Ch. 19, 21, and 22
Defn: Let \(m \in \mathbb{Z} \). Two integers \(a \) and \(b \) are congruent modulo \(m \), written \(a \equiv b \mod m \), if \(a-b \) is divisible by \(m \) (there is \(q \in \mathbb{Z} \) with \(a-b=qn \)).

Ex: \(14 \equiv 2 \mod 3 \) because 3 divides 12 and 12 = 14 - 2.

Prop: Let \(m \in \mathbb{Z} \). Congruence modulo \(m \) has the following three properties:

1. Reflexive property: \(a \equiv a \mod m \) for all integers \(a \).
2. Symmetric property: If \(a \equiv b \mod m \) then \(b \equiv a \mod m \).
3. Transitive property: If \(a \equiv b \mod m \) and \(b \equiv c \mod m \) then \(a \equiv c \mod m \).

Proof:

1. \(a-a = 0 = 0 \cdot m \) so \(a \equiv a \mod m \).
2. If \(a \equiv b \mod m \) then there is \(q \in \mathbb{Z} \) with \(a-b=qn \). Then \(b-a = (-q)m \) and therefore \(b \equiv a \mod m \).
3. Assume \(a \equiv b \mod m \) and \(b \equiv c \mod m \). Then there are \(p,q \in \mathbb{Z} \) with \(a-b = pm \) and \(b-c = qm \). So \(a-c = (a-b)+(b-c) = pm+qm = (p+q)m \) and therefore \(a \equiv c \mod m \).

Congruence modulo \(m \) is an example of an equivalence relation.

Defn: Let \(X \) be a set and let \(\sim \) be a relation between elements of \(X \). We call \(\sim \) an equivalence relation if it has the properties of being reflexive, symmetric, and transitive. (This is described more precisely in Definition 22.2.3 in your book.)
Defn: Let \(a \in \mathbb{Z} \). The congruence class of \(a \) modulo \(m \), denoted \([a]_m\), is the set of integers that are congruent to \(a \) modulo \(m \):
\[
[a]_m = \{ b \in \mathbb{Z} : b \equiv a \mod m \}
\]

Example:
\[
[0]_3 = \{ \ldots, -9, -6, -3, 0, 3, 6, 9, \ldots \}
\]
\[
[1]_3 = \{ \ldots, -8, -5, -2, 1, 4, 7, 10, \ldots \}
\]
\[
[2]_3 = \{ \ldots, -7, -4, -1, 2, 5, 8, 11, \ldots \}
\]

Let \(m \in \mathbb{Z} \). By the division theorem, for every \(a \in \mathbb{Z} \) there is a unique \(r \in \mathbb{Z} \) with \(0 \leq r < m \) and such that \(\exists q \in \mathbb{Z} \) \(a = qm + r \). This means that for every \(a \in \mathbb{Z} \) there is precisely one integer \(r \), \(0 \leq r < m \), so that \(a \equiv r \mod m \). (In other words, for every \(a \in \mathbb{Z} \) there is precisely one integer \(r \) with \(0 \leq r < m \) and \(a \in [r]_m \).

The collection \(\{ [0]_m, [1]_m, [2]_m, \ldots, [m-1]_m \} \) is an example of a partition.

Defn: A collection \(\mathcal{X} = \{ Y_1, Y_2, \ldots, Y_n \} \) is a partition of \(X \) if each \(Y_i \) is a non-empty subset of \(X \) and if for every \(x \in X \) there is precisely one \(i \) \((1 \leq i \leq n) \) with \(x \in Y_i \).

We write \(\mathbb{Z}_m \) for the collection \(\{ [0]_m, [1]_m, \ldots, [m-1]_m \} \).
Prop: Let \(a, a_2, b, b_2, m \in \mathbb{Z} \). Assume that
\[
a_1 \equiv a_2 \mod m \quad \text{and} \quad b_1 \equiv b_2 \mod m.
\]
Then
1. \(a_1 + b_1 \equiv a_2 + b_2 \mod m \)
2. \(a_1 - b_1 \equiv a_2 - b_2 \mod m \)
3. \(a_1 b_1 \equiv a_2 b_2 \mod m \)

Proof: Let \(p, q \in \mathbb{Z} \) with \(a_1 - a_2 = pm \) and \(b_1 - b_2 = qm \).
1. \((a_1 + b_1) - (a_2 + b_2) = a_1 - a_2 + b_1 - b_2 = pm + qm = (p+q)m \)
 so \(a_1 + b_1 \equiv a_2 + b_2 \mod m \)
2. similar to 1 (exercise)
3. \(a_1 b_1 - a_2 b_2 = (a_1 b_1 - a_2 b_1) + (a_2 b_1 - a_2 b_2) \)
 \[= (a_1 - a_2)b_1 + (b_1 - b_2)a_2 \]
 \[= b_1 pm + a_2 qm \]
 \[= (b_1 p + a_2 q)m \]
so \(a_1 b_1 \equiv a_2 b_2 \mod m \). \(\square \)

Example: For any integer \(n \geq 1 \), since \(4 \equiv 1 \mod 3 \) we have
\[4^n + 5 \equiv 1^n + 2 \equiv 1 + 2 \equiv 0 \mod 3, \]
so 3 divides \(4^n + 5 \) (we previously proved this using induction on \(n \)).

The above proposition tells us that we can make sense of addition, subtraction, and multiplication on the set \(\mathbb{Z}_m = \{0, 1, 2, \ldots, m-1\} \). This is similar to statements such as the product of two odd numbers is odd.

When \(m = 3 \), addition and multiplication are given as follows:

<table>
<thead>
<tr>
<th>+</th>
<th>[0]_3</th>
<th>[1]_3</th>
<th>[2]_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]_3</td>
<td>[0]_3</td>
<td>[1]_3</td>
<td>[2]_3</td>
</tr>
<tr>
<td>[1]_3</td>
<td>[1]_3</td>
<td>[2]_3</td>
<td>[0]_3</td>
</tr>
<tr>
<td>[2]_3</td>
<td>[2]_3</td>
<td>[0]_3</td>
<td>[1]_3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>[0]_3</th>
<th>[1]_3</th>
<th>[2]_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]_3</td>
<td>[0]_3</td>
<td>[0]_3</td>
<td>[0]_3</td>
</tr>
<tr>
<td>[1]_3</td>
<td>[0]_3</td>
<td>[1]_3</td>
<td>[2]_3</td>
</tr>
<tr>
<td>[2]_3</td>
<td>[2]_3</td>
<td>[0]_3</td>
<td>[1]_3</td>
</tr>
</tbody>
</table>