140C Office Hours
Why is $\|A\|^{-1}$ used in Thm 9.8?

$\|A\|$ only bounds how much A can lengthen vectors. $\frac{1}{\|A\|^{-1}}$ bounds how much A shrinks vectors (and the concern for invertibility is that a nonzero vector gets shrunk to the 0 vector).

Suppose $A \in L(R^n)$ is invertible for all $y \in R^n$:

$$|A^{-1} y| \leq \|A^{-1}\| \|y\|$$

Setting $x = A^{-1} y$ we obtain:

$$|x| \leq \|A^{-1}\| |Ax|$$

Meaning:

$$|Ax| \geq \frac{1}{\|A^{-1}\|} |x|$$

This holds for all $x \in R^n$.

In general, (still assuming A invertible):

$$\forall x \in R^n \quad \frac{1}{\|A\|} |x| \leq |Ax| \leq \|A\| |x|$$

and $\|A\|$ and $\|A^{-1}\|$ are the smallest real numbers for which the above statement is true.

In Thm 9.8 require $\|B - A\| < \frac{1}{\|A^{-1}\|}$.
Why are the two formulas for \(\|A\| \) equal?

By definition, \(\|A\| = \sup_{x \in \mathbb{R}^n, \|x\| = 1} |Ax| \).

Clearly, \(\|A\| \geq \sup_{x \in \mathbb{R}^n, \|x\| = 1} |Ax| \) since \(\{x \in \mathbb{R}^n : \|x\| = 1\} \subseteq \{x \in \mathbb{R}^n : \|x\| \leq 1\} \).

On the other hand, consider any \(x \in \mathbb{R}^n \) with \(\|x\| \leq 1 \).

Case 1: \(x = 0 \). Then \(Ax = 0 \) so \(|Ax| = 0 \leq \sup_{y \in \mathbb{R}^n, \|y\| = 1} |Ay| \).

Case 2: \(x \neq 0 \). Set \(t = \frac{1}{\|x\|} \). Then \(\|tx\| = 1 \) and since \(t \geq 1 \), we have

\[
|Ax| \leq t |Ax| = |Ax| = \sup_{y \in \mathbb{R}^n, \|y\| = 1} |Ay|.
\]

So \(\sup_{x \in \mathbb{R}^n, \|x\| = 1} |Ay| \) is an upper bound to \(\sup_{x \in \mathbb{R}^n, \|x\| = 1} |Ax| \).

Therefore, \(\|A\| \leq \sup_{y \in \mathbb{R}^n, \|y\| = 1} |Ay| \). We conclude

\[
\|A\| = \sup_{y \in \mathbb{R}^n, \|y\| = 1} |Ay|.
\]
Why is $\text{GL}(\mathbb{R}^n)$ open?

Recall if (X, d) metric space and $U \subseteq X$, then

U is open if $\forall x \in U \exists r > 0 \quad B_r(x) \subseteq U$.

$\text{GL}(\mathbb{R}^n)$ is open by Theorem 9.8(�) since

for every $A \in \text{GL}(\mathbb{R}^n)$

$$B_{\frac{1}{\|A^{-1}\|}}(A) \subseteq \text{GL}(\mathbb{R}^n)$$

$\forall A \in \text{GL}(\mathbb{R}^n)$

$$B \in B_{\frac{1}{\|A^{-1}\|}}(A) \Rightarrow \|B - A\| < \frac{1}{\|A^{-1}\|} \quad \text{[Thm 9.8(�)]} \Rightarrow B \in \text{GL}(\mathbb{R}^n)$
$f : E \to \mathbb{R}, \quad E \subseteq \mathbb{R}^n$

f differentiable, local max at x. Show $f'(x) = 0$.

Write $f(x+h) - f(x) = f'(x)h + r(h)$ where $\frac{|r(h)|}{|h|} \to 0$ as $h \to 0$.

Towards a contradiction, suppose $f'(x) \neq 0$.

Then there is $h \in \mathbb{R}^n$ with $f'(x)h \neq 0$.

By replacing h with $-h$ if necessary, can assume $f'(x)h > 0$.

Set $\epsilon = \frac{1}{2|f'(x)|} f'(x)h$.

Then for all $t > 0$ close enough to 0 so that $\frac{|r(th)|}{|th|} < \epsilon$ we have

$$f(x+th) - f(x) = tf'(x)h + r(th)$$

$$\geq tf'(x)h - |r(th)|$$

$$\geq tf'(x)h - \epsilon t|h|$$

$$= t(f'(x)h - \epsilon |h|)$$

$$\geq \frac{1}{2} tf'(x)h > 0.$$

Thus x is not a local max, contradiction.
If \(g(x) = A f(x) \) why is \(g'(x) = A f'(x) \)?

Claim: If \(A \in \mathbb{L}(\mathbb{R}^n, \mathbb{R}^k) \), \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \)
and \(g(x) = A f(x) \), then \(g'(x) = A f'(x) \)
(assuming \(f'(x) \) exists)

Pf: We have

\[
\lim_{h \to 0} \frac{|g(x+h)-g(x)|}{|h|} = \lim_{h \to 0} \frac{|A(f(x+h)-f(x))-f'(x)h|}{|h|} \\
\leq \lim_{h \to 0} \|A\| \frac{|f(x+h)-f(x)-f'(x)h|}{|h|} = 0 \quad \square
\]
Why do Lebesgue-measurable non-Borel measurable sets exist?

Fact: Let \(m \) be Lebesgue measure on \(\mathbb{R}^n \). If \(A \in \mathcal{M}(m) \) and \(m(A) = 0 \) then \(B \in \mathcal{M}(m) \) for all \(B \subseteq A \).

Pf: Since \(0 = m(A) = m^*(A) \) and \(m^* \) is monotone, so \(\forall B \subseteq A \) \(m^*(B) = 0 \). This means \(B \in \mathcal{M}_c(m) \subseteq \mathcal{M}(m) \) because \(B_n \to B \) where \(B_n = \emptyset, \mathcal{E} \) (because \(B_n \to B \) since \(\lim_{n \to \infty} m^*(B \Delta B_n) = m^*(B) = 0 \)).

Fact: If \(C \) is the Cantor set then \(m(C) = 0 \).

Pf: Given in class.

So \(C \) is an uncountable compact set and every subset of \(C \) is Lebesgue measurable.

However, the collection of Borel sets contained in \(C \) coincides with the Borel \(\sigma \)-algebra of \(C \) (for any metric space \((X, d) \) the Borel \(\sigma \)-algebra is by definition the smallest \(\sigma \)-algebra containing all open sets) (has a countable dense subset).

Fact: If \((X, d) \) is an uncountable, separable, complete metric space, then there exist subsets of \(X \) that are not Borel
Fact: \((X,d)\) uncountable, separable, complete. Then \(|B(x)| = |\mathbb{R}|\).

\[\text{Claim: } |\{u \leq x : u \text{ open}\}| = |\mathbb{R}|\]

\[\text{Pf: Let } X_0 \leq X \text{ be cntbl dense. Set } \gamma = \{B_q(x) : q \geq 0, q \in \mathbb{Q}, x \in X_0\}.
\]

- For any open \(U \subseteq X\) and any \(x \in U\), there is \(B_q(x') \in \gamma\) with \(x \in B_q(x') \subseteq U\).
- Enumerate \(\gamma\) as \(V_0, V_1, \ldots\).

This shows \(U \text{ open } \subseteq X \implies \exists i \in \mathbb{N} \ U = \bigcup_{i \in \mathbb{N}} U_i\).

Therefore \(|\{u \leq x : u \text{ open}\}| = |\mathbb{N}| \leq |\mathbb{R}|\).

Reverse inequality \(\leq \ldots \) ?

\[\text{Claim implies } |B(x)| = |\mathbb{R}|, \]

Let \(N = \text{Baire space} = \{x : N \rightarrow \mathbb{N}\}^3\)

Fact: Every Borel set \(A \subseteq X\) is the projection of a closed set \(B \subseteq X \times N\)

\[A = \{x \in X : \exists y \in N \ (x,y) \in B\}\]

By first claim, \(X \times N\) has at most \(|\mathbb{R}|\)-many closed sets. So by above fact \(|B(x)| \leq |\mathbb{R}|\). \(\Box\)
Continued from previous page

Fact: \(|\mathbb{R}^n\cap x| > |x| = |\mathbb{R}|\)

Pf: “>” by Math 109

\[N\text{ is a metric space: if } x,y : N \rightarrow N \]
\[d(x,y) = \inf \xi 2^{-n} : n \in \mathbb{N} \quad \forall k < n \quad x(k) = y(k) \leq 1\]

Fact: Every Borel set \(A \subseteq X\) is the projection of a closed set \(B \subseteq X \times N\)

\[(A = \exists x \in X : \exists y \in N : (x, y) \in B^3)\]

Pf Sketch: Set \(A = \exists A \subseteq X : \exists \text{ closed } B \subseteq X \times N \text{ with } \pi_x(B) = A^3\).
Check that \(A\) is a \(\sigma\)-algebra and contains every closed subset of \(X\). Since \(B(x)\) is the smallest \(\sigma\)-algebra containing all closed sets, \(B(x) \subseteq A\).
Measurable Functions

Fact: If \(f: X \rightarrow [-\infty, +\infty] \) is measurable iff
\[
\forall A \in B(\mathbb{R}) \quad f^{-1}(A) \in M
\]

In general, if \((X, M, \mu)\) and \((Y, N, \nu)\) are measure spaces then a function \(f: X \rightarrow Y \) is measurable if
\[
\forall A \in N \quad f^{-1}(A) \in M
\]

So for the definition of measurable we use in class, we take the codomain \(\mathbb{R} \) to be equipped with \(B(\mathbb{R}) \) by default.

\[
x \in X \quad \mapsto f(x) \in \mathbb{R} \quad \mapsto g(f(x)) \in \mathbb{R}
\]
The answer is yes. To see this, it suffices to show that whenever a sequence \((x_n)\) in \([0, 1]\) converges to \(x\), \(g(x_n) \to g(x)\) as \(n \to \infty\).

Consider such a seq. \((x_n)\). Define \(f_n(y) = f(x_n, y)\). By (b) \(f_n(y) \to f(x, y)\). Also \(\text{by } \|f_n(y)\| \leq 1\) and \(\int_0^1 dy < \infty\), so by Lebesgue Dominated Convergence Theorem

\[
g(x) = \int_0^1 f(y) dy = \int_0^1 \lim_{n \to \infty} f_n(y) dy = \lim_{n \to \infty} \int_0^1 f_n(y) dy = \lim_{n \to \infty} g(x_n). \]

\(\square\)
Fatou’s Theorem - Different Perspective

Fix \(\varepsilon > 0 \).

Define \(E_n = \{ x \in E : \inf_{m \geq n} f_m(x) > (1-\varepsilon)f(x) \} \).

Then \(E_1 \subseteq E_2 \subseteq \ldots \) and since \(f(x) = \liminf_{n \to \infty} f_n(x) \) (\(\star \)), we have \(\bigcup_{n=1}^{\infty} E_n = E. \)

Since the \(f_n \)'s are non-negative, we have

\[
\lim_{m \to \infty} \int_{E_n} f(x) \, dx \leq \int_{E_n} f_m(x) \, dx \leq \int_{E_n} f(x) \, dx + \int_{E \setminus E_n} f(x) \, dx
\]

Taking \(\liminf_{n \to \infty} \) we obtain

\[
\lim_{m \to \infty} \int_{E_n} f(x) \, dx \leq \liminf_{n \to \infty} \int_{E_n} f_m(x) \, dx
\]

Next by Theorem 11.24 and Theorem 11.3 we can take

\[
(1-\varepsilon) \int_{E} f(x) \, dx = \int_{E} (1-\varepsilon) f(x) \, dx = \lim_{n \to \infty} \int_{E} (1-\varepsilon) f(x) \, dx \leq \liminf_{n \to \infty} \int_{E} f_m(x) \, dx
\]

Now take limit as \(\varepsilon \to 0. \)

(\(\star \)) \(f(x) = \liminf_{m \to \infty} f_m(x) = \lim_{n \to \infty} \inf_{m \geq n} f_m(x) \)

Summary: If \(n \) is large enough

for “most” points \(x \in E \) we have \((1-\varepsilon)f(x) < f_n(x) \)

and thus

\[
\int_{E} (1-\varepsilon) f(x) \, dx \leq \int_{E} f(x) \, dx
\]
Chapter 11 Problem 7

Modified Theorem 11.33:

Let \(a \leq b \) be real numbers, let \(\alpha : \mathbb{R} \to \mathbb{R} \) be monotone increasing. Define

\[
\alpha(x) = \begin{cases}
\alpha(a) & \text{if } x < a \\
\alpha(x) & \text{if } a \leq x \leq b \\
\alpha(b) & \text{if } x > b
\end{cases}
\]

Let \(\mu \) be the measure obtained from using \(\alpha \), in Ex.6a.(b).

1. If \(f \in \mathcal{R}_a^b(\alpha) \) then \(f \in L([a,b], \mu) \) and \(\int_a^b f \, d\mu = \int_a^b f \, d\alpha \)

2. Suppose \(f \) is bounded. Then \(f \in \mathcal{R}_a^b(\alpha) \) iff \(f \) is left-cont. at every point \(\alpha \), is not left-cont., \(f \) is right-cont. at every point \(\alpha \), is not right-cont., and the set of points where \(\alpha \), is continuous and \(f \) is discontinuous has \(\mu \)-measure 0.