4.

12.

Math 103 HW 9 Solutions to Selected Problems

Show that U(8) is not isomorphic to U(10).

Solution: Unfortunately, the two groups have the same order: the elements are U(n)
are just the coprime elements of Z,, so U(8) = {1,3,5,7} while U(10) = {1.3.7.9}.
Thus, we must examine the elements further. We claim that U(10) is cyclic. This is
easy to calculate:

3?=9
3% =27

=7
3#*=3.7

=1 (mod 10)

which means 3 generates U(10).

Now if U(10) and U(8) were isomorphic, we have seen that this would mean U(8) was
cyclic as well. In particular, it would have a generator of order 4. However, we can see
that

32=9
=1
52 =25
=1
7% =49
=1 (mod 8)

so every element of U(8) has order dividing 2. Therefore, U(8) is not cyclic, hence is not
isomorphic to U(10).

Let G be a group. Prove that the mapping a(g) = ¢! for all ¢ in G is an
automorphism if and only if G is Abelian.



Solution: « is clearly its own inverse, so it is always a bijective map. The only question
is whether it is a morphism of groups, so it is enough to show this is true if and only if
G is Abelian. If G is Abelian, then certainly

a(gh) = (gh)™

)
11
h

—~

-1 -1

I
0 @ =

(9)a(h)

since we can commute elements, so « is a morphism. On the other hand, by definition
a being a morphism is equivalent to (gh)™* = g~ th~! for every g,h € G. By problem
25 from Homework 4, this implies that G is Abelian. Putting the two together, we have
our result.

17. If G is a group, prove that Aut(G) and Inn(G) are groups.

Solution: We first show that each has an identity. The operation is function composi-
tion, so the identity here is just the identity function idg on GG. This is certainly bijective,
and it is a morphism simply because G is a group. This shows idg € Aut(G). Function
composition is also associative (see Theorem 0.8.1), we know that the composition of
bijective functions is bijective, and it easy to check that the composition of morphisms is
again a morphism !. Thus, Aut(G) is closed under multiplication. It remains to show it
is closed under inversion. We know at least that the function a~! exists for a € Aut(G)
(since bijective is equivalent to invertible). If we let g, h be in G, then

a(gh) = a Hala™ (g))ala™ ()
= o Ya(a " (g)a"!(h))) (since o is a morphism)
=a"'(g)a”(h)

meaning ! is actually in Aut(G). This shows that Aut(G) is a group.

Inn(G) is defined as a subset of Aut(G), so we need not show associativity again. For
any g € G, ege = g, 80 idg = ¢., which is certainly an element of Inn(G). Furthermore,

¢g¢h(x) = ¢g(h$h71)

= ghah™tg™!

= ¢gn()
for each € G, s0 ¢g¢n = Py, is in Inn(G). In particular, this show thats ¢y¢,-1 =

Pg-1g = Pe, the identity, so (¢,) "' = ¢y-1. Thus Inn(G) is closed under multiplication
and taking inverses, and contains the identity, so it is indeed a subgroup of Aut(G).

Ithat is, if @ and B are two morphisms from G to G, a(B(gh)) = «a(B(gh)) = a(B(g9)B(h)) =
a(B(g))e(B(h))
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24.

26.

30.

Let ¢ be an automorphism of a group G. Prove that H = {z € G|¢(x) = z} is
a subgroup of G.

Solution: For any morphism G — G, ¢(e) = e, meaning e € H. Since ¢ is a morphism,
if v,y € H, ¢(xy) = ¢(x)p(y) = xy, so zy € H as well. We also know that ¢(g)~! =
d(g7') for all g € G, so v € H implies ¢p(z71) = ¢(x) ' =275 ie, 71 € H. Thus, H is
a subgroup.

Suppose that ¢ : Zyy — Zy is an automorphism and ¢(5) = 5. What are the
possiblities for ¢(z)?

Solution: Note that since Zy is cyclic, generated by 1, ¢ is completely determined by
o(1): ¢(z) =@(x-1) =z - ¢(1) since ¢ is a morphism. This shows that the morphisms
from Zyy to itself are precisely given by ¢,,(x) = mx for m € Zyy (this is a morphism
because ¢(x + y) = m(x +y) = mx + my). To be an automorphism, it is enough for
dm(1) = m to generate Zy, since for finite sets, surjective implies bijective. This means
that m must be coprime to 20. Let our ¢ be one of these ¢,,. The only other constraint
we have is that ¢(5) = 5 in Zy; that is, bm = 5 (mod 20). But we know this is true if
and only if 20 divides 5m — 5 = 5(m — 1), or in other words 4 divides m — 1. Checking
all the members of Z,, we see that the only m satisfying this condition are m = 1,9,13
and 17, so these are the only possibilities for ¢(x) = ma.

The group { ((1) Cll)

is replaced by R?

a € Z} is isomorphic to what familiar group? What if Z

Solution: Let G be this group (implicit here is that the operation is matrix multiplica-
tion). We claim that G is isomorphic to Z. To this end, we try to use the easiest map

: G — Z possible, given by La = a. This is a morphism because
01

oy D (o Th=a(s T

—
—ol(y $P+ac(p 1))

On the other hand, we can see that ¢ is invertible: if we let ¢ : Z — G, a — <(1) ?>,

then certainly 1 o gb(((l) Cll)) = (é (1Z> and ¢ o(a) = a for all a € Z, so ¢p = ¢~ L.

Thus, ¢ is an isomorphism. Nothing about our proof relied on any properties of Z,
besides that it had an additive structure, so, , replacing Z with R everywhere, it would
work for R as well.
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38. Let
G = {a +bV2| a,b are rational}

a 2b
= 7)
Show that G and H are isomorphic under addition. Prove that G and H are

closed under multiplication. Does your isomorphism preserve multiplication
as well as addition?

and

a,b are rational}.

Z 2@1))) = a + bv/2 (which is in G since a,b €

Q). This is definitely surjective, so we must show it is an injective morphism. Given

CL,b,C,de@,
a 2b c 2d\, a+c 2(b+d)
¢<<b a>+(d c))_¢(<b+d a+c )

= (a+c)+ (b+d)V2
—a+bV2+c+dV2

ol pra(i %))

as desired, hence ¢ is a morphism. As we proved in section 2, ¢ being injective is equiv-

8 8) (the identity in H) for any h € H. In

Z 2;’)) if a,b € Q, a+by2 =0 implies
a = b = 0. Suppose not; then a = —bv/2, so b must not be 0 or else a = 0v/2 = 0.
But then —3 = V2, meaning we can write V2 as the quotient of two rational numbers.
This forces v/2 itself to be rational, as Q is a field (so closed under division by nonzero
clements). However, it is well known (for example, often proved in Math 109) that /2
is irrational, so we must have a = b = 0 after all.

Solution: Define ¢ : H — G by gb((

alent to saying that ¢(h) = 0 implies h = (

other words, we must show that (letting h = (

G is closed under multiplication, as
(a +bV2)(c + dV?2) = ac + 2bd + (ad + be)V2

which is in G since the rationals are closed under multiplication and addition. What’s
more,

a 2b\ (¢ 2d\  [(ac+2bd 2(bc+ ad)

b a)\d c¢) \(bc+ad) ac+2bd
which is in H for the same reasons. This shows that H is closed under multiplication,
and also that ¢ preserves multiplication.

Zand is useful to prove yourself if you didn’t go to section
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44.

95.

64.

Suppose that G is a finite Abelian group and G has no element of order 2.
Show that the mapping g — ¢° is an automorphism of G. Show, by example,
that there is an infinite Abelian group for which the mapping g — ¢? is
one-to-one and operation preserving but not an automorphism.

Solution: Call this map «. Since G is Abelian, a(gh) = ghgh = g?h* Vg, h € G, hence
a is a morphism. Suppose «(g) = e. Then either g = e or g has order 2, so by assump-
tion we must have g = e. By the fact mentioned in the previous problem, this is enough
to show « is injective. As G is finite, injective implies bijective, so « is an automorphism.

Now consider the infinite Abelian group Z. In additive notation, a : Z — Z is de-
fined by a(x) = 2x. We know that every element of Z has infinite order except the
identity, so the proof above still works to show that « is an injective morphism (or we
can just divide the equation 2z = 2y by 2). However, injective does not imply bijective
in this case: the image of « is the even integers, which definitely isn’t all of Z. Therefore,
« is not surjective, and hence cannot be an automorphism.

Let ¢ be an automorphism of C*, the group of nonzero complex numbers
under multiplication. Determine ¢(—1). Determine the possibilities for ¢(i).

Solution: We have seen that isomorphisms preserve orders, and so (—1)* = 1 implies
that ¢(—1) has order 2. What are the elements of order 2 in C*? Such an element—call
it z—must be a solution to 22 — 1 = 0, which factorizes as (x —1)(z+1) = 0. We cannot
have x = 1 since 1 has order 1, so we can divide by (the nonzero) x — 1 to get x+1 = 0;
ie, z = —1. Thus, the only option is ¢(—1) = —1.

Similarly, 2 = —1,7> = —4, and i* = 1, so ¢(i) must have the same order, 4, as i.
The elements of order 4 are solutions in C* to 2* — 1 = 0, which we can factorize as

0=z*-1
(1)@ 4 1)
=(x—1D(x+1)(z—1i)(x+1)

By the same reasoning as above, this means that the elements of order 4 must be +1 or
+i. The former do not have order 4, and —i has order 4 too (for example, because it’s
i), so ¢(i) must be =+i.

Prove that Q, the group of rational numbers under addition, is not isomorphic
to a proper subgroup of itself.

Solution: Let ¢ : Q — H be an isomorphism with a subgroup H of Q. We want to
show that H = Q. However, if z,y are € Z, ¢(x) = z - (1), while ¢({) (if y # 0)
is equal to xqﬁ(i), which—since ¢(1) = ¢(y - i) = ygﬁ(i)—must be £¢(1). This shows
that ¢ is completely determined by ¢(1), and in fact that ¢ is just multiplication by ¢(1).
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¢ is an isomorphism, so in particular it must be injective, with ¢(1) # 0. But then
for any g € Q, ¢(ﬁ) = g, so the image of ¢ is Q. Since im(¢) is contained in H almost
by definition, this forces H = QQ, so H cannot be a proper subgroup.
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