Homework

- Calculate and compare the eigenvalues and combinatorial eigenfunctions for $\tilde{G} = C_{2n}$ and $G = P_{n+1}$.
- Relax the distance-regular condition for \tilde{G} in Theorem A and Γ in Theorem B as much as possible.

1. Eigenvalues of Distance Regular Coverings

Recall that for graphs G and H with second-smallest eigenvalues λ_G and λ_H,

- If H is a contraction of G, then $\lambda_G \leq \lambda_H$.
- If G is a covering of H, then all eigenvalues of H are eigenvalues of G. Moreover, an eigenvalue of G is an eigenvalue of H if the projection of its combinatorial eigenfunction is not identically 0.

Example 1. Consider the cycle C_4, which is a covering of the two-fold path P_3.

\[
\begin{array}{c}
 1 \\
 2 \\
 3 \\
 4 \\
\end{array}
\quad \xrightarrow{\text{projection}} \quad
\begin{array}{c}
 1 \\
 2 \\
 3 \\
 4 \\
\end{array}
\quad \xrightarrow{\text{projection}}
\begin{array}{c}
 a \\
 b \\
 c \\
\end{array}
\]

Say we have the projection $\pi(1) = a, \pi(2) = b, \pi(3) = b$ and $\pi(4) = c$.

C_4 has eigenvalues $\lambda_0 = 0, \lambda_1 = 1, \lambda_2 = 1$, and $\lambda_3 = 2$. Let f_1, f_2, f_3, f_4 be the corresponding combinatorial eigenfunctions. Recall that the projection πf_i maps a vertex to the average of f_i on its preimage under π.

Then we have
2 CHRISTIAN WOODS

\[
\begin{array}{c|c|c|c|c|c|c}
 f_0 & \pi f_0 & f_1 & \pi f_1 & f_2 & \pi f_2 & f_3 \\
 \downarrow 1 \Rightarrow 1 & a \Rightarrow 1 & \downarrow 1 \Rightarrow 1 & a \Rightarrow 1 & \downarrow 1 \Rightarrow 0 & a \Rightarrow 0 & \downarrow 1 \Rightarrow 1 \\
 2 \Downarrow 1 & b \Rightarrow 1 & 2 \Rightarrow 0 & b \Rightarrow 0 & 2 \Rightarrow 1 & b \Rightarrow 0 & 2 \Rightarrow -1 \\
 3 \Downarrow 1 & c \Rightarrow 1 & 3 \Rightarrow 0 & c \Rightarrow -1 & 3 \Rightarrow -1 & c \Rightarrow 0 & 3 \Rightarrow -1 \\
 4 \Downarrow 1 & 4 \Rightarrow -1 & 4 \Rightarrow 0 & 4 \Rightarrow 1 & & & \\
\end{array}
\]

Since only \(\pi f_2 \) is identically 0, we have \(\lambda_0 = 0, \lambda_1 = 1, \) and \(\lambda_3 = 2 \) as eigenvalues of the twofold \(P_{n+1} \) as well.

Example 2. The Petersen graph is a covering of a multi-path \(P_3 \) with edge weights 3 and 6 and a loop of weight 12 on the terminal vertex. Thus, we may use the eigenvalues of this multi-path to determine three of the eigenvalues of the Petersen graph.

Both examples 1 and 2 concern examples of a special class of graphs known as distance-regular graphs. A distance-regular graph is a graph with the following property: given any two vertices \(u \) and \(v \) with distance \(k \) between them, then the number of vertices \(w \) at distance \(i \) from \(u \) and distance \(j \) from \(v \) depends solely on \(i, j \), and \(k \) and not on \(u \) and \(v \). One nice class of distance-regular graphs are distance-transitive graphs: given any four vertices \(u, v, w \) and \(x \) such that the distance from \(u \) to \(v \) equals the distance from \(w \) to \(x \), there exists a graph automorphism sending \(u \) to \(w \) and \(v \) to \(x \).

Note that for a distance regular graph \(G \), if we take \(u \) to be a vertex achieving the diameter, \(v \) to be its neighbor on such a path, \(k = 1, i = \text{diam}(G), \) and \(j = \text{diam}(G) - 1 \), this implies that every vertex in the graph achieves the diameter.

Theorem A. Suppose \(\tilde{G} \) is a distance-regular covering of a weighted rooted path \(G \) with projection \(\pi \). Suppose that \(G \) has \(k+1 \) vertices, where \(k = \text{diam}(G) \). Then \(\tilde{G} \) has exactly \(k+1 \) distinct eigenvalues.

Proof. Let \(\mathcal{L} \) be the normalized Laplacian of the path \(G \). Since \(G \) is a path, it must be the case that \(I, \mathcal{L}, \mathcal{L}^2, \ldots, \mathcal{L}^k \) are all linearly independent. This implies that the minimal polynomial of \(\mathcal{L} \) has degree at least \(k+1 \). By the Cayley-Hamilton theorem, the minimal polynomial of \(\mathcal{L} \) has degree at most \(k+1 \). We conclude that \(G \) has exactly \(k+1 \) distinct eigenvalues.

Since each eigenvalue of \(G \) is an eigenvalue of \(\tilde{G} \), this means that \(\tilde{G} \) has at least \(k+1 \) distinct eigenvalues. We aim to show that every other eigenvalue \(\lambda \) of \(\tilde{G} \) must also be an eigenvalue of \(G \). So let \(f \) be a combinatorial eigenfunction of \(\tilde{G} \) associated with \(\lambda \). There exists some vertex \(v_0 \) such that \(f(v_0) \neq 0 \). Since \(\tilde{G} \) is distance-regular, we may consider \(\pi(v_0) \) to be the root of the path \(G \). It follows that \(\pi f(\pi(v_0)) = f(v_0) \neq 0 \). Hence, \(\pi f \) is not identically 0, and \(\lambda \) must belong to the spectrum of \(G \).

We may also recover the multiplicities of these eigenvalues simply from the weighted path.
Theorem B. If Γ on n vertices is a distance-regular covering of a weighted rooted path P with diameter k, and if P has eigenvalues $\{\lambda_i\}_{i=1}^s$, then the multiplicity m of λ_i in Γ is

$$m(\lambda_i) = \frac{ng_i^2(v_0)}{|g_i|^2},$$

where g_i is an eigenfunction of P associated with λ_i, and v_0 is the root of P.

Proof. For j from 0 to k, define the matrices

$$A_j(x, y) = \begin{cases} 1 & \text{if dist}(x, y) = j \text{ in } \Gamma \\ 0 & \text{otherwise} \end{cases}.$$

Notice $A_1 = A$. Let v_j be the jth vertex on path P, and let $V_j = \pi^{-1}(v_j)$. We claim that

$$\sigma(A_j) = \{ |V_j| \frac{f(v_j)}{f(v_0)} \mid f \text{ is a combinatorial eigenfunction of } P \}.$$

To see this, first note that each A_j is a polynomial in the matrix A, so each A_j shares the same eigenfunctions.

For combinatorial eigenfunction $f : V(P) \to \mathbb{R}$, we may talk about f on $V(\Gamma)$ by defining $f(x) = f(\pi(x))$.

Suppose that for some λ' and f we have

$$A_j f = \lambda' f.$$

Notice that P has adjacency eigenvalue 0 with eigenfunction $\varphi_0 = (1, 0, \ldots, 0)$. So on the one hand,

$$\langle \varphi_0, \pi A_j f \rangle = \langle \varphi_0, \pi \lambda' f \rangle \\
= \lambda' \langle \varphi_0, \pi f \rangle \\
= \lambda' f(v_0).$$

But also,

$$\langle \varphi_0, \pi A_j f \rangle = \varphi_0^T \pi A_j f \\
= (\varphi_0^T \pi A_j) f \\
= (|V_j| e_j^T) f \quad \text{(where } e_j \text{ is the standard basis vector)} \\
= |V_j| f(v_j).$$

Equating $\lambda' f(v_0)$ and $|V_j| f(v_j)$ proves the claim.

Now suppose f_i is the ith combinatorial eigenfunction of P associated with eigenfunction λ_i. Consider the matrix

$$M_i = \sum_{j=0}^k f_i(v_j) A_j.$$
Since $A_0 = I$ is the only A_j with diagonal entries, we have $\text{Tr}(M_i) = n f_i(v_0)$.

We know the eigenvalues of A_j are $|V_j| \frac{f_p(v_j)}{f_p(v_0)}$ with multiplicity $m(\lambda_p)$, so also

$$\text{Tr}(M_i) = \sum_{j=0}^{k} f_i(v_j) \text{Tr}(A_j)$$

$$= \sum_{j=0}^{k} f_i(v_j) \sum_{p=0}^{s} m(\lambda_p) \frac{f_p(v_j)}{f_p(v_0)} |V_j|$$

$$= \sum_{j=0}^{k} m(\lambda_i) \frac{f_i^2(v_j)}{f_i(v_0)} |V_j|$$

$$= m(\lambda_i) \frac{1}{f_i(v_0)} \sum_{j=0}^{k} f_i^2(v_j) |V_j|,$$

where the second to last equation comes from orthogonality of the eigenfunctions f_p and f_i when $p \neq i$.

Equating the two results for $\text{Tr}(M_i)$ and solving for $m(\lambda_i)$ gives

$$m(\lambda_i) = \frac{n f_i(v_0)^2}{\sum_{j=0}^{k} f_i^2(v_j) |V_j|} = \frac{ng_i^2(v_0)}{||g_i||^2},$$

where g_i is the actual eigenfunction corresponding to f_i. \hfill \square

Theorems A and B have great computational value. When we have a distance-regular covering of a weighted path with size n and diameter k, we reduce the complexity of finding its eigenvalues (even with multiplicities) from a polynomial in n to a polynomial in $k < n$.

Example 3. To imagine the power of these theorems, consider the infinite k-tree T_k (which is distance-regular) and the weighted rooted path P whose weight from vertex v_i to vertex v_{i+1} is $k(k-1)^i$. T_k can give us a covering of P, which in turn we can use to find eigenvalues of T_k (if we are careful with applying the theorems to an infinite graph).