
Math 103 HW 4 Solutions to Selected Problems

2. Let Q be the group of rational numbers under addition and let Q∗ be the group
of nonzero rational numbers under multiplication. In Q, list the elements in
< 1

2
>. In Q∗, list the elements in < 1

2
>.

Solution: In Q, < 1
2
> is just all rationals that are of the form

±(
1

2
+ · · ·+ 1

2︸ ︷︷ ︸
n-times

)

(since the operation here is addition, the inverse of 1
2

is −1
2
) for some integer n. Of

course, this is just the set {n
2
|n ∈ Z}.

In Q∗, the operation is multiplication, so < 1
2
> is rationals of the form

1

2
· 1

2
· · · · 1

2︸ ︷︷ ︸
n-times

in other words the set { 1
2n
|n ∈ Z}.

4. Prove that in any group, an element and its inverse have the same order.

Solution: Let n be the order of a. We know (by induction, for example, or just multi-
plying by ad and cancelling each term one by one) that (ad)−1 = (a−1)d for an positive
integer d. But then

e = an(a−1)n

= e(a−1)n

= (a−1)n

so we know that least that a−1 has order ≤ n. But the same argument with a−1 replacing
a shows that if (a−1)d = e, then ((a−1)−1)d = ad = e also. Therefore, the order of a−1 is
at least the order of a, so it must equal n.
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25. Let n be a positive even integer and let H be a subgoup of Zn of odd order.
Prove that every member of H is an even integer.

Solution: A clue to this problem comes from problem 24 in the book, which claims that
if H is any subgroup of Zn (with n even still), then either every member of H is even
(what we want) or exactly half of the members of H are even. This gives our desired
result immediately, since if half the members of H are even, then must H have order
twice that number, so |H| is even, and we assumed |H| to be odd at the start.

How to prove this claim? Method 1:
We need to show that if H has any odd elements, then half the members of H are
even. Let HO and HE be the odd and even elements, respectively, of H. Every integer
is either even or odd, so we see that H = HO ∪ HE is a disjoint union, which means
that |H| = |HO| + |HE|. This tells us that it’s enough to prove |HO| = |HE| if H has
an odd element. So suppose H does, and let m be an odd element of H. One way to
show two sets are the same size is to exhibit a bijection between the two. We claim that
f(x) = x + m, where the addition is being done in H (that is, mod n), is a bijective
function from HO to HE. This is true because m is odd, so if x ∈ HO, so the integer
x+m (with addition being done in Z) will certainly be even before we take the remainder
mod n. But n is even, and we get the remainder mod n (or anything congruent mod n,
which is what “x+m” means in H) by adding a multiple of n to x+m, so it will be even
as well. Thus f has the correct codomain. A similar argument shows that g(x) = x−m
is a well defined function from HE to HO, and these are clearly inverses, meaning f is
bijective. This implies that |HO| = |HE|, so we are done.

Method 2: Since Zn is cyclic, so is any of its subgroups; in particular, H. Let h be
a generator of H. If h is even, then m · h is even for any m ∈ Z. Since n is even, this
means that m · h is even in Zn, hence in H, so in that case H only has even elements.
If h is odd, then every odd multiple will be odd, and every even multiple will be even.
This means—again because n is even—that in order for m ·h to be zero mod n, m must
be evens. But this forces the order of h to be even, which since h is a generator of H
means that |H| must be even. This being the case, we see that HO and HE (which are
just the odd multiples and the even multiples of h, respectively) have the same size.

34. If H and K are subgroups of G, show that H ∩K is a subgroup of G.

Solution: H ∩K is nonempty, since it contains the identity e (which is in any subgroup
of G). Suppose x and y are in H ∩ K. Then by definition x and y are both in H,
so y−1, and hence gh−1 is in H too. Since x and y are both in K as well, and K
is also a subgroup, then xy−1 ∈ K by the above argument. By definition, this means
xy−1 ∈ H∩K, and by the “One-Step Subgroup Test”, we conclude H∩K is a subgroup.

Page 2



44. If H is a subgroup of G, then by the centralizer C(H) of H we mean the set
{x ∈ G|xh = hx for all h ∈ H}. Prove that C(H) is a subgroup.

Solution: The identity e is in C(H) because eh = he = h for all h ∈ H. Now let a, b
be in C(H). Then

abh = ahb

= hab

for any h ∈ H, so ab ∈ C(H). On the other hand, multiplying the equation ah = ha by
a−1 on both the right and the left yields ha−1 = a−1h for all h ∈ H, so a−1 is in C(H)
too, and C(H) is indeed a subgroup of G.

52. Give an example of elements a and b from a group such that a has finite
order, b has infinite order and ab has finite order.

Solution: This will definitely not be possible if the group we choose is Abelian, because
if an = e = (ab)m, then

e = ((ab)m)n

= (ab)nm

= anmbnm

= (an)mbnm

= embnm

= bnm

meaning b has finite order if a and ab do. Thus, we our example must come from an
infinite non-Abelian group. We haven’t learned about many of these so far, but there
is at least one: GL2(R). The way problem 50 in the book is phrased suggests that we

should look at the matrices A =

(
0 −1
1 0

)
, C =

(
0 1
−1 −1

)
. Notice that

A2 =

(
0− 1 0 + 0
0 + 0 −1 · −1

)
=

(
−1 0
0 1

)

which means that A4 =

(
−1 0
0 1

)2

= I. Meanwhile,

C2 =

(
−1 −1
1 0

)
and C has determinant 1, so by a well known formula for the inverse of a 2× 2 matrix,
C2 = C−1. This implies that C3 = I.
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However,

AC =

(
1 1
0 1

)
and there has infinite order since(

1 a
0 1

)
·
(

1 b
0 1

)
=

(
1 a+ b
0 1

)
meaning

(AC)n =

(
1 n
0 1

)
which cannot be the identity matrix for any postive n. Thus letting a = A−1 (which has
finite order because A does, as we showed in a previous problem), and b = AC, then
ab = C has finite order.

54. For any positive integer n and any angle θ, show that in the group SL(2,R),(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)n
=

(
cos(nθ) − sin(nθ)
sin(nθ) cos(nθ)

)
.

Use this formula to find the order of(
cos(60◦) − sin(60◦)
sin(60◦) cos(60◦)

)
and

(
cos(
√

2
◦
) − sin(

√
2
◦
)

sin(
√

2
◦
) cos(

√
2
◦
)

)
.

Solution: If n = 1 then there is nothing to prove, so suppose this is true for some n ≥ 1.

Then (letting Mθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
) we have

Mn+1
θ = Mn

θ ·Mθ

= Mnθ ·Mθ

Let α, β be any angles. Then the angle addition identities from trigonometry tell us that

Mα ·Mβ =

(
cos(α) cos(β)− sin(α) sin(β) cos(β) sin(α) + cos(α) sin(β)
cos(α) sin(β) + cos(β) sin(α) − cos(α) cos(β)− sin(α) sin(β)

)
=

(
cos(α + β) − sin(α + β)
sin(α + β) cos(α + β)

)
= Mα+β

In particular, Mnθ ·Mθ = M(n+1)θ, so the identity holds for all n ≥ 1 by induction.

The θ such that cos(θ) = 1 and sin(θ) = 0 are the multiples 360k◦ for k ∈ Z, so
Mn

θ = I if and only if θ = 360k
n

◦
for some k.

√
2 is not even rational, so it cannot have

this form for any n, and M√2 has infinite order. Meanwhile, we can check that the
smallest n ≥ 1 such that 60n = 360k is 6, meaning M60 has order 6.
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70. Let H = {a + bi|a, b ∈ R, ab ≥ 0}. Prove or disprove that H is a subgroup of C
under addition.

Solution: H is not a subgroup: x = 2i and y = −1−i are both in H, but x+y = −1+i
is not.

Page 5


