1)* Let \(R \) be a comm. ring \((0 \neq 1_R)\) and \(S \subseteq R \) a multiplicatively closed set. Let \(\{ M_i \}_{i \in I} \) be a directed system of \(R \)-modules with respect to \(R \)-module morphisms \(\phi_{ij} : M_i \to M_j \), \(i, j \in I \) such that \(i \leq j \).

a) Show that \(\{ S^{-1}M_i \}_{i \in I} \) is a directed system of \(S^{-1}R \)-modules with respect to \(\{ S^{-1}\phi_{ij} \}_{i, j, i \leq j} \).

b) Show that there is a canonical \(S^{-1}R \)-module isomorphism
\[
\lim_{i \in I} S^{-1}M_i \cong \frac{S^{-1}\lim_{i \in I} M_i}{i \in I}
\]

2)* Give an example of an inverse system \(\{ M_i \}_{i \in I} \) of \(R \)-modules, such that
\[
\lim_{i \in I} S^{-1}M_i \ncong \frac{S^{-1}\lim_{i \in I} M_i}{i \in I}
\]
as \(S^{-1}R \)-modules, for some multiplicatively closed subset \(S \subseteq R \).
3*) Let \(n \in \mathbb{N} \), \(p \) prime number, \(S_p := \mathbb{Z}/p\mathbb{Z} \).

a) Show that there is a canonical \(\mathbb{Z}_p \)-module isomorphism

\[
S_p^{-1}(\mathbb{Z}/n\mathbb{Z}) \cong \begin{cases} \mathbb{Z}/p^k\mathbb{Z}, & \text{if } p \mid n \\ \mathbb{Z}/n\mathbb{Z}, & \text{otherwise} \end{cases}
\]

where \(p^k \) is the largest power of \(p \) dividing \(n \).

(Note: First show that \(\mathbb{Z}/p^k\mathbb{Z} \cong \mathbb{Z}(p)/p^k\mathbb{Z}(p) \) and therefore \(\mathbb{Z}/p^k\mathbb{Z} \) has a canonical \(\mathbb{Z}(p) \)-module structure.

b) Generalize the result in a) by replacing \(\mathbb{Z} \) with an arbitrary PID \(R \) and \(\mathbb{Z}/n\mathbb{Z} \) with an arbitrary cyclic, torsion \(R \)-module \(M \). (Note: A cyclic \(R \)-module is an \(R \)-module generated by one element.)

4*) Let \(f \in \mathbb{Z}[x] \setminus \mathbb{Z} \), such that \(\gcd(f, f') = 1 \).

(\(f' \) is the formal derivative \(\frac{d}{dx} f \) viewed in \(\mathbb{Z}[x] \).)

Let \(S \) be the set of non-zero divisors in \(\mathbb{Z}[x]/(f) \).

a) Show that \(S^{-1}(\mathbb{Z}[x]/(f)) \) is isomorphic (as a ring) to a finite direct sum of fields.
3. b) Is the condition "gcd \(f, f' \) = 1" imposed in a) necessary? Justify with an example.

4. a) Use the result in 4*) to show that if \(G \) is a finite cyclic group, then the total ring of fractions of \(\mathbb{Z}[G] \) is isomorphic to a direct sum of fields.

b) What can you say about the total ring of fractions of \(\mathbb{Z}[G] \), if \(G \) is a finite direct product of finite cyclic groups?