
Math 103 HW 3 Solutions to Selected Problems

19. Prove that the set of all 2 × 2 matrics with entries from R and determinant
+1 is a group under matrix multiplication.

Solution: Let G be this (putative) group. We first show that G is clsoed under mul-
tiplication. This is easy if we remember a fact from linear algebra: given matrices A
and B, det(AB) = det(A) det(B). This shows that if A and B are ∈ G, we must have
det(AB) = 1 as well, meaning AB ∈ G. We can also check that the identity element in
G is just

I =

(
1 0
0 1

)
which has determinant 1 · 1− 0 · 0 = 1.

Next we show that G has inverses. From linear algebra, we have the formula(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
which works whenever ad − bc (the determinant) is nonzero. This is certainly the case
for A ∈ G, so we at least know that the matrix A−1 exists. It remains to check that A−1

is actually in G. This can be checked by computing the determinant, but we can also
notice that since

AA−1 = I,

det(A) det(A−1) = det(I)

= 1

Thus if det(A) = 1, the above shows that det(A−1) = 1 as well, which means it is in G.

The only thing left is the tedious task of showing that matrix multiplication is actu-

ally associative. To this end, let X =

(
a b
c d

)
, Y =

(
e f
g h

)
, and Z =

(
s t
u v

)
. We

calculate:

A(BC) =

(
a b
c d

)
·
(
es + fu et + fv
gs + hu gt + hv

)
=

(
a(es + fu) + b(gs + hu) a(et + fv) + b(gt + hv)
c(es + fu) + d(gs + hu) c(et + fv) + d(gt + hv)

)

1



On the other hand,

(AB)C =

(
ae + bg af + gh
ce + bg cf + dh

)
·
(
s t
u v

)
=

(
(ae + bg)s + (af + gh)u (ae + bg)t + (af + gh)v
(ce + bg)s + (cf + dh)u (ce + bg)t + (cf + dh)v

)
and by distributing and using commutativity (and associativity) of multiplication of real
numbers, we see that each of the four entries is the same. Therefore the two are equal,
and G is a group.

22. Let G be a group with the property that for any x, y, z in the group, xy = zx
implies y = z. Prove that G is Abelian (“Left-right cancellation” implies
commutativity.)

Solution: Given a, b ∈ G, we must show that ab = ba. Multiplying the LHS by b
on the left and the RHS by b on the right, we certainly have bab = bab, so letting
x = b, y = ab, z = ba, the assumption on G forces ab = ba, as desired.

26. Prove that in a group (a−1)−1 = a for all a.

Solution: (a−1)−1 is the unique element in G such that (a−1)−1a−1 = a−1(a−1)−1 = e.
But since a−1 is a’s inverse, aa−1 = a−1a = e, so a = (a−1)−1.

34. Prove that in a group, (ab)2 = a2b2 if and only if ab = ba.
Prove that in a group, (ab)−2 = b−2a−2 if and only if ab = ba.

Solution: The “if” parts follow from problem 23, so assume that (ab)(ab) = a2b2. Mul-
tiplying on the left by a−1, we see that bab = ab2. But then we can multiply on the right
by b−1, which yields ba = ab.

Now suppose that (ab)−1(ab)−1 = b−2a−2. Since (ab)−1 = b−1a−1, we have that (b−1a−1)2 =
(b−1)2(a−1)2. But then the previous result (with b−1 in place of a and a−1 in place of
b), shows that a−1b−1 = b−1a−1. But then the inverses of both sides are the same, so
ba = ab.

36. Let a and b belong to a group G. Find an x in G such that xabx−1 = ba.

Solution: It is equivalent to show xabx−1a−1 = b, since we have b’s in the center of
both expressions, one easy way to make them equal is to let xa = e, or x = a−1.
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