
Math 21C Final Exam Solutions, Lindblad, Fall 02

1. (a). r(1) = i + k. r′(t) = 2ti − 2tj + 3t2k. r′(1) = 2i − 2j + 3k. Tangent line
given by r0(t) = (1 + 2t)i + (−2t)j + (1 + 3t)k.
(b).

∫ 1

0

√
4t2 + 4t2 + 9t4 dt =

∫ 1

0

t
√

8 + 9t2 dt =
1
27

(8 + 9t2)3/2
∣∣1
0

=
173/2 − 83/2

27
.

2.
−→
PQ = 〈0, 1,−1〉, −→PR = 〈2, 0,−1〉 Normal to the plane is

−→
PQ×−→PR =

∣∣∣∣∣∣

i j k
0 1 −1
2 0 −1

∣∣∣∣∣∣
= −i− 2j− 2k.

Equation of plane is −(x − 0) − 2(y − 1) − 2(z − 1) = 0 which can be written as
x + 2y + 2z = 4.
(b). area is |−→PQ×−→PR|/2 =

√
(−1)2 + (−2)2 + (−2)2/2 = 3/2.

(c).

cos∠P =
−→
PQ · −→PR

|−→PQ||−→PR|
=

〈0, 1,−1〉 · 〈2, 0,−1〉
|〈0, 1,−1〉||〈2, 0,−1〉| =

1√
2
√

5
.

cos ∠Q =
−→
QP · −→QR

|−→QP ||−→QR|
=

〈0,−1, 1〉 · 〈2,−1, 0〉
|〈0,−1, 1〉||〈2,−1, 0〉| =

1√
2
√

5
.

cos∠R =
−→
RP · −→RQ

|−→RP ||−→RQ|
=

〈−2, 0, 1〉 · 〈−2, 1, 0〉
|〈−2, 0, 1〉||〈−2, 1, 0〉| =

4
5
.

3.

∇T =
( −x

(x2 + y2 + z2)3/2
,

−y

(x2 + y2 + z2)3/2
,

−z

(x2 + y2 + z2)3/2

)

∇T (1, 2, 2) = (1, 2, 2) /27.

Direction from (1, 2, 2) to (2, 1, 3) is 〈1,−1, 1〉. Unit vector in this direction is
u = 〈1,−1, 1〉/√3,

DuT (1, 2, 2) = ∇T (1, 2, 2) · u =
1

27
√

3
.

(b). The direction of greatest increase of T is ∇T which is a positive multiple of
−〈x, y, z〉. But the vector −〈x, y, z〉 is the vector from (x, y, z) to the origin (0, 0, 0).
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4. (a). Two planes are parallel if and only if their normals are parallel. The normal
to a level surface f(x, y, z) =constant is ∇f . Hence the normal to the ellipsoid at
the point (x, y, z) is 〈8x, 2y, 2z〉. The plane x + 2y − z = 0 has normal 〈1, 2,−1〉.
Hence the tangent plane to the ellipsoid is parallel to the plane x + 2y − z = 0 if
and only if the vectors 〈8x, 2y, 2z〉 and 〈1, 2,−1〉 are parallel, that is for some value
of λ,

8x = λ, 2y = 2λ, 2z = −λ.

This gives (x, y, z) = (λ/8, λ, −λ/2). Plugging in to the equation of the ellipsoid
we get

4 = 4(λ/8)2 + λ2 + (λ/2)2 =
21
16

λ2,

so λ = ±8/
√

21, and the points are (1/
√

21, 8/
√

21, −4/
√

21) and
(−1/

√
21, −8/

√
21, 4/

√
21)

(b). Since the normal is 〈1, 2,−1〉, the equation of the tangent plane is x + 2y −
z =constant. We evaluate the constant by plugging in the points we just found and
get tangent plane x + 2y − z =

√
21 at the first point and x + 2y − z = −√21 at

the second point.

5. (a). ∇f = 〈2x + 3y, 10y + 3x〉 = 〈0, 0〉 if and only if (x, y) = (0, 0). This is the
only critical point.

D =
∣∣∣∣
fxx fxy

fxy fyy

∣∣∣∣ =
∣∣∣∣
2 3
3 10

∣∣∣∣ = 11 > 0,

since fxx > 0, the point (0, 0) is a local minimum.
(b). Using Lagrange multipliers we get the equations





2x + 3y = λ2x

10y + 3x = λ2y

x2 + y2 = 4.

We can eliminate λ by multiplying the first equation by y and the second equation
by x and subtracting, to get 3y2 +2xy−10xy−3x2 = 0 which becomes 3y2−8xy−
3x2 = 0. This factors as (3y + x)(y − 3x) = 0, so y = 3x or x = −3y. In the first
case we get x2 + (3x)2 = 4 so (x, y) = (

√
2/5, 3

√
2/5) and f = 126/5, and in the

second case we get (−3y)2 +y2 = 4 so (x, y) = (−3
√

2/5,
√

2/5 and f = 90/5. The
maximum value of f on the circle is 126/5 and the minimum value is 90/5.

(c). The absolute max of f is 126/5 and the absolute min is f(0, 0) = 8.

6. We will maximize V = xyz over the tetrahedron given by x ≥ 0, y ≥ 0, z ≥ 0,
and 2x + 2y + z ≤ 120. We first look for interior critical points and get ∇V =
〈yz, xz, xy〉 = 〈0, 0, 0〉 which implies that at least two of x, y, z vanish, so (x, y, z) is
on the boundary of the tetrahedron where V = 0. The boundary of the tetrahedron
consists of four triangles, three on the coordinate planes where V = 0, and one
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on the plane 2x + 2y + z = 120 with x ≥ 0, y ≥ 0 and z ≥ 0. The edges of
this triangle lie in the coordinate planes and so V = 0 on the edges. It is now
clear that the maximum value of V on the tetrahedron must lie on this triangle
G = 2x + 2y + z = 120 with x > 0, y > 0, z > 0. Using Lagrange multipliers to
maximize V = xyz subject to these conditions, we get





yz = 2λ

xz = 2λ

xy = λz

2x + 2y + z = 120.

Hence
yz = xz = 2xy

Since x, y and z are positive, we can divide to get y = x and z = 2x. Solving
the constraint gives 2x + 2x + 2x = 120 so x = y = 20 and z = 40. Then
V = 202(40) = 16000 cubic inches.

Comment. In the original version of the test, the additional constraint 0 ≤ x ≤
y ≤ z was also imposed. The max point we just found does satisfy these additional
inequalities and so gives the correct answer. However, had you worked on the
original problem without realizing that there is some symmetry, you would have
tried to maximize V = xyz in the tetrahedron 0 ≤ x ≤ y ≤ z with 2x+2y+z ≤ 120.
Again there is no interior critical point. The boundary of this tetrahedron is made
up of the sides

x = 0, 0 ≤ y ≤ z, 2y + z ≤ 120,(I)

x = y, 0 ≤ y ≤ z, 4y + z ≤ 120,(II)

z = y, 0 ≤ x ≤ y, 2x + 3y ≤ 120,(III)

2x + 2y + z = 120 0 ≤ x ≤ y ≤ z.(IV)

On side (I), V = 0.

To deal with side (II), we express everything in terms of the variables y and z,
which lie in the triangle 0 ≤ y ≤ z and 4y + z ≤ 120. We have V = y2z. The only
critical point of this function is (y, z) = (0, 0) where V = 0. To find the max of
V on side (II) we have to check the max on its boundary, which consists of three
segments in the lines (i) y = 0, (ii) y = z and (iii) 4y + z = 120. For (i), since
y = 0 we have V = 0. For (ii), since z = y we can write V in terms of y alone as
V = y3. The range of y is given by 0 ≤ y and 5y ≤ 120, so 0 ≤ y ≤ 24, and the
max of V on this line segment is V = 243. For (iii) we have 4y + z = 120, and
0 ≤ y ≤ z. We can write V in terms of y alone as V = y2(120− 4y) and the range
of y is 0 ≤ y ≤ 120 − 4y, so 0 ≤ y ≤ 24. Differentiating we get V ′ = 240y − 12y2

so y = 0 or y = 20 which give V = 0 and V = 202(40). The endpoint y = 24 gives
V = 243, but the largest of these values is V = 202(40).
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To deal with side (III), we express everything in term of the variables x, y, which
lie in the triangle 0 ≤ x ≤ y and 2x + 3y ≤ 120. We have V = xy2. The only
critical point of this function is (0, 0). The boundary of the triangle consists of
three segments in the lines (i) x = 0, (ii) x = y and (iii) 2x + 3y = 120. On (i)
V = 0. On (ii) we write V in terms of x alone as V = x3, and the bounds on x are
given by 0 ≤ x ≤ (120 − 2x)/3 so 0 ≤ x ≤ 24. The max value of V on this line
segment is 243. On (iii) 2x + 3y = 120 and we will write V in terms of y. (You can
write V in terms of x if you prefer.) The bounds on y are 0 ≤ 60 − 3y/2 ≤ y so
20 ≤ y ≤ 40. We have V = (60− 3y/2)y2 and V ′ = 120y− 9y2/2. This vanishes at
y = 0 and y = 80/3, which give V = 0 and V = (20)(80/3)2 = 202(40)(8/9).

To deal with the triangle side (IV), we will look for max points using Lagrange
multipliers, but we also have to check the edges of the triangle. However, each edge
of side (IV) is also an edge of one of the other sides, and we have already computed
the max of V on all these, so we just need to find the “interior critical points” on
side (IV) using Lagrange multipliers. We want to maximize V = xyz subject to
the constraint G = 2x+2y + z = 120 and satisfying the inequalities 0 < x < y < z.
The equations are 




yz = 2λ

xz = 2λ

xy = λz

2x + 2y + z = 120.

so
yz = xz = 2xy

Since x, y, z are positive, we have y = x and z = 2x. Solving the constraint gives
2x + 2x + 2x = 120 so x = y = 20 and z = 40. Then V = 202(40).

Taking the maximum over the interior of the tetrahedron and all the faces, we get
maximum of V is 202(40) = 16000 cubic inches.

7. (a). Set
D = {(x, y) : 0 ≤ y ≤ 1, 1 ≤ x ≤ 1/y}.

The integral equals
∫∫

D

x2e−x2
dA.

(b). After sketching the domain, we can write it as

D = {(x, y) : 1 ≤ x ≤ ∞, 0 ≤ y ≤ 1/x}.

Then
∫∫

D

x2e−x2
dA =

∫ ∞

1

∫ 1/x

0

x2e−x2
dxdy =

∫ ∞

1

x2e−x2
y
∣∣1/x

0
dx

=
∫ ∞

1

xe−x2/2 dx = −e−x2

2

∣∣∣∣
∞

1

=
e

2
.



5

8. Notice that
∫∫

R

(1 + y) cos(x2 + y2) dA =
∫∫

R

cos(x2 + y2) dA +
∫∫

R

y cos(x2 + y2) dA,

and the second integral vanishes by symmetry. This is helpful, but we don’t need
it. Using polar coordinates. The integral we want to compute is

∫ 2π

0

∫ 2

1

(1 + r sin θ) cos(r2) r drdθ =
∫ 2π

0

∫ 2

1

r cos(r2) + sin θr2 cos(r2) drdθ.

We cannot integrate this, so we switch the order of integration to get

∫ 2

1

∫ 2π

0

r cos(r2) + sin θ r2 cos(r2) dθdr =
∫ 2

1

(
r cos(r2)θ − cos θ r2 cos(r2)

) ∣∣∣∣
2π

0

dr

=
∫ 2

1

2πr cos r2 dr = π sin(r2)
∣∣2
1
= π(sin 4− sin 1).

9. The surface is z = 8− x− 2y and its area is

∫∫

D

√
1 +

(
∂z

∂x

)2

+
(

∂z

∂y

)2

dA =
∫∫

D

√
1 + (−1)2 + (−2)2 dA =

∫∫

D

√
6 dA

=
∫ 1

0

∫ 1+x2

2x2

√
6 dydx =

√
6

∫ 1

0

1 + x2 − 2x2 dx =
√

6(x− x3/3)
∣∣1
0
=

2
√

6
3

10. Describing D as a type I region we get 0 ≤ y ≤ 1, 2x ≤ y ≤ 4− 2x. Then the
volume of E is

∫∫

D

x− y + 20 dA =
∫ 1

0

∫ 4−2x

2x

x + 20− y dydx

=
∫ 1

0

(x + 20)y − y2/2
∣∣4−2x

2x
dx =

∫ 1

0

(x + 20)(4− 4x)− (2− x)(4− 2x) + 2x2 dx

=
∫ 1

0

−4x2 − 76x + 80 dx =
−4
3
− 38 + 80.


