Math 103 HW 7 Solutions to Selected Problems

Chapter 3

50. Consider the elements $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$ from $SL(2, \mathbb{R})$. Find |A|, |B|, and |AB|. Does your answer surprise you?

Solution: The answer doesn't surprise us because we found these orders a few weeks ago—see problem 52 of Homework 5.

77. Let a belong to a group and |a| = m. If n is relatively prime to m, show that a can be written as the nth power of some element in the group.

Solution: Since *n* and *m* are relatively prime, we can find $x, y \in \mathbb{Z}$ such that nx + my = 1. Then

$$a = a^{nx+my}$$

= $(a^x)^n (a^m)^y$
= $(a^x)^n e^y$
= $(a^x)^n$

meaning a is the *n*th power of a^x .

78. Let G be a finite group with more than one element. Show that G has an element of prime order.

Solution: Since G has more than one element, we can take $g \in G$ with $g \neq e$. Then |g| (which must be finite since G is finite) is > 1, so must have some prime divisor p. As usual, $g^{\frac{n}{p}}$ must have order p, so we've found an element of order p in G.

Chapter 4

10. In Z_{24} , list all generators for the subgroup of order 8. Let $G = \langle a \rangle$, and let |a| = 24. List all generators for the subgroup of order 8.

Solution: Z_{24} is cyclic, generated by 1, so the fundamental theorem of cyclic groups says that there is a single subgroup of Z_{24} of order 8, generated by $\frac{24}{8} \cdot 1 = 3$. Since $\langle x \rangle = \langle gcd(x, 24) \rangle$ (by theorem 4.2, for example), the other generators are precisely those elements of Z_{24} whose gcd with 24 is 3. The only prime factors of 24 are 2 and 3, so these are simply the elements divisible by 3 but not by 2. The generators are thus 3,9,15, and 21. Changing from additive notation to multiplicative and replacing x with a^x , the analogous result holds for any cyclic group $G = \langle a \rangle$ of order 24.

52. Suppose that G is a cyclic group and that 6 divides |G|. How many elements of order 6 does G have? If 8 divides |G|, how many elements of order 8 does G have? If a is one element of order 8, list the other elements of order 8.

Solution: Since G is cyclic, for any divisor d of |G| we have a single (necessarily cyclic) subgroup H of order d. The generators of H are therefore the only elements of order d (since any such element will generate a cyclic group of order d), and are of the form h^k , where gcd(k,d) = 1 (where k can be taken to be positive and smaller than d) for any generator of h of H. For d = 6, the only coprime positive integers smaller than d are 1 and 5, so there are 2 elements of order 6 in this case. Those coprime to and smaller than 8 are 1,3,5, and 7, so there are four elements of 8, which can be written as a, a^3, a^5 , and a^7 .