1. Use the cross product to calculate the area of the triangle with vertices $(1,1,1),(2,3,2)$, and $(3,-1,4)$.
2. At what point do the curves $\overrightarrow{r_{1}}(t)=<t, t^{2}, t^{3}>$ and $\overrightarrow{r_{2}}(t)=<1+t, 4 t, 8 t^{2}>$ intersect? Find their angle of intersection to the nearest degree.
3. Find an equation for the planes consisting of all points that are equidistant from the points $(1,2,3)$ and $(-1,1,-1)$.
4. For $0 \leq t \leq 1$ a particle moves with position vector given by $\vec{r}(t)=2 t^{3 / 2} \vec{i}+\cos 2 t \vec{j}$ $+\sin 2 t \vec{k}$. Find the initial speed of the particle and the total distance it travels.
5. Find the points on the ellipsoid $x^{2}+\frac{y^{2}}{4}+\frac{z^{2}}{9}=1$ where the tangent plane is parallel to the plane $z=x+y$.
6. Find and classify the critical points of $f(x, y)=x^{4}-8 x y+2 y^{2}-3$.
7. A cardboard box without a lid is to have a volume of $32,000 \mathrm{~cm}^{3}$. Find the dimensions that minimize the amount of cardboard used.
8. Find the volume of the solid bounded by the paraboloid $z=10-3 x^{2}-3 y^{2}$ and the plane $z=4$.
9. Find the area of the part of the surface $z=x+y^{2}$ that lies above the triangle with vertices $(0,0),(1,1)$, and $(0,1)$.
10. Evaluate $\iiint_{E} y d V$ where E is the solid tetrahedron with vertices $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,2)$.
