1. Prove that if \(f : X \to Y \) and \(g : Y \to Z \) are bijections then \(g \circ f \) is a bijection.

Solution: Let \(f : X \to Y \) and \(g : Y \to Z \) be bijections.

First, we check that \(g \circ f \) is injective. Observe that \(f \) and \(g \) are both injective since they are bijective. Let \(x_1, x_2 \in X \) with \(x_1 \neq x_2 \). Since \(x_1 \neq x_2 \) and \(f \) is injective, we get that \(f(x_1) \neq f(x_2) \). Similarly, since \(f(x_1) \neq f(x_2) \) and \(g \) is injective, we get \(g(f(x_1)) \neq g(f(x_2)) \). Therefore \(g \circ f(x_1) \neq g \circ f(x_2) \). Thus \(g \circ f \) is injective.

Next, we check that \(g \circ f \) is surjective. Observe that \(f \) and \(g \) are both surjective since they are bijective. Let \(z \in Z \) (the codomain of \(g \circ f \)). Since \(g \) is surjective, there is \(y \in Y \) with \(g(y) = z \). Similarly, since \(f \) is surjective there is \(x \in X \) with \(f(x) = y \). Then \(g \circ f(x) = g(f(x)) = g(y) = z \). Thus \(g \circ f \) is surjective. We conclude that \(g \circ f \) is a bijection. \(\square \)

2. Let \(f : X \to Y \) and \(g : Y \to Z \) be functions. Prove that if \(g \circ f \) is injective then \(f \) is injective.

Solution: Let \(x_1, x_2 \in X \) with \(f(x_1) = f(x_2) \). Set \(y = f(x_1) = f(x_2) \). Then \(g \circ f(x_1) = g(\ f(x_1)) = g(y) = g(f(x_2)) = g \circ f(x_2) \). Since \(g \circ f \) is injective and \(g \circ f(x_1) = g \circ f(x_2) \), it must be that \(x_1 = x_2 \). So we have shown that for all \(x_1, x_2 \in X \), \(f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \). We conclude that \(f \) is injective. \(\square \)

3. Let \(f : X \to Y \) and \(g : Y \to X \) be functions. Prove that \(g \) is the inverse of \(f \) if and only if \(g \circ f = id_X \) and \(f \circ g = id_Y \).

Solution: First assume that \(g \) is the inverse of \(f \), meaning that for all \(x \in X \) and \(y \in Y \) we have \(f(x) = y \) precisely when \(x = g(y) \). Observe that \(g \circ f \) and \(id_X \) both have \(X \) as their domain and codomain, and \(f \circ g \) and \(id_Y \) both have \(Y \) as their domain and codomain. So we only must check that \(\forall x \in X \ g \circ f(x) = id_X(x) \) and \(\forall y \in Y \ f \circ g(y) = id_Y(y) \). Let's first consider an element \(x \in X \). Setting \(y = f(x) \), we have \(g(y) = x \) since \(g \) is the inverse of \(f \). Thus \(g \circ f(x) = g(f(x)) = g(y) = x = id_X(x) \). Thus \(g \circ f = id_X \). Next, consider an element \(y \in Y \). Setting \(x = g(y) \), we have \(f(x) = y \) since \(g \) is the inverse of \(f \). Thus \(f \circ g(y) = f(g(y)) = f(x) = y = id_Y(y) \). We conclude that \(g \circ f = id_X \) and \(f \circ g = id_Y \).

Now assume that \(g \circ f = id_X \) and \(f \circ g = id_Y \). We must show that for all \(x \in X \) and \(y \in Y \), \(f(x) = y \) if and only if \(x = g(y) \). So fix \(x \in X \) and \(y \in Y \). First assume that \(f(x) = y \). Since \(g \circ f = id_X \) we have \(x = id_X(x) = g \circ f(x) = g(f(x)) = g(y) \).

Thus \(f(x) = y \) implies \(x = g(y) \). Next assume that \(x = g(y) \). Since \(f \circ g = id_Y \) we have \(f(x) = f(g(y)) = f \circ g(y) = id_Y(y) = y \).

So \(x = g(y) \) implies \(f(x) = y \). We conclude that \(g \) is the inverse of \(f \). \(\square \)

4. Let \(f : X \to Y \) be a function with \(X \neq \emptyset \). Prove that \(f \) is injective if and only if there is a function \(g : Y \to X \) with \(g \circ f = id_X \). (Hint: for help building \(g \), review the proof that if \(f \) is bijective then \(f \) is invertible).

Solution: First assume that \(f \) is injective. Since \(X \neq \emptyset \) we can fix an element \(x_0 \in X \). Since \(f \) is injective, every \(y \in Y \) has at most one preimage. So we can define a function \(g : Y \to X \) by the following rule: for \(y \in Y \) we define \(g(y) \) to be the unique preimage of \(y \), if \(y \) has a preimage, and otherwise if \(y \) does not have any preimage we set \(g(y) = x_0 \). Now we check...
that $g \circ f = \text{id}_X$. Clearly $g \circ f$ and id_X both have X as their domain and codomain. So we only need to check that $g \circ f(x) = \text{id}_X(x)$ for all $x \in X$. Fix an element $x \in X$. Set $y = f(x)$. Then certainly x is a preimage of y, so it is the unique preimage of y and hence $g(y) = x$. Therefore $g \circ f(x) = g(f(x)) = g(y) = x = \text{id}_X(x)$. We conclude that $g \circ f = \text{id}_X$.

Now assume that there is a function $g : Y \to X$ with $g \circ f = \text{id}_X$. Let $x_1, x_2 \in X$ with $f(x_1) = f(x_2)$. Set $y = f(x_1) = f(x_2)$. Then

$$x_1 = \text{id}_X(x_1) = g \circ f(x_1) = g(f(x_1)) = g(y) = g(f(x_2)) = g \circ f(x_2) = \text{id}_X(x_2) = x_2.$$

We have shown that for all $x_1, x_2 \in X$, $f(x_1) = f(x_2)$ implies $x_1 = x_2$. We conclude that f is injective. \hfill \Box

5. Let $f : X \to Y$ and $g_1, g_2 : Y \to Z$ be functions. Assume that $g_1 \neq g_2$ and that f is surjective. Prove that $g_1 \circ f \neq g_2 \circ f$.

Solution: Observe that g_1 and g_2 have the same domain and the same codomain. So, since $g_1 \neq g_2$, there must be some element $y \in Y$ with $g_1(y) \neq g_2(y)$. Since f is surjective, there is $x \in X$ with $f(x) = y$. Then we have $g_1 \circ f(x) = g_1(f(x)) = g_1(y) \neq g_2(y) = g_2(f(x)) = g_2 \circ f(x)$. We conclude that $g_1 \circ f \neq g_2 \circ f$.

6. Let X be a finite set and let $A, B \subseteq X$. Prove that if $|A| + |B| \geq |X| + 5$ then $|A \cap B| \geq 5$. (You may use the fact that if $Y \subseteq X$ then $|Y| \leq |X|$).

Solution: The inclusion-exclusion principle tells us that $|A \cup B| = |A| + |B| - |A \cap B|$. Since $A, B \subseteq X$ we have $A \cup B \subseteq X$, and therefore $|A \cup B| \leq |X|$. Thus $|X| \geq |A| + |B| - |A \cap B|$ and hence $|A \cap B| \geq |A| + |B| - |X| \geq 5$. \hfill \Box