Math 103 HW 3 Solutions to Selected Problems

19. Prove that the set of all 2×2 matrics with entries from \mathbb{R} and determinant +1 is a group under matrix multiplication.

Solution: Let G be this (putative) group. We first show that G is clsoed under multiplication. This is easy if we remember a fact from linear algebra: given matrices A and B, $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. This shows that if A and B are $\in G$, we must have $\operatorname{det}(A B)=1$ as well, meaning $A B \in G$. We can also check that the identity element in G is just

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

which has determinant $1 \cdot 1-0 \cdot 0=1$.
Next we show that G has inverses. From linear algebra, we have the formula

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

which works whenever $a d-b c$ (the determinant) is nonzero. This is certainly the case for $A \in G$, so we at least know that the matrix A^{-1} exists. It remains to check that A^{-1} is actually in G. This can be checked by computing the determinant, but we can also notice that since

$$
\begin{aligned}
A A^{-1} & =I, \\
\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right) & =\operatorname{det}(I) \\
& =1
\end{aligned}
$$

Thus if $\operatorname{det}(A)=1$, the above shows that $\operatorname{det}\left(A^{-1}\right)=1$ as well, which means it is in G.
The only thing left is the tedious task of showing that matrix multiplication is actually associative. To this end, let $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), Y=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$, and $Z=\left(\begin{array}{ll}s & t \\ u & v\end{array}\right)$. We calculate:

$$
\begin{aligned}
A(B C) & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{ll}
e s+f u & e t+f v \\
g s+h u & g t+h v
\end{array}\right) \\
& =\left(\begin{array}{ll}
a(e s+f u)+b(g s+h u) & a(e t+f v)+b(g t+h v) \\
c(e s+f u)+d(g s+h u) & c(e t+f v)+d(g t+h v)
\end{array}\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
(A B) C & =\left(\begin{array}{ll}
a e+b g & a f+g h \\
c e+b g & c f+d h
\end{array}\right) \cdot\left(\begin{array}{cc}
s & t \\
u & v
\end{array}\right) \\
& =\left(\begin{array}{ll}
(a e+b g) s+(a f+g h) u & (a e+b g) t+(a f+g h) v \\
(c e+b g) s+(c f+d h) u & (c e+b g) t+(c f+d h) v
\end{array}\right)
\end{aligned}
$$

and by distributing and using commutativity (and associativity) of multiplication of real numbers, we see that each of the four entries is the same. Therefore the two are equal, and G is a group.
22. Let G be a group with the property that for any x, y, z in the group, $x y=z x$ implies $y=z$. Prove that G is Abelian ("Left-right cancellation" implies commutativity.)

Solution: Given $a, b \in G$, we must show that $a b=b a$. Multiplying the LHS by b on the left and the RHS by b on the right, we certainly have $b a b=b a b$, so letting $x=b, y=a b, z=b a$, the assumption on G forces $a b=b a$, as desired.
26. Prove that in a group $\left(a^{-1}\right)^{-1}=a$ for all a.

Solution: $\left(a^{-1}\right)^{-1}$ is the unique element in G such that $\left(a^{-1}\right)^{-1} a^{-1}=a^{-1}\left(a^{-1}\right)^{-1}=e$. But since a^{-1} is a 's inverse, $a a^{-1}=a^{-1} a=e$, so $a=\left(a^{-1}\right)^{-1}$.
34. Prove that in a group, $(a b)^{2}=a^{2} b^{2}$ if and only if $a b=b a$.

Prove that in a group, $(a b)^{-2}=b^{-2} a^{-2}$ if and only if $a b=b a$.

Solution: The "if" parts follow from problem 23, so assume that $(a b)(a b)=a^{2} b^{2}$. Multiplying on the left by a^{-1}, we see that $b a b=a b^{2}$. But then we can multiply on the right by b^{-1}, which yields $b a=a b$.

Now suppose that $(a b)^{-1}(a b)^{-1}=b^{-2} a^{-2}$. Since $(a b)^{-1}=b^{-1} a^{-1}$, we have that $\left(b^{-1} a^{-1}\right)^{2}=$ $\left(b^{-1}\right)^{2}\left(a^{-1}\right)^{2}$. But then the previous result (with b^{-1} in place of a and a^{-1} in place of b), shows that $a^{-1} b^{-1}=b^{-1} a^{-1}$. But then the inverses of both sides are the same, so $b a=a b$.
36. Let a and b belong to a group G. Find an x in G such that $x a b x^{-1}=b a$.

Solution: It is equivalent to show $x a b x^{-1} a^{-1}=b$, since we have b 's in the center of both expressions, one easy way to make them equal is to let $x a=e$, or $x=a^{-1}$.

