• Chapter 9 problem 26
• Chapter 9 problem 29
• Chapter 9 problem 31 (do this just for \mathbb{R}^2)
• Chapter 11 problem 15

• Problem A: Let X be an uncountable set. Determine if each of the following is a ring, a σ-ring, or neither:
 1. $\{\emptyset, X\}$.
 2. the collection of all subsets of X.
 3. the collection of all finite subsets of X.
 4. the collection of all sets that are countable or have countable compliment.
 5. In the case $X = \mathbb{R}$, the collection of all sets that are finite unions of intervals of the form $(a, b]$ with $a, b \in \mathbb{R}$.

• Problem B: Let X be a set.
 1. Let I be any set and for each $i \in I$ let R_i be a ring of subsets of X. Prove that $\bigcap_{i \in I} R_i$ is a ring. Similarly prove $\bigcap_{i \in I} R_i$ is a σ-ring if each R_i is a σ-ring.
 2. Prove that for every collection C of subsets of X there exists a unique smallest ring R_1 containing C and a unique smallest σ-ring R_2 containing C.