Math 103 HW 4 Solutions to Selected Problems

2. Let Q be the group of rational numbers under addition and let Q^{*} be the group of nonzero rational numbers under multiplication. In Q, list the elements in $<\frac{1}{2}>$. In Q^{*}, list the elements in $<\frac{1}{2}>$.

Solution: In $Q,<\frac{1}{2}>$ is just all rationals that are of the form

$$
\pm(\underbrace{\frac{1}{2}+\cdots+\frac{1}{2}}_{n \text {-times }})
$$

(since the operation here is addition, the inverse of $\frac{1}{2}$ is $-\frac{1}{2}$) for some integer n. Of course, this is just the set $\left\{\left.\frac{n}{2} \right\rvert\, n \in \mathbb{Z}\right\}$.

In Q^{*}, the operation is multiplication, so $<\frac{1}{2}>$ is rationals of the form

$$
\underbrace{\frac{1}{2} \cdot \frac{1}{2} \cdots \frac{1}{2}}_{n \text {-times }}
$$

in other words the set $\left\{\left.\frac{1}{2^{n}} \right\rvert\, n \in \mathbb{Z}\right\}$.
4. Prove that in any group, an element and its inverse have the same order.

Solution: Let n be the order of a. We know (by induction, for example, or just multiplying by a^{d} and cancelling each term one by one) that $\left(a^{d}\right)^{-1}=\left(a^{-1}\right)^{d}$ for an positive integer d. But then

$$
\begin{aligned}
e & =a^{n}\left(a^{-1}\right)^{n} \\
& =e\left(a^{-1}\right)^{n} \\
& =\left(a^{-1}\right)^{n}
\end{aligned}
$$

so we know that least that a^{-1} has order $\leq n$. But the same argument with a^{-1} replacing a shows that if $\left(a^{-1}\right)^{d}=e$, then $\left(\left(a^{-1}\right)^{-1}\right)^{d}=a^{d}=e$ also. Therefore, the order of a^{-1} is at least the order of a, so it must equal n.
25. Let n be a positive even integer and let H be a subgoup of Z_{n} of odd order. Prove that every member of H is an even integer.

Solution: A clue to this problem comes from problem 24 in the book, which claims that if H is any subgroup of Z_{n} (with n even still), then either every member of H is even (what we want) or exactly half of the members of H are even. This gives our desired result immediately, since if half the members of H are even, then must H have order twice that number, so $|H|$ is even, and we assumed $|H|$ to be odd at the start.

How to prove this claim? Method 1:
We need to show that if H has any odd elements, then half the members of H are even. Let H_{O} and H_{E} be the odd and even elements, respectively, of H. Every integer is either even or odd, so we see that $H=H_{O} \cup H_{E}$ is a disjoint union, which means that $|H|=\left|H_{O}\right|+\left|H_{E}\right|$. This tells us that it's enough to prove $\left|H_{O}\right|=\left|H_{E}\right|$ if H has an odd element. So suppose H does, and let m be an odd element of H. One way to show two sets are the same size is to exhibit a bijection between the two. We claim that $f(x)=x+m$, where the addition is being done in $H($ that is, $\bmod n)$, is a bijective function from H_{O} to H_{E}. This is true because m is odd, so if $x \in H_{O}$, so the integer $x+m$ (with addition being done in \mathbb{Z}) will certainly be even before we take the remainder $\bmod n$. But n is even, and we get the remainder $\bmod n($ or anything congruent $\bmod n$, which is what " $x+m$ " means in H) by adding a multiple of n to $x+m$, so it will be even as well. Thus f has the correct codomain. A similar argument shows that $g(x)=x-m$ is a well defined function from H_{E} to H_{O}, and these are clearly inverses, meaning f is bijective. This implies that $\left|H_{O}\right|=\left|H_{E}\right|$, so we are done.

Method 2: Since Z_{n} is cyclic, so is any of its subgroups; in particular, H. Let h be a generator of H. If h is even, then $m \cdot h$ is even for any $m \in \mathbb{Z}$. Since n is even, this means that $m \cdot h$ is even in Z_{n}, hence in H, so in that case H only has even elements. If h is odd, then every odd multiple will be odd, and every even multiple will be even. This means-again because n is even-that in order for $m \cdot h$ to be zero mod n, m must be evens. But this forces the order of h to be even, which since h is a generator of H means that $|H|$ must be even. This being the case, we see that H_{O} and H_{E} (which are just the odd multiples and the even multiples of h, respectively) have the same size.

34. If H and K are subgroups of G, show that $H \cap K$ is a subgroup of G.

Solution: $H \cap K$ is nonempty, since it contains the identity e (which is in any subgroup of G). Suppose x and y are in $H \cap K$. Then by definition x and y are both in H, so y^{-1}, and hence $g h^{-1}$ is in H too. Since x and y are both in K as well, and K is also a subgroup, then $x y^{-1} \in K$ by the above argument. By definition, this means $x y^{-1} \in H \cap K$, and by the "One-Step Subgroup Test", we conclude $H \cap K$ is a subgroup.
44. If H is a subgroup of G, then by the centralizer $C(H)$ of H we mean the set $\{x \in G \mid x h=h x$ for all $h \in H\}$. Prove that $C(H)$ is a subgroup.

Solution: The identity e is in $C(H)$ because $e h=h e=h$ for all $h \in H$. Now let a, b be in $C(H)$. Then

$$
\begin{aligned}
a b h & =a h b \\
& =h a b
\end{aligned}
$$

for any $h \in H$, so $a b \in C(H)$. On the other hand, multiplying the equation $a h=h a$ by a^{-1} on both the right and the left yields $h a^{-1}=a^{-1} h$ for all $h \in H$, so a^{-1} is in $C(H)$ too, and $C(H)$ is indeed a subgroup of G.
52. Give an example of elements a and b from a group such that a has finite order, b has infinite order and $a b$ has finite order.

Solution: This will definitely not be possible if the group we choose is Abelian, because if $a^{n}=e=(a b)^{m}$, then

$$
\begin{aligned}
e & =\left((a b)^{m}\right)^{n} \\
& =(a b)^{n m} \\
& =a^{n m} b^{n m} \\
& =\left(a^{n}\right)^{m} b^{n m} \\
& =e^{m} b^{n m} \\
& =b^{n m}
\end{aligned}
$$

meaning b has finite order if a and $a b$ do. Thus, we our example must come from an infinite non-Abelian group. We haven't learned about many of these so far, but there is at least one: $G L_{2}(\mathbb{R})$. The way problem 50 in the book is phrased suggests that we should look at the matrices $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), C=\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)$. Notice that

$$
\begin{aligned}
A^{2} & =\left(\begin{array}{cc}
0-1 & 0+0 \\
0+0 & -1 \cdot-1
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

which means that $A^{4}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)^{2}=I$. Meanwhile,

$$
C^{2}=\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right)
$$

and C has determinant 1 , so by a well known formula for the inverse of a 2×2 matrix, $C^{2}=C^{-1}$. This implies that $C^{3}=I$.

However,

$$
A C=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

and there has infinite order since

$$
\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & a+b \\
0 & 1
\end{array}\right)
$$

meaning

$$
(A C)^{n}=\left(\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right)
$$

which cannot be the identity matrix for any postive n. Thus letting $a=A^{-1}$ (which has finite order because A does, as we showed in a previous problem), and $b=A C$, then $a b=C$ has finite order.
54. For any positive integer n and any angle θ, show that in the group $S L(2, \mathbb{R})$,

$$
\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)^{n}=\left(\begin{array}{cc}
\cos (n \theta) & -\sin (n \theta) \\
\sin (n \theta) & \cos (n \theta)
\end{array}\right)
$$

Use this formula to find the order of

$$
\left(\begin{array}{cc}
\cos \left(60^{\circ}\right) & -\sin \left(60^{\circ}\right) \\
\sin \left(60^{\circ}\right) & \cos \left(60^{\circ}\right)
\end{array}\right) \text { and }\left(\begin{array}{cc}
\cos \left(\sqrt{2}^{\circ}\right) & -\sin \left(\sqrt{2}^{\circ}\right) \\
\sin \left(\sqrt{2}^{\circ}\right) & \cos \left(\sqrt{2}^{\circ}\right)
\end{array}\right)
$$

Solution: If $n=1$ then there is nothing to prove, so suppose this is true for some $n \geq 1$. Then (letting $M_{\theta}=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$) we have

$$
\begin{aligned}
M_{\theta}^{n+1} & =M_{\theta}^{n} \cdot M_{\theta} \\
& =M_{n \theta} \cdot M_{\theta}
\end{aligned}
$$

Let α, β be any angles. Then the angle addition identities from trigonometry tell us that

$$
\begin{aligned}
M_{\alpha} \cdot M_{\beta} & =\left(\begin{array}{cc}
\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) & \cos (\beta) \sin (\alpha)+\cos (\alpha) \sin (\beta) \\
\cos (\alpha) \sin (\beta)+\cos (\beta) \sin (\alpha) & -\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)
\end{array}\right) \\
& =\left(\begin{array}{ll}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\
\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array}\right) \\
& =M_{\alpha+\beta}
\end{aligned}
$$

In particular, $M_{n \theta} \cdot M_{\theta}=M_{(n+1) \theta}$, so the identity holds for all $n \geq 1$ by induction.
The θ such that $\cos (\theta)=1$ and $\sin (\theta)=0$ are the multiples $360 k^{\circ}$ for $k \in \mathbb{Z}$, so $M_{\theta}^{n}=I$ if and only if $\theta=\frac{360 k^{\circ}}{n}$ for some $k . \sqrt{2}$ is not even rational, so it cannot have this form for any n, and $M_{\sqrt{2}}$ has infinite order. Meanwhile, we can check that the smallest $n \geq 1$ such that $60 n=360 k$ is 6 , meaning M_{60} has order 6 .
70. Let $H=\{a+b i \mid a, b \in \mathbb{R}, a b \geq 0\}$. Prove or disprove that H is a subgroup of \mathbb{C} under addition.

Solution: H is not a subgroup: $x=2 i$ and $y=-1-i$ are both in H, but $x+y=-1+i$ is not.

