Math 103 HW 7 Solutions to Selected Problems

Chapter 3

50. Consider the elements $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)$ from $S L(2, \mathbb{R})$. Find $|A|,|B|$, and $|A B|$. Does your answer surprise you?

Solution: The answer doesn't surprise us because we found these orders a few weeks ago-see problem 52 of Homework 5.
77. Let a belong to a group and $|a|=m$. If n is relatively prime to m, show that a can be written as the nth power of some element in the group.

Solution: Since n and m are relatively prime, we can find $x, y \in \mathbb{Z}$ such that $n x+m y=$ 1. Then

$$
\begin{aligned}
a & =a^{n x+m y} \\
& =\left(a^{x}\right)^{n}\left(a^{m}\right)^{y} \\
& =\left(a^{x}\right)^{n} e^{y} \\
& =\left(a^{x}\right)^{n}
\end{aligned}
$$

meaning a is the nth power of a^{x}.
78. Let G be a finite group with more than one element. Show that G has an element of prime order.

Solution: Since G has more than one element, we can take $g \in G$ with $g \neq e$. Then $|g|$ (which must be finite since G is finite) is >1, so must have some prime divisor p. As usual, $g^{\frac{n}{p}}$ must have order p, so we've found an element of order p in G.

Chapter 4
10. In Z_{24}, list all generators for the subgroup of order 8. Let $G=<a>$, and let $|a|=24$. List all generators for the subgroup of order 8 .

Solution: Z_{24} is cyclic, generated by 1 , so the fundamental theorem of cyclic groups says that there is a single subgroup of Z_{24} of order 8 , generated by $\frac{24}{8} \cdot 1=3$. Since $<x>=<\operatorname{gcd}(x, 24)>$ (by theorem 4.2, for example), the other generators are precisely those elements of Z_{24} whose gcd with 24 is 3 . The only prime factors of 24 are 2 and 3 , so these are simply the elements divisible by 3 but not by 2 . The generators are thus $3,9,15$, and 21. Changing from additive notation to multiplicative and replacing x with a^{x}, the analogous result holds for any cyclic group $G=\langle a\rangle$ of order 24 .
52. Suppose that G is a cyclic group and that 6 divides $|G|$. How many elements of order 6 does G have? If 8 divides $|G|$, how many elements of order 8 does G have? If a is one element of order 8 , list the other elements of order 8 .

Solution: Since G is cyclic, for any divisor d of $|G|$ we have a single (necessarily cyclic) subgroup H of order d. The generators of H are therefore the only elements of order d (since any such element will generate a cyclic group of order d), and are of the form h^{k}, where $\operatorname{gcd}(k, d)=1$ (where k can be taken to be positive and smaller than d) for any generator of h of H. For $d=6$, the only coprime positive integers smaller than d are 1 and 5 , so there are 2 elements of order 6 in this case. Those coprime to and smaller than 8 are $1,3,5$, and 7 , so there are four elements of 8 , which can be written as a, a^{3}, a^{5}, and a^{7}.

