Math 103 HW 6 Solutions to Selected Problems

14. Suppose that a cyclic group G has exactly three subgroups: G itself, $\{e\}$, and a subgroup of order 7. What is |G|? What can you say if 7 is replaced with p where p is a prime?

Solution: Let g be a generator of G, of order n, and let g^k be a generator of the subgroup of order H (such a generator must exist, since a subgroup of a cyclic group is cyclic). Notice that $(g^k)^n = (g^n)^k = e$, so 7 must at least divide n. This means that $|g^7| = \frac{n}{(n,7)} = \frac{n}{7}$. On the other hand, by assumption the subgroup $\langle g^7 \rangle$ has order 1, 7, or n, so these are the only choices for $\frac{n}{7}$. The third case is ruled out immediately (n can never equal $\frac{n}{7}$). The first implies that n = 7, contradicting the fact that G has a proper subgroup of order 7. The only choice left is $\frac{n}{7} = 7$, or n = 49. The same proof, replacing 7 everywhere with any prime p, shows that if we start with p instead we get $|G| = p^2$.

19. If a cyclic group has an element of infinite order, how man elements of finite order does it have.

Solution: Suppose $G = \langle g \rangle$ is cyclic of infinite order. To begin with, this forces g to have infinite order. If some power g^k has finite order—n, say—then $g^{kn} = e$, and g has order dividing kn (a contradiction, since then g has finite order) unless k = 0. Thus $g^0 = e$ is the only element of finite order in G.

24. For any element a in any group G, prove that $\langle a \rangle$ is a subgroup of C(a) (the centralizer of a).

Solution: $\langle a \rangle$ is already a group under the multiplication in G, so we just need to show it is a subset of C(a). This is easy: $a \cdot a = a \cdot a$, so $a \in C(a)$. As C(a) is a group (in particular, closed under multiplication and inversion), we must have that any a^n is also in C(a). This is precisely what it means for $\langle a \rangle \subseteq C(a)$, so we are done.

30. Suppose G is a group with more than one element. If the only subgroups of G are $\{e\}$ and G, prove that G is cyclic and has prime order.

Solution: Take any $g \neq e$ (this is possible since G has more than one element. Then $\langle g \rangle \neq \{e\}$, so $\langle g \rangle = G$, hence G is cyclic. Consider the subgroup $\langle g^2 \rangle$. If this is $\{e\}$, then g has order 2, so we are finished. Otherwise $\langle g^2 \rangle = G$, and we can write $g = g^{2k}$ for some $k \in \mathbb{Z}$. But then $e = g^{2k-1}$, so g (hence G) has finite order.

Now let |G| = n. Because n > 1, by unique factorization there exists a prime p dividing n. We want to show that n = p. If $\langle g^p \rangle = \{e\}$ (ie, $g^p = e$), then n divides p, which combined with p|n implies p = n. Otherwise, $\langle g^p \rangle = G$, meaning g^p is a generator of G. But this is only true if n and a nontrivial divisor of n, p, are coprime; impossible. Therefore n = p, as desired.

38. Let m and n be elements of the group \mathbb{Z} . Find a generator for the group $< m > \cap < n >$.

Solution: We can be sure that some generator exists because \mathbb{Z} is cyclic, so the subgroup $\langle m \rangle \cap \langle n \rangle$ must also be. This is just the common multiples of m and n, so one guesses that $\langle m \rangle \cap \langle n \rangle = \langle \ell \rangle$, where ℓ is the least common multiple of m and n (that is, the smallest positive common multiple). ℓ is clearly an element of $\langle m \rangle \cap \langle n \rangle$, so we need only show that if $a \in \langle m \rangle \cap \langle n \rangle$, the ℓ divides a. Let $a = q\ell + r$, with $q, r \in \mathbb{Z}$ and $0 \leq r < \ell$. Since m and n divide a (a is an element of $\langle m \rangle \cap \langle n \rangle$) and divides ℓ , they must both divide $r = a - q\ell$. But ℓ is the least common multiple, so r = 0, and ℓ divides a. This shows that $\langle m \rangle \cap \langle n \rangle = \langle \ell \rangle$.

50. Prove that an infinite group must have an infinite number of subgroups.

Solution: Let G be such a group. Suppose G has an element g of infinite order. Then for any j > k > 0, $\langle g^j \rangle$ cannot equal $\langle g^k \rangle$. This is true because otherwise, we would have $g^j = g^{kn}$ and $g^k = g^{jm}$ for some $n, m \in \mathbb{Z}$, meaning $g^{j-kn} = e = g^{k-jm}$. Since g has infinite order, the only way this can happen is if j = kn and k = jm. But then k and j both divide each other, so they are equal. We thus conclude that the $\langle g^k \rangle$ for k > 0 provide an infinite number of (distinct for each k) subgroups.

The only other option is that every element of G has finite order. In this case, we can construct an infinite sequence of subgroups as follows. Start with any element g_1 of G. Now assume we have picked g_1, \dots, g_n such that none of the g_i are equal for $1 \leq i \leq n$. Since each g_i has finite order, the set of powers $S_n = \{g_i^k | k \in \mathbb{Z}, 1 \leq i \leq n\}$ is finite. As G is infinite, $G - S_n$ is nonempty, so if we pick $g_{n+1} \in G - S_n$, by definition g_{n+1} cannot be an element of $\langle g_i \rangle$ for any smaller i. Thus $\langle g_{n+1} \rangle \neq \langle g_n \rangle \neq \cdots \neq \langle g_1 \rangle$. This process then yields an infinite sequence $\langle g_i \rangle$ of distinct subgroups of G.

62. Let a and b belong to a group. If |a| and |b| are relatively prime, show that $\langle a \rangle \cap \langle b \rangle = \{e\}.$

Solution: Let |a| = n, |b| = m. Clearly $e \in \langle a \rangle \cap \langle b \rangle$, so we must show the other containment. To this end, suppose $g \in \langle a \rangle \cap \langle b \rangle$. Then $g = a^k = b^\ell$ for some $k, \ell \in \mathbb{Z}$. Since g is a power of a, we know that |g| divides n. g is a power of b as well, so |g| divides m—ie, it is a common divisor of m and n. But n and m are relatively prime, so (m, n) = 1 implies |g| = 1, and g = e.

68. Suppose that |x| = n. Find a necessary and sufficient condition on r and s such that $\langle x^r \rangle \subseteq \langle x^s \rangle$.

Solution: $\langle x^s \rangle$ is closed under multiplication and inversion, so $\langle x^r \rangle \subseteq \langle x^s \rangle$ if and only if $x^r \in \langle x^s \rangle$, which is true if and only if $x^r = x^{sk}$ for some k. But this (multiplying/dividing both sides by $(x^r)^{-1}$) happens if and only if $e = x^{sk-r}$. By Theorem 4.1, it is thus necessary and sufficient that $r \equiv sk \pmod{n}$ for some $k \in \mathbb{Z}$ —in other words, that $\langle r \rangle \subseteq \langle s \rangle$ in Z_n .