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Math 103 HW 6 Solutions to Selected Problems

Suppose that a cyclic group G has exactly three subgroups: G itself, {¢}, and
a subgroup of order 7. What is |G|? What can you say if 7 is replaced with
p where p is a prime?

Solution: Let g be a generator of G, of order n, and let g* be a generator of the
subgroup of order H (such a generator must exist, since a subgroup of a cyclic group is
cyclic). Notice that (g*)" = (¢g™)* = e, so 7 must at least divide n. This means that
97| = (n”—?) = 7. On the other hand, by assumption the subgroup < g” > has order 1,7,
or n, so these are the only choices for Z. The third case is ruled out immediately (n can
never equal %). The first implies that n = 7, contradicting the fact that G has a proper
subgroup of order 7. The only choice left is Z = 7, or n = 49. The same proof, replacing

7 everywhere with any prime p, shows that if we start with p instead we get |G| = p?.

If a cyclic group has an element of infinite order, how man elements of finite
order does it have.

Solution: Suppose G =< g > is cyclic of infinite order. To begin with, this forces g
to have infinite order. If some power ¢* has finite order—n, say—then ¢*" = e, and g
has order dividing kn (a contradiction, since then g has finite order) unless & = 0. Thus
¢" = e is the only element of finite order in G.

For any element a in any group G, prove that < a > is a subgroup of C(a)
(the centralizer of a).

Solution: < a > is already a group under the multiplication in GG, so we just need to
show it is a subset of C'(a). This is easy: a-a =a-a, so a € C(a). As C(a) is a group
(in particular, closed under multiplication and inversion), we must have that any a” is
also in C'(a). This is precisely what it means for < a >C C(a), so we are done.

Suppose G is a group with more than one element. If the only subgroups of
G are {e} and G, prove that G is cyclic and has prime order.
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Solution: Take any g # e (this is possible since G has more than one element. Then
< g ># {e}, so < g >= G, hence G is cyclic. Consider the subgroup < ¢g? >. If this
is {e}, then g has order 2, so we are finished. Otherwise < ¢> >= G, and we can write
g = g** for some k € Z. But then e = ¢g?*7!, s0 ¢ (hence G) has finite order.

Now let |G| = n. Because n > 1, by unique factorization there exists a prime p di-
viding n. We want to show that n = p. If < ¢? >= {e} (ie, ¢* = e), then n divides
p, which combined with p|n implies p = n. Otherwise, < ¢g? >= G, meaning ¢ is a
generator of G. But this is only true if n and a nontrivial divisor of n, p, are coprime;
impossible. Therefore n = p, as desired.

Let m and n be elements of the group Z. Find a generator for the group
<m>N<n>.

Solution: We can be sure that some generator exists because Z is cyclic, so the subgroup
< m > N < n > must also be. This is just the common multiples of m and n, so
one guesses that < m > N < n >=< ¢ >, where / is the least common multiple of
m and n (that is, the smallest positive common multiple). ¢ is clearly an element of
<m >N < n >, sowe need only show that if a« €< m >N < n >, the ¢ divides a. Let
a=ql+r, with g,r € Z and 0 < r < £. Since m and n divide a (a is an element of
< m >N < n >)and divides ¢, they must both divide r = a — ¢f. But £ is the least
common multiple, so » = 0, and ¢ divides a. This shows that <m >N <n >=<{ >.

Prove that an infinite group must have an infinite number of subgroups.

Solution: Let G be such a group. Suppose G has an element ¢ of infinite order. Then
for any j > k > 0, < ¢/ > cannot equal < ¢g¥ >. This is true because otherwise, we
would have ¢/ = ¢*" and g* = ¢’™ for some n,m € Z, meaning ¢/~ *" = ¢ = g¥=9™. Since
g has infinite order, the only way this can happen is if ) = kn and k = jm. But then k
and j both divide each other, so they are equal. We thus conclude that the < g* > for
k > 0 provide an infinite number of (distinct for each k) subgroups.

The only other option is that every element of G has finite order. In this case, we
can construct an infinite sequence of subgroups as follows. Start with any element ¢,
of G. Now assume we have picked gy, --- , g, such that none of the g; are equal for
1 <i < n. Since each g; has finite order, the set of powers S,, = {gF|k € Z,1 <i <n}is
finite. As G is infinite, G — S, is nonempty, so if we pick g,,+1 € G—S,,, by definition g, 1
cannot be an element of < g; > for any smaller i. Thus < g, 11 >#< g, >F -+ #< g1 >.
This process then yields an infinite sequence < g; > of distinct subgroups of G.
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Let a and b belong to a group. If |a| and |b| are relatively prime, show that
<a>N<b>={e}.

Solution: Let |a| =n, |b] = m. Clearly e €< a > N < b >, so we must show the other
containment. To this end, suppose ¢ €< a > N < b >. Then g = a* = b’ for some
k,¢ € Z. Since g is a power of a, we know that |g| divides n. g is a power of b as well, so
|g| divides m—ie, it is a common divisor of m and n. But n and m are relatively prime,
so (m,n) =1 implies |g| = 1, and g = e.

Suppose that |z| = n. Find a necessary and sufficient condition on r and s
such that < 2" >C< 2° >.

Solution: < x° > is closed under multiplication and inversion, so < " >C< x°% >
if and only if 2" €< 2° >, which is true if and only if 2" = z°* for some k. But
this (multiplying/dividing both sides by (2")~!) happens if and only if e = 2**~". By
Theorem 4.1, it is thus necessary and sufficient that r = sk (mod n) for some k € Z—in
other words, that < r >C< s > in Z,.
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