MINIMAL SUBDYNAMICS AND MINIMAL FLOWS
WITHOUT CHARACTERISTIC MEASURES

JOSHUA FRISCH, BRANDON SEWARD, AND ANDY ZUCKER

ABSTRACT. Given a countable group G and a G-flow X, a probabil-
ity measure p on X is called characteristic if it is Aut(X, G)-invariant.
Frisch and Tamuz asked about the existence of a minimal G-flow, for any
group G, which does not admit a characteristic measure. We construct
for every countable group G such a minimal flow. Along the way, we
are motivated to consider a family of questions we refer to as minimal
subdynamics: Given a countable group G and a collection of infinite
subgroups {A; : 4 € I}, when is there a faithful G-flow for which every
A; acts minimally?

Given a countable group G and a faithful G-flow X, we write Aut(X, G)
for the group of homeomorphisms of X which commute with the G-action.
When G is abelian, Aut(X, G) contains a natural copy of G resulting from
the G-action, but in general this need not be the case. Much is unknown
about how the properties of X restrict the complexity of Aut(X,G); for
instance, Cyr and Kra [1] conjecture that when G = Z and X C 2% is a
minimal, 0-entropy subshift, then Aut(X,Z) must be amenable. In fact,
no counterexample is known even when restricting to any two of the three
properties “minimal,” “O-entropy,” or “subshift.” In an effort to shed light
on this question, Frisch and Tamuz [3] define a probability measure p on X
to be characteristic if it is Aut(X, G)-invariant. They show that 0-entropy
subshifts always admit characteristic measures. More recently, Cyr and Kra
[2] provide several examples of flows which admit characteristic measures for
non-trivial reasons, even in cases where Aut(X, @) is non-amenable. Frisch
and Tamuz asked (Question 1.5, [3]) whether there exists, for any countable
group G, some minimal G-flow without a characteristic measure. We give a
strong affirmative answer.

Theorem 1. For any countably infinite group G, there is a free minimal G-
flow X so that X does not admit a characteristic measure. More precisely,
there is a free (G x Fy)-flow X which is minimal as a G-flow and with no
Fy-invariant measure.
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We remark that the X we construct will not in general be a subshift.

Over the course of proving Theorem 1, there are two main difficulties to
overcome. The first difficulty is a collection of dynamical problems we refer
to as minimal subdynamics. The general template of these questions is as
follows.

Question 2. Given a countably infinite group I' and a collection {A; : i € I}
of infinite subgroups of I', when is there a faithful (or essentially free, or free)
minimal I'-flow for which the action of each A; is also minimal? Is there a
natural space of actions in which such flows are generic?

In [8], the author showed that this was possible in the case I' = G x H
and A = G for any countably infinite groups G and H. We manage to
strengthen this result considerably.

Theorem 3. For any countably infinite group I' and any collection {A,, :
n € N} of infinite normal subgroups of T', there is a free T'-flow which is
minimal as a Ay -flow for every n € N.

In fact, what we show when proving Theorem 3 is considerably stronger.
Recall that given a countably infinite group I, a subshift X C 2' is strongly
irreducible if there is some finite symmetric D C I" so that whenever Sy, S1 C
I satisfy DSoNS1 = 0 (i.e. Sy and Sy are D-apart), then for any xg, 21 € X,
thereisy € X with y|g, = x;|g, for each i < 2. Write S for the set of strongly
irreducible subshifts, and write S for its Vietoris closure. Frisch, Tamuz, and
Vahidi-Ferdowsi [5] show that in S, the minimal subshifts form a dense G
subset. In our proof of Theorem 3, we show that the shifts in S which are
A, -minimal for each n € N also form a dense G5 subset.

This brings us to the second main difficulty in the proof of Theorem 1.
Using this stronger form of Theorem 3, one could easily prove Theorem 1 by
finding a strongly irreducible Fh-subshift which does not admit an invariant
measure. This would imply the existence of a strongly irreducible (G x F)-
subshift without an Fh-invariant measure. As not admitting an Fy-invariant
measure is a Vietoris-open condition, the genericity of G-minimal subshifts
would then be enough to obtain the desired result. Unfortunately whether
such a strongly irreducible subshift can exist (for any non-amenable group)
is an open question. To overcome this, we introduce a flexible weakening of
the notion of a strongly irreducible shift.

The paper is organized as follows. Section 1 is a very brief background
section on subsets of groups, subshifts, and strong irreducibility. Section 2
introduces the notion of a UFO, a useful combinatorial gadget for construct-
ing shifts where subgroups act minimally; Theorem 3 answers Question 3.6
from [8]. Section 3 introduces the notion of B-irreduciblity for any group
H, where B C Py(H) is a right-invariant collection of finite subsets of H.
When H = F5, we will be interested in the case when B is the collection of
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finite subsets of F5 which are connected in the standard left Cayley graph.
Section 4 gives the proof of Theorem 1.

1. BACKGROUND

Let I be a countably infinite group. Given U, S C I' with U finite, then
we call S a (one-sided) U-spaced set if for every g # h € S we have h & Uy,
and we call S a U-syndetic set if US = I'. A maximal U-spaced set is
simply a U-spaced set which is maximal under inclusion. We remark that
if S is a maximal U-spaced set, then S is (U U U~ !)-syndetic. We say that
sets S,T C T are (one-sided) U-apart if USNT = () and SNUT = 0.
Notice that much of this discussion simplifies when U is symmetric, so we
will often assume this. Also notice that the properties of being U-spaced,
maximal U-spaced, U-syndetic, and U-apart are all right invariant.

If A is a finite set or alphabet, then T acts on A" by right shift, where
given z € AU and g,h € T, we have (g-z)(h) = z(hg). A subshift of A"
is a non-empty, closed, I'-invariant subset. Let Sub(A") denote the space
of subshifts of AT endowed with the Vietoris topology. This topology can
be described as follows. Given X C Al and a finite U C T, the set of
U-patterns of X is the set Py(X) = {z|y : = € X} € AY. Then the
typical basic open neighborhood of X € Sub(Al) is the set Ny (X) :={Y €
Sub(AY) : Py(Y) = Py(X)}, where U ranges over finite subsets of T

A subshift X C AL is U-irreducible if for any zg,r1 € X and any Sy, S1 C
I' which are U-apart, there is y € X with y|s, = z;|s, for each i < 2.
If X is U-irreducible and V' O U is finite, then X is also V-irreducible.
We call X strongly irreducible if there is some finite U C T" with X U-
irreducible. By enlarging U if needed, we can always assume U is symmetric.
Let S(A") C Sub(A") denote the set of strongly irreducible subshifts of A",
and let S(A") denote the closure of this set in the Vietoris topology.

More generally, if 2% denotes Cantor space, then I' acts on (2Y)'' by right
shift exactly as above. If k < w, we let mj,: 2N — 2F denote the restriction
to the first k& entries. This induces a factor map 7y : (2M)1' — (2%)T given by
71(2)(g) = m(2(g)); we also obtain a map 7 : Sub((2MY)') — Sub((2¥))
(where 2% is viewed as a finite alphabet) given by 7,(X) = 7x[X]. The
Vietoris topology on Sub((2M)!) is the coarsest topology making every such
7k continuous. We call a subflow X C (2M)U' strongly irreducible if for every
k < w, the subshift 7, (X) C (2¢)' is strongly irreducible in the ordinary
sense. We let S((2M)F) C Sub((2M)!) denote the set of strongly irreducible
subflows of (2M)' and we let S((2M)) denote its Vietoris closure.

The idea of considering the closure of the strongly irreducible shifts has
it roots in [4]. This is made more explicit in [5], where it is shown that in
S(AY), the minimal subflows form a dense G subset. More or less the same
argument shows that the same holds in S((2M)I') (see [6]). Recall that a
I-flow X is free if for every g € I'\ {1r} and every x € X, we have gx # x.
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The main reason for considering a Cantor space alphabet is the following
result, which need not be true for finite alphabets.

Proposition 4. In S((2M)1), the free flows form a dense G5 subset.

Proof. Fixing g € T, the set {X € Sub((2M)') : Va2 € X (g # z)} is open;
indeed, if X,, — X is a convergent sequence in Sub((2M)') and z,, € X, is
a point fixed by g, then passing to a subsequence, we may suppose x,, —
x € X, and we have gxr = x. Intersecting over all g € I'\ {1r}, we see that
freeness is a G5 condition.

Thus it remains to show that freeness is dense in S((2V)!'). To that end,
we fix g € '\ {Ir} and show that the set of shifts in S((2N)'') where g
acts freely is dense. Fix X € S((2M)'), k < w, and a finite U C T; so a
typical open set in S((2M)') has the form {X’' € S((2Y)") : Py (7r(X')) =
Py(7r(X))}. We want to produce Y € Sub((2Y)') which is strongly irre-
ducible, g-free, and with Py (7, (Y)) = Py(7(X)). In fact, we will produce
such a Y with 7 (Y) = 7 (X).

Let D C T be a finite symmetric set containing g and 1p. Setting m = | D],
consider the subshift Color(D,m) C m' defined by

Color(D,m) := {z € m" : Vi < m [z~ ({i}) is D-spaced]}.

A greedy coloring argument shows that Color(D,m) is non-empty and D-
irreducible. Moreover, g acts freely on Color(D, m). Inject m into okl =1}
for some ¢ > k and identify Color(D,m) as a subflow of (2{%»¢=1HI" Then
Y :=7,(X) x Color(D,m) C (29T C (2Y)T', where the last inclusion can be
formed by adding strings of zeros to the end. Then Y is strongly irreducible,
g-free, and 7 (V) = 7 (X). O

2. UFOS AND MINIMAL SUBDYNAMICS

Much of the construction will require us to reason about the product
group G x Fy. So for the time being, fix countably infinite groups A C T'.
For our purposes, I' will be G x Fs, and A will be GG, where we identify G
with a subgroup of G x F5 in the obvious way. However, for this subsection,
we will reason more generally.

Definition 5. Let A C I' be countably infinite groups. A finite subset
U C T is called a (I',A)-UFO if for any maximal U-spaced set S C I, we
have that S meets every right coset of A in I'.

We say that the inclusion of groups A C I' admits UFOs if for every finite
U CT, there is a finite V' C I" with V' O U which is a (I', A)-UFO.

As a word of caution, we note that the property of being a (I'; A)-UFO
is not upwards closed.

The terminology comes from considering the case of a product group, i.e.
I'=7x7Zand A = Z x {0}. Figure 1 depicts a typical UFO subset of Z x Z.
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FIGURE 1. Sighting in Roswell; a (ZxZ,Zx{0})-UFO subset
of Z x 7.

Proposition 6. Let A be a subgroup of I'. If |[,cur uAu~t| is infinite for
every finite set U C T then A C T admits UFOs. In particular, if A contains
an infinite subgroup that is normal in T' then A CT' admits UFOs.

Proof. We prove the contrapositive. So assume that A C I" does not admit
UFOs. Let U C I be a finite symmetric set such that no finite V' C I’
containing U is a (I', A)-UFO. Let D C A be finite, symmetric, and contain
the identity. It will suffice to show that C' = (), uDu ™! satisfies |C| < |U].

Set V.= U U D? Since V is not a (I',A)-UFO, there is a maximal
V-spaced set S C T' and g € T" with SN Ag = @. Since S is V-spaced
and u1C?u C D% C V, the set O, = (uS) N (Cg) is C?-spaced for every
u € U. Of course, any C?-spaced subset of Cg is empty or a singleton,
so |Cy] < 1 for each uw € U. On the other hand, since S is maximal we
have V.S =T, and since SN Ag = @ we must have C'g C US. Therefore
€1 = |Cal = Soers Cul < U1 O

In the spaces S(k") and S((2M)1), the minimal flows form a dense Gj.
However, when A C T is a subgroup, we can ask about the properties of
members of S(k') and S((2V)!) viewed as A-flows.

Definition 7. Given a subshift X C k' and a finite E C T, we say that X
is (A, E)-minimal if for every x € X and every p € Pg(X), there is g € A
with (gz)|g = p. Given a subflow X C (2Y)! and n € N, we say that X is
(A, E,n)-minimal if 7,(X) C (2" is (A, E)-minimal. When A = T, we
simply say that X is E-minimal or (E,n)-minimal.

The set of (A, E)-minimal flows is open in Sub(k!), and X C k' is min-
imal as a A-flow iff it is (A, E)-minimal for every finite £ C I'. Similarly,
the set of (A, E,n)-minimal flows is open in Sub((2¥)!), and X € (2N is
minimal as a A-flow iff it is (A, E,n) minimal for every finite £ C I" and
every n € N.

In the proof of Proposition 8, it will be helpful to extend conventions
about the shift action to subsets of T. If U C T, g € G, and p € kY,
we write g-p € kU9~ for the function where given h € Ug~!, we have

(g:p)(h) = p(hg).
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Proposition 8. Suppose A C T are countably infinite groups and that A C
I' admits UFOs. Then {X € S(k') : X is minimal as a A-flow} is a dense
Gs subset. Similarly, {X € S@MT : X is minimal as a A-flow} is a dense
Gs subset.

Proof. We give the arguments for k', as those for (2)" are very similar.

It suffices to show for a given finite £ C I' that the collection of (A, E)-
minimal flows is dense in S(k'). By enlarging F if needed, we can assume
that E is symmetric.

Consider a non-empty open O C S(k'). By shrinking O and/or enlarging
FE if needed, we can assume that for some X € S(k'), we have O = Ng(X)n
S(kY). We will build a (A, E)-minimal shift Y with Y € Ng(X) N S(k').
Fix a finite symmetric D C I' so that X is D-irreducible. Then fix a finite
U C T which is large enough to contain an EDF-spaced set @ C U N A
of cardinality |Pg(X)|, and enlarging U if needed, choose such a @ with
EQ C U. Fix a bijection Q — Pg(X) by writing Pg(X) = {p; : g € Q}.
Because X is D-irreducible, we can find o € Py (X) so that (9q)|g = pg for
every g € (. By Proposition 6, fix a finite V' C I with V' O UDU which is
a (I'; A)-UFO. We now form the shift

Y ={y € X : 3 a max. V-spaced set T so that Vg € T'(g-y)|v = a}.

Because V = UDU and X is D-irreducible, we have that Y # (). In par-
ticular, for any maximal V-spaced set T' C I', we can find y € Y so that
(9y)|u = a for every g € T. We also note that Y € Ng(X) by our construc-
tion of a.

To see that Y is (A, E)-minimal, fix y € Y and p € Pg(Y'). Suppose this
is witnessed by the maximal V-spaced set T' C I'. Because V is a (I', A)-
UFO, find h € ANT. So (hy)ly = a. Now suppose g € @ is such that
p =pg. We have (ghy)|r = (g9 ((hy)|v)|e = pg-

To see that Y € S(k'), we will show that Y is DUV U D-irreducible.
Suppose yo,y1 € Y and Sy, S1 C I' are DUV U D-apart. For each i < 2,
fix T; C I' a maximal V-spaced set which witnesses that y; is in Y. Set
Bi ={g € T, : DUgNS; # 0}. Notice that B; C UDS,. It follows
that By U By is V-spaced, so extend to a maximal V-spaced set B. It also
follows that S; UUB; C U?DS;. Since V O UDU and by the definition of
B, the collection of sets {S; UUB; : i < 2} U{Ug : g € B\ (BypU B1)}
is pairwise D-apart. By the D-irreducibility of X, we can find y € X
with y|ls,uuvs, = vils,uup, for each i < 2 and with (gy)|ly = « for each
g € B\ (ByU By). Since B; C T;, we actually have (gy)|y = « for each
g€ B. Soy €Y and y|s, = vi|s; as desired. O

Proof of Theorem 3. By Proposition 8, the generic member of S((2M)!) is
minimal as a Ap-flow for each n € N, and by Proposition 4, the generic
member of S((2M)T is free. O
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In contrast to Theorem 1, the next example shows that Question 2 is
non-trivial to answer in full generality.

Theorem 9. Let G = ) (Z/27Z) and let X be a G flow with infinite un-
derlying space. Then there exists an infinite subgroup H such that X is not
minimal as an H flow.

Proof. We may assume that X is a minimal G-flow, as otherwise we may
take H = G. We construct a sequence X 2D Ko 2 K; 2 --- of proper, non-
empty, closed subsets of X and a sequence of group elements {g, : n € N}
so that by setting K = (\y K, and H = (g, : n € N), then K will be a
minimal H-flow. Start by fixing a closed, proper subset Kg C X with non-
empty interior. Suppose K, has been created and is (go, ..., gn—1)-invariant.
As X is a minimal G-flow, the set S, := {g € G : Int(gK,, N K,,) # 0} is
infinite. Pick any g, € S, \ {1g}, and set K11 = gn K, N K. As g2 = 1¢,
we see that K11 is gp-invariant, and as G is abelian, we see that K, is
also g;-invariant for each ¢ < n. It follows that K will be H-invariant as
desired. O

Before moving on, we give a conditional proof of Theorem 1, which works
as long as some non-amenable group admits a strongly irreducible shift with-
out an invariant measure. It is the inspiration for our overall construction.

Proposition 10. Let G and H be countably infinite groups, and suppose
that for some k < w and some strongly irreducible flow Y C k™ thatY does
not admit an H-invariant measure. Then there is a minimal G-flow which
does not admit a characteristic measure.

Proof. Viewing Z = k© x Y as a subshift of k<% then Z is strongly
irreducible and does not admit an H-invariant probability measure. The
property of not possessing an H-invariant measure is an open condition in
Sub(k%*H); indeed, if X,, — X is a convergent sequence in Sub(k“*#) and
ln is an H-invariant probability measure supported on X,,, then by passing
to a subsequence, we may suppose that the pu, weak*-converge to some H-
invariant probability measure p supported on X. By Proposition 8, we can
therefore find X C k¢*H which is minimal as a G-flow and which does not
admit an H-invariant measure. As H acts by G-flow automorphisms on X,
we see that X does not admit a characteristic measure. (]

Unfortunately, the question of if there exists any countable group H and
a strongly irreducible H-subshift Y with no H-invariant measure is an open
problem. Therefore our construction proceeds by considering the free group
F, and defining a suitable weakening of strongly irreducible subshift which
is strong enough for G-minimality to be generic in (G x Fy)-subshifts, but
weak enough for (G x Fy)-subshifts without Fy-invariant measures to exist.
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3. VARIANTS OF STRONG IRREDUCIBILITY

In this section, we investigate a weakening of strong irreducibility that
one can define given any right-invariant collection B of finite subsets of a
given countable group. For our overall construction, we will consider F5 and
G x F», but we give the definitions for any countably infinite group I'. Write
P¢(T") for the collection of finite subsets of T'.

Definition 11. Fix a right-invariant subset B C P¢(I'). Given k € N, we
say that a subshift X C kY is B-irreducible if there is a finite D C T so that
for any m < w, any By, ..., Bjm—1 € B, and any xg, ..., T;m—1 € X, if the sets
{Bo, ..., Bm—1} are pairwise D-apart, then there is y € X with y|p, = z;|p,
for each © < m. We call D the witness to B-irreducibility. If we have D in
mind, we can say that X is B-D-irreducible.

We say that a subflow X C (2Y)!" is B-irreducible if for each k € N, the
subshift 7, (X) C (2F)! is B-irreducible.

We write Sg(k") or Sg((2MV)1) for the set of B-irreducible subflows of k'
or (2M)T'] respectively, and we write Sg(k') or Sg((2V)!') for the Vietoris
closures.

Remark.

(1) If B is closed under unions, it is enough to consider m = 2. However,
this will often not be the case.

(2) By compactness, if X C kU is B-D-irreducible, {B,, : n < w} C B is
pairwise D-apart, and {z, : n < w} C X, then there is y € X with
yls; = xils;-

(3) If BC B, then Sp (k") C S(k") and Sp:((2™)") € Sp((2™)")

When B is the collection of all finite subsets of H, then we recover the
notion of a strongly irreducible shift. Again, we consider Cantor space al-
phabets to obtain freeness.

Proposition 12. For any right-invariant collection B C Py(I"), the generic
member of Sp((2M)1) is free.

Proof. Analyzing the proof of Proposition 4, we see that the only proper-
ties that we need of the collections Sp(k') and Sp((2M)!) for the proof to
generalize are that they are closed under products and contain the flows
Color(D,m). If k,¢ € Nan X C k' and Y C /' are B-D-irreducible and
B-E-irreducible for some finite D, E C T', then X x Y C (k x £)' will be
B-(D U E)-irreducible. And as Color(D,m) is strongly irreducible, it is
B-irreducible. O

Now we consider the group F>. We consider the left Cayley graph of F5
with respect to the standard generating set A := {a,b,a™',b671}. We let
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d: Fy x F5 — w denote the graph metric. Write D,, = {s € F5 : d(s,1F,) <

Definition 13. Given n with 1 < n < w, we set
B, ={D € Py(F3) : connected components of D are pairwise D,-apart}.

Write B, for the collection of finite, connected subsets of Fb.

Proposition 14. Suppose X C k' is B, -irreducible. Then there is some
n < w for which X is By,-irreducible.

Proof. Suppose X is B,-D,-irreducible. We claim X is B,,-D,-irreducible.
Suppose m < w, By, ..., Bjm—1 € B, are pairwise D,-apart, and xq, ..., T;m—1 €
X. For each i < m, we suppose B; has n;-many connected componenets,
and we write {C;; : j < n;} for these components. Then the collection
of connected sets | J;_,,{Ci; : j < ni} is pairwise Dy-apart. As X is B-
D,-irreducible, we can find y € X so that for each i < m and j < n;,
we have yl|c, ; = w@ilc, ;. Hence y|p, = wi|p,, showing that X is B,-Dy-
irreducible. O

We now construct a B,-irreducible subshift with no Fs-invariant measure.
We consider the alphabet A%, and write 7, w1 : A2 — A for the projections.
We set

Xpdor = {7 € (A%)F2 Vg, h € FyVi,j <2
(i,9) # (4, h) = mi(x(g)) - g # mj(x(h)) - h}.
More informally, the flow X4,, is the space of “2-to-1 paradoxical decom-
positions” of Fy using A. We remark that here, our decomposition need not
be a partition of F»; we just ask for disjoint Sp, S1 C F5 such that for every

g € G and i < 2, we have AgN.S; # (). This is in some sense the prototypical
example of an Fy-shift with no Fy-invariant measure.

Lemma 15. X,4,; has no Fy-invariant measure.

Proof. For u € A% set Y, = {x € Xpdoz : ©(1g) = u}. Notice that if y € Yy,
i < 2, and z = m;(u)y, then x(m;(u)"!) = y(lg) = u. Consequently, if
u,v € A% x € m(u)Y, N7;j(v)Y, then, since x € X4, and
mi(a(mi(u)™))mi(u) ™t = 1 = my(a(m;(v) ~))m;(v) 7
we must have that (¢, m;(u)) = (j,7;(v)), and hence also
mi-i(u) = m—i(e(mi(u) ™) = mj(e(m;(0) 7)) = m-5(v).

Therefore m;(u)Y, N 7j(v)Y, = @ whenever (i,u) # (j,v).

If ;o were an invariant Borel probability measure on X,,4,, then we would

have
244(Xpdoa) = 2 Z p(Yu) = Z Z p(mi(u)Yy) < p(X)

u€A? 1<2 ue A2
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which is a contradiction. O

When proving that X404 is Be-irreducible, note that Dy = AU {1p,}.

Proposition 16. X4, is B,-Dy-irreducible.

Proof. The proof will use a 2-to-1 instance of Hall’s matching criterion [7]
which we briefly describe. Fix a bipartite graph G = (V, E) with partition
V=WuV. Given S C Vp, write Ng(S) = {v € V1 : Ju € S(u,v) € E}.
Then the matching condition we need states that if for every finite S C Vj,
we have |[Ng(S)| > 2S5, then there is E/ C E so that in the graph G’ :=
(V,E'), dg/(u) = 2 for every u € Vj.

Let By, ..., Bx—1 € B, be pairwise Dy-apart. Let zo,...,2x—1 € Xpgoz- To
construct y € Xpgop With y|p, = z;|p, for each i < k, we need to verify a
2-to-1 Hall’s matching criterion on every finite subset of F \ |J,;.;, B;. Call
s € Fy matched if for some i < k, some g € B;, and some j < 2, we have
s = m;(2:(g)) - g. So we need for every finite E € Py(Fy \ ., Bi) that AE
contains at least 2| F|-many unmatched elements. Towards a contradiction,
let £ € Py(F5 \ U<, Bi) be a minimal failure of the Hall condition.

In the left Cayley graph of F5, given a reduced word w in alphabet A =
{a,b,a=1,b71}, write N,, for the set of reduced words which end with w.
Now find ¢ € E (let us assume the leftmost character of ¢ is a) so that all
of EN Ny, EN Ny and E N Ny-1, are empty. If any two of at, bt and
b~1t is an unmatched point in AE, then E\ {t} is a smaller failure of Hall’s
criterion. So there must be some i < k, some g € B;, and some j < 2, we
have m;(z;(g)) - g € {at,bt,b='t}. Let us suppose m;(z;(g)) - g = at. Note
that since ¢ ¢ E, we must have g € {bat,a’t,b~1at}. But then since B; is
connected, we have D1 B;N{bt,b='t} = 0, and since the other B, are at least
distance 5 from B;, we have D1 B, N {bt,b= 1t} = () for every q € k\ {i}. In
particular, bt and b~'t are unmatched points in AE, a contradiction. O

We remark that X4, is not D,-irreducible for any n € N. See Figure 2.

4. THE CONSTRUCTION

Our goal for the rest of the paper is to use X4,, to build a subflow of
(2ME*F2 which is free, G-minimal, and with no Fy-invariant measure. In
what follows, given an Fh-coset {g} x Fb, we endow this coset with the left
Cayley graph for Iy using the generating set A exactly as above. We extend
the definition of B,, to refer to finite subsets of any given Fs-coset.

Definition 17. Given n with 1 < n < w, we set

B, ={D € P;(G x Fy) : for each Fy-coset C, DNC € B,}.

Given y € k&% and g € G, we define Yg € k™2 where given s € Fy, we set
ye(s) = y(g,s). If X C kP2 is B,-irreducible, then the subshift X¢ C k&> 2
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FIGURE 2. A pair of outgoing edges, drawn in solid red, is
chosen at each of vgg, vo1, v10, and v1;. Edges which must
consequently be oriented in a particular direction are indi-
cated with dashed red arrows. Most importantly, vg is forced
to direct an edge to ug. By considering the generalization of
this picture for any length of binary string, we see that X,
cannot be D,-irreducible for any n € N.

is in Sp:, where we view X as the set {y € k¢*f2 : Vg € G (y, € X)}. In
particular, (Xpdox)G is Bj-irreducible. By encoding (Xpdor)G as a subshift
of (2™)*F2 for some m € N and considering 7, (Xpaor)®) C (2M)*F2 ) we
see that there is a Bj-irreducible subflow of (2N)#* 2 for which the Fy-action
doesn’t fix a measure. It follows that such subflows constitute a non-empty
open subset of ® := J, Sg: ((2N)¥*2). Combining the next result with
Proposition 12, we will complete the proof of Theorem 1.

Proposition 18. With ® as above, the G-minimal flows are dense Gs in
.

Proof. We show the result for @, := [J,, Sp: (k“*#2) to simplify notation;
the proof in full generality is almost identical.

We only need to show density. To that end, fix a finite symmetric £ C
G x F5 which is connected in each Fb-coset. It is enough to show that
the (G, F)-minimal subshifts are dense in ®;. Fix some non-empty open
O C ®y. By enlarging F and/or shrinking O, we may assume that for some
n < w and X € Spx(k9*2) that O = {X' € &), : Pp(X') = Pp(X)}. We
will build a (G, E)-minimal subshift Y C k%2 so that Pg(Y) = Pg(X)
and so that for some N < w, we have Y € Spx, (RG*F2),

Recall that D,, C F5 denotes the ball of radius n. Fix a finite, symmetric
D C G x Fy so that {1} x Dy, € D and X is B}-D-irreducible. Find
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a finite symmetric Uy C G with 1¢ C Uy and r < w so that upon setting
U=Uyx D, CG x Fy, then U is large enough to contain an ED F-spaced
set Q@ C G with EQ C U. As X is B}-D-irreducible, there is a pattern
a € Py(X) so that {(ga)|g: g € Q} = Pr(X).

Let V 2 UD?U be a (G x Fy, G)-UFO. We remark that for most of the
remainder of the proof, it would be enough to have V' 2 UDU; we only use
the stronger assumption V' O UD?U in the proof of the final claim. Consider
the following subshift:

Y = {y € X : 3 a max. V-spaced set T so that Vg € T (gy)|v = a}.

The proof that Y is non-empty and (G, E')-minimal is exactly the same as
the analogous proof from Proposition 8. Note that by construction, we have
Pg(Y) = Pp(X).

We now show that Y € Spy, (KG*F2) for N = 4r+3n. Set W = DUVUD.
We show that Y is Bj-W-irreducible. Suppose m < w, yo,...,Ym-1 € ¥
and So, ..., Sim—1 € By are pairwise W-apart. Suppose for each i < m that
T, C G x F5 is a maximal V-spaced set which witness that y; € Y. Set
B;={g €T;: DUgNS; # 0}. Then |J,,, B; is V-spaced, so enlarge to a
maximal V-spaced set B C G x F5.

For each i < m, we enlarge S; UUB; to J; € B} as follows. Suppose
C C G x F, is an Fs-coset. Each set of the form C N Ug is connected.
Since S; € B}y, it follows that given g € B;, there is at most one connected
component O¢ , of S; N C with UgNO¢, =0, but UgN D,Oc, # 0. We
add the line segment in C connecting ©¢ 4, and Ug. Upon doing this for each
g € B; and each Fy-coset C, this completes the construction of J;. Observe
that J; € D,,_15; NUB;.

Claim. Let C be an Fy-coset, and suppose Y is a connected component of
S; N C. Let Y be the connected component of J; N C with Yy C Y. Then
Y C Ds,1,Yy. In particular, if Yy # Zy are two connected components of
S; N C, then Yy and Zy do not belong to the same component of J; N C.

Proof. Let L = {x; : j < w} C C be a ray with z9 € Yy and z; ¢ Yy for
any j > 1. Then {j < w :z; € J;NC} is some finite initial segment of w.
We want to argue that for some j < 2r +n + 1, we have z; ¢ J; N C. First
we argue that if z, € J; N C, then x,, € UB;. Otherwise, we must have
Ty € Dyp_1S;. But since x, € D,,_1Yp, there must be another component
Y1 of S; N C with z, € D,Y;. But this implies that Yy and Y7 are not
D»,,_1-apart, a contradiction since 2n — 1 < 4r — 3n = N.

Fix g € B; with z,, € Ug. Let ¢ < w be least with ¢ > n and z, ¢ U,.
We must have ¢ < 2r +n + 1. We claim that z;, € J; N C. Towards a
contradiction, suppose x4 € J; N C. We cannot have z, € UB;, so we must
have z, € D,_15;. But now there must be some component Y; of S; N C
with z, € D,,_1Y1. But then Do,19,Yy NY1 # 0, a contradiction as Yj and
Y1 are Dy-apart. This concludes the proof that Y C Do, ,,Yp.
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Now suppose Yy # Zjy are two connected components of S; N C. Then Yj
and Zy are N-apart. In particular, Zy € Ds,1,Yp, so cannot belong to the
same connected component of J; N C as Yj. O

Claim. J; € B}.

Proof. Fix an Fy-coset C and two connected components Y # Z of J; N C.
By the previous claim, each of Y and Z can only contain at most one non-
empty component of S;NC'. The claim will be proven after considering three
cases.

(1) First suppose each of Y and Z contain a non-empty component of
S;NC,say Yo CY and Zy C Z. Then since Yy and Zy are Day43n,-
apart, the previous claim implies that Y and Z are D,-apart.

(2) Now suppose Y contains a non-empty component Yy of S; N C' and
that Z does not. Then for some g € B;, we have Z = Ug N C.
Towards a contradiction, suppose D,,)Y NUg # 0. Let L = {z;:j <
M} be the line segment connecting Y and Ug with LNY = {z(} and
LNUg={zp}. We must have M < n. We cannot have xy € UB;,
so we must have x¢g € D,,_1S5;. This implies that z¢y € D,,_1Yy. We
cannot have xg € Yy, as otherwise, we would have connected Yy and
UgNC when constructing J;. It follows that for some h € B;, we have
that xo is on the line segment L' = {2, : j < M'} connecting Yy and
UhNC, and we have M’ < n. But this implies that UgNDs,Uh # (),
a contradiction since VO UDU and D 2 Ds,.

(3) If neither Y nor Z contain a component of S; N C, then there are
g#he B;withY =UhNC and Z = UgnNC. It follows that Y
and Z are D,-apart. O

Claim. Suppose i # j < m. Then J; and J; are D-apart.

Proof. We have that J; C D,,_1S; UUDB;, and likewise for j. As UB; C
U?DS; and as D D Dy, we have J; C U?DS;, and likewise for j. As S; and
S; are W-apart and as V 2 UDU, we see that J; and J; are D-apart. [

Claim. Suppose g € B\ |
1< m.

B;. Then Ug and J; are D-apart for any

<m

Proof. As g € B;, we have U, and §; are D-apart. Also, for any h € B with
g # h, we have that Ug and Uh are D-apart. Now suppose DUg N J; # ().
If x € DUgN J;, then on the coset C' = Fbx, x must belong on the line
between a component of S; N C and Uh for some h € B;. Furthermore, we
have x € D, _1Uh. But since Do, C D, this contradicts that Ug and Uh
are D?-apart (using the full assumption V 2 UD?U). ([l

We can now finish the proof of Proposition 18. The collection {J; : i <
m}U{Ug: g€ B\ (U;.,, Bi)} is a pairwise D-apart collection of members
of B. As X is B}-D-irreducible, we can find y € X with y|;, = y;|;, for
each i < m and with (gy)|y = « for each g € B\ (U,.,,, Bi)- As J; 2 UB;

<m
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and since B; C T;, we actually have (gy)|y = « for each g € B. As B is a
maximal V-spaced set, it follows that y € Y and y|s, = vi|s, as desired. O

(1
2]

3]
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