{k}{3^m}\right),$$

and Corollary 0.8 and Lemma 0.2 imply

$$\sum_{k \in T_m} \alpha \left(\frac{k+1}{3^m} \right) - \alpha \left(\frac{k}{3^m} \right) = |T_m| \cdot \prod_{i=1}^m (2+\epsilon_i)^{-1} = \prod_{i=1}^m 2 \cdot (2+\epsilon_i)^{-1}.$$

Recalling that we chose ϵ_i to satisfy $2(2+\epsilon_i)^{-1} > 2^{-2^{-i}}$, we conclude that

$$\sum_{i \in I} \Delta(\alpha)_i \ge \prod_{i=1}^m 2^{-2^{-i}} = 2^{-\sum_{i=1}^m 2^{-i}} > 2^{-1} = \frac{1}{2}.$$

Therefore $U(P, f, \alpha) \ge \sum_{i \in I} \Delta(\alpha)_i > \frac{1}{2}$ while $L(P, f, \alpha) = 0$. We conclude that f is not integrable on [0, 1] with respect to α .