Practice Problems for Midterm 1:

1: (a) Find an equation of the line of intersection of the planes:

$$
3 x-y+z=1, \quad \text { and } \quad x+2 y-z=0 .
$$

(b) Find an equation of the plane which intercepts the axis at:

$$
(2,0,0), \quad(0,-3,0), \quad \text { and } \quad(0,0,6) .
$$

2: (a) Find parametric equations for the plane curve

$$
x^{2}+4 x+y^{2}-2 y-4=0 .
$$

(b) Find an equation of the line tangent to the curve

$$
\mathbf{r}(t)=<t^{2}+2, t^{3}, 4-t>,
$$

at the point $P=(3,-1,5)$.

3: (a) The unit vectors

$$
\mathbf{u}=\left[\begin{array}{c}
3 / 5 \\
0 \\
-4 / 5
\end{array}\right], \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

are perpendicular. Find a unit vector \mathbf{w} which is perpendicular to both \mathbf{u}, and \mathbf{v}.
(b) Suppose we write the vector $\mathbf{r}=2 \mathbf{i}-5 \mathbf{j}+\mathbf{k}$ in terms of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ from part (a), as

$$
\mathbf{r}=\alpha \mathbf{u}+\beta \mathbf{v}+\gamma \mathbf{w},
$$

where α, β, γ are real numbers. Find α.

