
Math 103 HW 6 Solutions to Selected Problems

14. Suppose that a cyclic group G has exactly three subgroups: G itself, {e}, and
a subgroup of order 7. What is |G|? What can you say if 7 is replaced with
p where p is a prime?

Solution: Let g be a generator of G, of order n, and let gk be a generator of the
subgroup of order H (such a generator must exist, since a subgroup of a cyclic group is
cyclic). Notice that (gk)n = (gn)k = e, so 7 must at least divide n. This means that
|g7| = n

(n,7)
= n

7
. On the other hand, by assumption the subgroup < g7 > has order 1, 7,

or n, so these are the only choices for n
7
. The third case is ruled out immediately (n can

never equal n
7
). The first implies that n = 7, contradicting the fact that G has a proper

subgroup of order 7. The only choice left is n
7

= 7, or n = 49. The same proof, replacing
7 everywhere with any prime p, shows that if we start with p instead we get |G| = p2.

19. If a cyclic group has an element of infinite order, how man elements of finite
order does it have.

Solution: Suppose G =< g > is cyclic of infinite order. To begin with, this forces g
to have infinite order. If some power gk has finite order—n, say—then gkn = e, and g
has order dividing kn (a contradiction, since then g has finite order) unless k = 0. Thus
g0 = e is the only element of finite order in G.

24. For any element a in any group G, prove that < a > is a subgroup of C(a)
(the centralizer of a).

Solution: < a > is already a group under the multiplication in G, so we just need to
show it is a subset of C(a). This is easy: a · a = a · a, so a ∈ C(a). As C(a) is a group
(in particular, closed under multiplication and inversion), we must have that any an is
also in C(a). This is precisely what it means for < a >⊆ C(a), so we are done.

30. Suppose G is a group with more than one element. If the only subgroups of
G are {e} and G, prove that G is cyclic and has prime order.
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Solution: Take any g 6= e (this is possible since G has more than one element. Then
< g > 6= {e}, so < g >= G, hence G is cyclic. Consider the subgroup < g2 >. If this
is {e}, then g has order 2, so we are finished. Otherwise < g2 >= G, and we can write
g = g2k for some k ∈ Z. But then e = g2k−1, so g (hence G) has finite order.

Now let |G| = n. Because n > 1, by unique factorization there exists a prime p di-
viding n. We want to show that n = p. If < gp >= {e} (ie, gp = e), then n divides
p, which combined with p|n implies p = n. Otherwise, < gp >= G, meaning gp is a
generator of G. But this is only true if n and a nontrivial divisor of n, p, are coprime;
impossible. Therefore n = p, as desired.

38. Let m and n be elements of the group Z. Find a generator for the group
< m > ∩ < n >.

Solution: We can be sure that some generator exists because Z is cyclic, so the subgroup
< m > ∩ < n > must also be. This is just the common multiples of m and n, so
one guesses that < m > ∩ < n >=< ` >, where ` is the least common multiple of
m and n (that is, the smallest positive common multiple). ` is clearly an element of
< m > ∩ < n >, so we need only show that if a ∈< m > ∩ < n >, the ` divides a. Let
a = q` + r, with q, r ∈ Z and 0 ≤ r < `. Since m and n divide a (a is an element of
< m > ∩ < n >) and divides `, they must both divide r = a − q`. But ` is the least
common multiple, so r = 0, and ` divides a. This shows that < m > ∩ < n >=< ` >.

50. Prove that an infinite group must have an infinite number of subgroups.

Solution: Let G be such a group. Suppose G has an element g of infinite order. Then
for any j > k > 0, < gj > cannot equal < gk >. This is true because otherwise, we
would have gj = gkn and gk = gjm for some n,m ∈ Z, meaning gj−kn = e = gk−jm. Since
g has infinite order, the only way this can happen is if j = kn and k = jm. But then k
and j both divide each other, so they are equal. We thus conclude that the < gk > for
k > 0 provide an infinite number of (distinct for each k) subgroups.

The only other option is that every element of G has finite order. In this case, we
can construct an infinite sequence of subgroups as follows. Start with any element g1
of G. Now assume we have picked g1, · · · , gn such that none of the gi are equal for
1 ≤ i ≤ n. Since each gi has finite order, the set of powers Sn = {gki |k ∈ Z, 1 ≤ i ≤ n} is
finite. As G is infinite, G−Sn is nonempty, so if we pick gn+1 ∈ G−Sn, by definition gn+1

cannot be an element of < gi > for any smaller i. Thus < gn+1 >6=< gn >6= · · · 6=< g1 >.
This process then yields an infinite sequence < gi > of distinct subgroups of G.
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62. Let a and b belong to a group. If |a| and |b| are relatively prime, show that
< a > ∩ < b >= {e}.

Solution: Let |a| = n, |b| = m. Clearly e ∈< a > ∩ < b >, so we must show the other
containment. To this end, suppose g ∈< a > ∩ < b >. Then g = ak = b` for some
k, ` ∈ Z. Since g is a power of a, we know that |g| divides n. g is a power of b as well, so
|g| divides m—ie, it is a common divisor of m and n. But n and m are relatively prime,
so (m,n) = 1 implies |g| = 1, and g = e.

68. Suppose that |x| = n. Find a necessary and sufficient condition on r and s
such that < xr >⊆< xs >.

Solution: < xs > is closed under multiplication and inversion, so < xr >⊆< xs >
if and only if xr ∈< xs >, which is true if and only if xr = xsk for some k. But
this (multiplying/dividing both sides by (xr)−1) happens if and only if e = xsk−r. By
Theorem 4.1, it is thus necessary and sufficient that r ≡ sk (mod n) for some k ∈ Z—in
other words, that < r >⊆< s > in Zn.
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