Math 103 HW 6 Solutions to Selected Problems

14. Suppose that a cyclic group G has exactly three subgroups: G itself, $\{e\}$, and a subgroup of order 7 . What is $|G|$? What can you say if 7 is replaced with p where p is a prime?

Solution: Let g be a generator of G, of order n, and let g^{k} be a generator of the subgroup of order H (such a generator must exist, since a subgroup of a cyclic group is cyclic). Notice that $\left(g^{k}\right)^{n}=\left(g^{n}\right)^{k}=e$, so 7 must at least divide n. This means that $\left|g^{7}\right|=\frac{n}{(n, 7)}=\frac{n}{7}$. On the other hand, by assumption the subgroup $<g^{7}>$ has order 1,7, or n, so these are the only choices for $\frac{n}{7}$. The third case is ruled out immediately (n can never equal $\frac{n}{7}$). The first implies that $n=7$, contradicting the fact that G has a proper subgroup of order 7 . The only choice left is $\frac{n}{7}=7$, or $n=49$. The same proof, replacing 7 everywhere with any prime p, shows that if we start with p instead we get $|G|=p^{2}$.
19. If a cyclic group has an element of infinite order, how man elements of finite order does it have.

Solution: Suppose $G=<g>$ is cyclic of infinite order. To begin with, this forces g to have infinite order. If some power g^{k} has finite order- n, say-then $g^{k n}=e$, and g has order dividing $k n$ (a contradiction, since then g has finite order) unless $k=0$. Thus $g^{0}=e$ is the only element of finite order in G.
24. For any element a in any group G, prove that $<a>$ is a subgroup of $C(a)$ (the centralizer of a).

Solution: $\langle a\rangle$ is already a group under the multiplication in G, so we just need to show it is a subset of $C(a)$. This is easy: $a \cdot a=a \cdot a$, so $a \in C(a)$. As $C(a)$ is a group (in particular, closed under multiplication and inversion), we must have that any a^{n} is also in $C(a)$. This is precisely what it means for $\langle a\rangle \subseteq C(a)$, so we are done.
30. Suppose G is a group with more than one element. If the only subgroups of G are $\{e\}$ and G, prove that G is cyclic and has prime order.

Solution: Take any $g \neq e$ (this is possible since G has more than one element. Then $<g>\neq\{e\}$, so $<g>=G$, hence G is cyclic. Consider the subgroup $<g^{2}>$. If this is $\{e\}$, then g has order 2 , so we are finished. Otherwise $<g^{2}>=G$, and we can write $g=g^{2 k}$ for some $k \in \mathbb{Z}$. But then $e=g^{2 k-1}$, so g (hence G) has finite order.

Now let $|G|=n$. Because $n>1$, by unique factorization there exists a prime p dividing n. We want to show that $n=p$. If $<g^{p}>=\{e\}$ (ie, $g^{p}=e$), then n divides p, which combined with $p \mid n$ implies $p=n$. Otherwise, $<g^{p}>=G$, meaning g^{p} is a generator of G. But this is only true if n and a nontrivial divisor of n, p, are coprime; impossible. Therefore $n=p$, as desired.
38. Let m and n be elements of the group \mathbb{Z}. Find a generator for the group $<m>\cap<n>$.

Solution: We can be sure that some generator exists because \mathbb{Z} is cyclic, so the subgroup $<m>\cap<n>$ must also be. This is just the common multiples of m and n, so one guesses that $<m>\cap<n>=<\ell>$, where ℓ is the least common multiple of m and n (that is, the smallest positive common multiple). ℓ is clearly an element of $<m>\cap<n\rangle$, so we need only show that if $a \in<m>\cap<n>$, the ℓ divides a. Let $a=q \ell+r$, with $q, r \in \mathbb{Z}$ and $0 \leq r<\ell$. Since m and n divide a (a is an element of $<m>\cap<n>)$ and divides ℓ, they must both divide $r=a-q \ell$. But ℓ is the least common multiple, so $r=0$, and ℓ divides a. This shows that $<m>\cap<n>=<\ell>$.
50. Prove that an infinite group must have an infinite number of subgroups.

Solution: Let G be such a group. Suppose G has an element g of infinite order. Then for any $j>k>0,<g^{j}>$ cannot equal $<g^{k}>$. This is true because otherwise, we would have $g^{j}=g^{k n}$ and $g^{k}=g^{j m}$ for some $n, m \in \mathbb{Z}$, meaning $g^{j-k n}=e=g^{k-j m}$. Since g has infinite order, the only way this can happen is if $j=k n$ and $k=j m$. But then k and j both divide each other, so they are equal. We thus conclude that the $<g^{k}>$ for $k>0$ provide an infinite number of (distinct for each k) subgroups.

The only other option is that every element of G has finite order. In this case, we can construct an infinite sequence of subgroups as follows. Start with any element g_{1} of G. Now assume we have picked g_{1}, \cdots, g_{n} such that none of the g_{i} are equal for $1 \leq i \leq n$. Since each g_{i} has finite order, the set of powers $S_{n}=\left\{g_{i}^{k} \mid k \in \mathbb{Z}, 1 \leq i \leq n\right\}$ is finite. As G is infinite, $G-S_{n}$ is nonempty, so if we pick $g_{n+1} \in G-S_{n}$, by definition g_{n+1} cannot be an element of $<g_{i}>$ for any smaller i. Thus $<g_{n+1}>\neq<g_{n}>\neq \cdots \neq<g_{1}>$. This process then yields an infinite sequence $\left.<g_{i}\right\rangle$ of distinct subgroups of G.
62. Let a and b belong to a group. If $|a|$ and $|b|$ are relatively prime, show that $<a>\cap=\{e\}$.

Solution: Let $|a|=n,|b|=m$. Clearly $e \in<a>\cap$, so we must show the other containment. To this end, suppose $g \in<a>\cap$. Then $g=a^{k}=b^{\ell}$ for some $k, \ell \in \mathbb{Z}$. Since g is a power of a, we know that $|g|$ divides $n . g$ is a power of b as well, so $|g|$ divides m-ie, it is a common divisor of m and n. But n and m are relatively prime, so $(m, n)=1$ implies $|g|=1$, and $g=e$.
68. Suppose that $|x|=n$. Find a necessary and sufficient condition on r and s such that $<x^{r}>\subseteq<x^{s}>$.

Solution: $<x^{s}>$ is closed under multiplication and inversion, so $<x^{r}>\subseteq<x^{s}>$ if and only if $x^{r} \in<x^{s}>$, which is true if and only if $x^{r}=x^{s k}$ for some k. But this (multiplying/dividing both sides by $\left(x^{r}\right)^{-1}$) happens if and only if $e=x^{s k-r}$. By Theorem 4.1, it is thus necessary and sufficient that $r \equiv s k(\bmod n)$ for some $k \in \mathbb{Z}$-in other words, that $\langle r\rangle \subseteq<s>$ in Z_{n}.

