Math 103 HW 8 Solutions to Selected Problems

2. Let

$$
\alpha=\left[\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 3 & 4 & 6 & 1 & 7 & 8 & 6
\end{array}\right] \text { and } \beta=\left[\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 3 & 8 & 7 & 6 & 5 & 2 & 4
\end{array}\right]
$$

Write α, β, and $\alpha \beta$ as
(i) products of disjoint cycles

Solution: Notice that $\alpha(1)=2, \alpha(2)=3, \alpha(3)=4, \alpha(4)=5$, and $\alpha(5)=1$, so the cycle (12345) appears in α. Similarly, we find that the other cycle is (678). Thus we can write $\alpha=(12345)(678)$ (the order doesn't matter because disjoint cycles commute). Meanwhile, $\beta=(23847)(56)$, and $\alpha \beta=(12485736)$
(ii) products of 2-cycles

Solution: To do this, we just need to write each individual cycle as a product of 2cycles. There is a standard way to do this: $\left(a_{1} a_{2} \cdots a_{n}\right)=\left(a_{n} a_{n-1}\right) \cdots\left(a_{n} a_{2}\right)\left(a_{n} a_{1}\right)$. Thus from part a, $\alpha=(45)(35)(25)(15)(78)(68)$, while $\beta=(47)(87)(37)(27)(56)$. Of course, this means $\alpha \beta=(45)(35)(25)(15)(78)(68)(47)(87)(37)(27)(56)$.

6. What is th order of each of the following permutations?

(i) $\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 5 & 4 & 6 & 3\end{array}\right]$

Solution: Call this permutation σ. Since disjoint cycles commute, we know that the order of σ is simply the lcm of the orders of its disjoint cycles, and that an n-cycle has order n. In this case, $\sigma=(12)(356)$, so the order is $\operatorname{lcm}(2,3)=6$.
(ii) $\left[\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 1 & 2 & 3 & 4 & 5\end{array}\right]$

Solution: Now call this permutation σ. Then we have $\sigma=(1753)(264)$, so by the same reasoning as above $|\sigma|=l c m(4,3)=12$.
24. Suppose that H is a subgroup of S_{n} of odd order. Prove that H is a subgroup of A_{n}.

Solution: This looks similar to problem 25 of homework 5, although since H might not be cyclic we cannot use method 2 from the solutions. Instead, we can copy method 1. Suppose H contains an odd permutation σ. Given any other permutation $\tau \in S_{n}$,
$\sigma \tau$ is even if τ is odd and odd if τ is even. This is easy to see: if $\sigma=\sigma_{1} \cdots \sigma_{k}$ and $\tau=\tau_{1} \cdots \tau_{m}$ with the $\sigma_{i}, \tau_{j} 2$-cycles, the $\sigma \tau=\sigma_{1} \cdots \sigma_{k} \tau_{1} \cdots \tau_{m}$, hence can be written as a product of $k+m$-cycles (as we have seen, this means every representation of $\sigma \tau$ as a product of 2 -cycles has the same parity as this one). Since τ is odd, k is odd, and hence $m+k \equiv m+1 \bmod 2$; ie, multiiplying by σ changes the parity of the permutation.

This means that the function $f(\tau)=\sigma \tau$ is a function from $H \rightarrow H$ (since H is closed under multiplication), that restricts to a bijection (because multiplying by σ^{-1} is the inverse of f) between the subsets of even and odd elements of H. Therefore, the two have the same size, and the sum of their orders, $|H|$ must be even, a contradiction. Thus, H cannot contain an odd element.

32. Let $\beta=(123)(145)$. Write β^{99} in disjoint cycle form.

Solution: It is easy to take powers of individual cycles, so it will be helpful to write β as a product of disjoint cycles. To do this, we just check what β does to each element of $\{1,2,3,4,5\}$:

$$
\begin{aligned}
\beta(1) & =(123)(145)(1) \\
& =(123)(4) \\
& =4 \\
\beta(2) & =(123)(2) \\
& =3 \\
\beta(3) & =(123)(3) \\
& =1 \\
\beta(4) & =(123)(5) \\
& =5 \\
\beta(5) & =(123)(1) \\
& =2
\end{aligned}
$$

Putting it all together, β is just the 5 -cycle (14523). This means that

$$
\begin{aligned}
\beta^{99} & =\beta^{100} \beta^{-1} \\
& =\left(\beta^{5}\right)^{20} \beta^{-1} \\
& =e \beta^{-1} \\
& =\beta^{-1}
\end{aligned}
$$

However, the inverse of a cycle is also easy to calculate: $\beta^{-1}=(13254)$.This is in disjoint cycle form already, so we are done.
48. Let α and β belong to S_{n}. Prove that $\beta \alpha \beta^{-1}$ and α are both even or both odd.

Solution: Write α as a product of $k 2$-cycles α_{i}, and β as a product of $r 2$-cycles β_{j}. It is easy to check (it follows from the general form of the inverse of a product, and that 2 -cycles are their own inverses) that $\beta^{-1}=\beta_{r} \cdots \beta_{1}$, so it also is a product of $k 2$-cycles. Thus $\beta \alpha \beta^{-1}$ can be written as a product $k+2 r 2$-cycles. $2 r$ is certainly even, so k and $k+2 r$ have the same parity, giving the result.
55. Show that a permutation with odd order must be an even permutation.

Solution: Let σ be such a permutation, so in particular $\sigma^{r}=e$, with r odd. As usual, if we write σ as a product of $k 2$-cycles. Then σ^{r} will be a product of $k r 2$-cycles. But e is an even permutation (for example, $e=(12)(12)$) so $k r$ must be even by the welldefinedness of the parity of a permutation. Since 2 divides $r k$ but not r, the only option is if 2 divides k; ie, k is even. Thus σ is even.

