
Math 103 HW 9 Solutions to Selected Problems

4. Show that U(8) is not isomorphic to U(10).

Solution: Unfortunately, the two groups have the same order: the elements are U(n)
are just the coprime elements of Zn, so U(8) = {1, 3, 5, 7} while U(10) = {1.3.7.9}.
Thus, we must examine the elements further. We claim that U(10) is cyclic. This is
easy to calculate:

32 ≡ 9

33 = 27

≡ 7

34 ≡ 3 · 7
≡ 1 (mod 10)

which means 3 generates U(10).

Now if U(10) and U(8) were isomorphic, we have seen that this would mean U(8) was
cyclic as well. In particular, it would have a generator of order 4. However, we can see
that

32 = 9

≡ 1

52 = 25

≡ 1

72 = 49

≡ 1 (mod 8)

so every element of U(8) has order dividing 2. Therefore, U(8) is not cyclic, hence is not
isomorphic to U(10).

12. Let G be a group. Prove that the mapping α(g) = g−1 for all g in G is an
automorphism if and only if G is Abelian.
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Solution: α is clearly its own inverse, so it is always a bijective map. The only question
is whether it is a morphism of groups, so it is enough to show this is true if and only if
G is Abelian. If G is Abelian, then certainly

α(gh) = (gh)−1

= h−1g−1

= g−1h−1

= α(g)α(h)

since we can commute elements, so α is a morphism. On the other hand, by definition
α being a morphism is equivalent to (gh)−1 = g−1h−1 for every g, h ∈ G. By problem
25 from Homework 4, this implies that G is Abelian. Putting the two together, we have
our result.

17. If G is a group, prove that Aut(G) and Inn(G) are groups.

Solution: We first show that each has an identity. The operation is function composi-
tion, so the identity here is just the identity function idG on G. This is certainly bijective,
and it is a morphism simply because G is a group. This shows idG ∈ Aut(G). Function
composition is also associative (see Theorem 0.8.1), we know that the composition of
bijective functions is bijective, and it easy to check that the composition of morphisms is
again a morphism 1. Thus, Aut(G) is closed under multiplication. It remains to show it
is closed under inversion. We know at least that the function α−1 exists for α ∈ Aut(G)
(since bijective is equivalent to invertible). If we let g, h be in G, then

α−1(gh) = α−1(α(α−1(g))α(α−1(h))

= α−1(α(α−1(g)α−1(h))) (since α is a morphism)

= α−1(g)α−1(h)

meaning α−1 is actually in Aut(G). This shows that Aut(G) is a group.

Inn(G) is defined as a subset of Aut(G), so we need not show associativity again. For
any g ∈ G, ege = g, so idG = φe, which is certainly an element of Inn(G). Furthermore,

φgφh(x) = φg(hxh
−1)

= ghxh−1g−1

= φgh(x)

for each x ∈ G, so φgφh = φgh is in Inn(G). In particular, this show thats φgφg−1 =
φg−1φg = φe, the identity, so (φg)

−1 = φg−1 . Thus Inn(G) is closed under multiplication
and taking inverses, and contains the identity, so it is indeed a subgroup of Aut(G).

1that is, if α and β are two morphisms from G to G, α(β(gh)) = α(β(gh)) = α(β(g)β(h)) =
α(β(g))α(β(h))
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24. Let φ be an automorphism of a group G. Prove that H = {x ∈ G|φ(x) = x} is
a subgroup of G.

Solution: For any morphism G→ G, φ(e) = e, meaning e ∈ H. Since φ is a morphism,
if x, y ∈ H, φ(xy) = φ(x)φ(y) = xy, so xy ∈ H as well. We also know that φ(g)−1 =
φ(g−1) for all g ∈ G, so x ∈ H implies φ(x−1) = φ(x)−1 = x−1; ie, x−1 ∈ H. Thus, H is
a subgroup.

26. Suppose that φ : Z20 → Z20 is an automorphism and φ(5) = 5. What are the
possiblities for φ(x)?

Solution: Note that since Z20 is cyclic, generated by 1, φ is completely determined by
φ(1): φ(x) = φ(x · 1) = x · φ(1) since φ is a morphism. This shows that the morphisms
from Z20 to itself are precisely given by φm(x) = mx for m ∈ Z20 (this is a morphism
because φ(x + y) = m(x + y) = mx + my). To be an automorphism, it is enough for
φm(1) = m to generate Z20, since for finite sets, surjective implies bijective. This means
that m must be coprime to 20. Let our φ be one of these φm. The only other constraint
we have is that φ(5) = 5 in Z20; that is, 5m ≡ 5 (mod 20). But we know this is true if
and only if 20 divides 5m− 5 = 5(m− 1), or in other words 4 divides m− 1. Checking
all the members of Z×

20, we see that the only m satisfying this condition are m = 1, 9, 13
and 17, so these are the only possibilities for φ(x) = mx.

30. The group

{(
1 a
0 1

) ∣∣∣∣a ∈ Z
}

is isomorphic to what familiar group? What if Z

is replaced by R?

Solution: Let G be this group (implicit here is that the operation is matrix multiplica-
tion). We claim that G is isomorphic to Z. To this end, we try to use the easiest map

φ : G→ Z possible, given by φ(

(
1 a
0 1

)
) = a. This is a morphism because

φ(

(
1 a
0 1

)
)

(
1 b
0 1

)
) = φ(

(
1 a+ b
0 1

)
)

= a+ b

= φ(

(
1 a
0 1

)
) + φ(

(
1 b
0 1

)
)

On the other hand, we can see that φ is invertible: if we let ψ : Z → G, a 7→
(

1 a
0 1

)
,

then certainly ψ ◦ φ(

(
1 a
0 1

)
) =

(
1 a
0 1

)
and φ ◦ ψ(a) = a for all a ∈ Z, so ψ = φ−1.

Thus, φ is an isomorphism. Nothing about our proof relied on any properties of Z,
besides that it had an additive structure, so, , replacing Z with R everywhere, it would
work for R as well.
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38. Let
G = {a+ b

√
2| a, b are rational}

and

H =

{(
a 2b
b a

) ∣∣∣∣a, b are rational

}
.

Show that G and H are isomorphic under addition. Prove that G and H are
closed under multiplication. Does your isomorphism preserve multiplication
as well as addition?

Solution: Define φ : H → G by φ(

(
a 2b
b a

)
) = a + b

√
2 (which is in G since a, b ∈

Q). This is definitely surjective, so we must show it is an injective morphism. Given
a, b, c, d ∈ Q,

φ(

(
a 2b
b a

)
+

(
c 2d
d c

)
) = φ(

(
a+ c 2(b+ d)
b+ d a+ c

)
= (a+ c) + (b+ d)

√
2

= a+ b
√

2 + c+ d
√

2

= φ(

(
a 2b
b a

)
) + φ(

(
c 2d
d c

)
)

as desired, hence φ is a morphism. As we proved in section 2, φ being injective is equiv-

alent to saying that φ(h) = 0 implies h =

(
0 0
0 0

)
(the identity in H) for any h ∈ H. In

other words, we must show that (letting h =

(
a 2b
b a

)
) if a, b ∈ Q, a+ b

√
2 = 0 implies

a = b = 0. Suppose not; then a = −b
√

2, so b must not be 0 or else a = 0
√

2 = 0.
But then −a

b
=
√

2, meaning we can write
√

2 as the quotient of two rational numbers.

This forces
√

2 itself to be rational, as Q is a field (so closed under division by nonzero
elements). However, it is well known (for example, often proved in Math 109) that

√
2

is irrational, so we must have a = b = 0 after all.

G is closed under multiplication, as

(a+ b
√

2)(c+ d
√

2) = ac+ 2bd+ (ad+ bc)
√

2

which is in G since the rationals are closed under multiplication and addition. What’s
more, (

a 2b
b a

)(
c 2d
d c

)
=

(
ac+ 2bd 2(bc+ ad)
(bc+ ad) ac+ 2bd

)
which is in H for the same reasons. This shows that H is closed under multiplication,
and also that φ preserves multiplication.

2and is useful to prove yourself if you didn’t go to section
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44. Suppose that G is a finite Abelian group and G has no element of order 2.
Show that the mapping g 7→ g2 is an automorphism of G. Show, by example,
that there is an infinite Abelian group for which the mapping g 7→ g2 is
one-to-one and operation preserving but not an automorphism.

Solution: Call this map α. Since G is Abelian, α(gh) = ghgh = g2h2 ∀g, h ∈ G, hence
α is a morphism. Suppose α(g) = e. Then either g = e or g has order 2, so by assump-
tion we must have g = e. By the fact mentioned in the previous problem, this is enough
to show α is injective. As G is finite, injective implies bijective, so α is an automorphism.

Now consider the infinite Abelian group Z. In additive notation, α : Z → Z is de-
fined by α(x) = 2x. We know that every element of Z has infinite order except the
identity, so the proof above still works to show that α is an injective morphism (or we
can just divide the equation 2x = 2y by 2). However, injective does not imply bijective
in this case: the image of α is the even integers, which definitely isn’t all of Z. Therefore,
α is not surjective, and hence cannot be an automorphism.

55. Let φ be an automorphism of C∗, the group of nonzero complex numbers
under multiplication. Determine φ(−1). Determine the possibilities for φ(i).

Solution: We have seen that isomorphisms preserve orders, and so (−1)2 = 1 implies
that φ(−1) has order 2. What are the elements of order 2 in C∗? Such an element—call
it x—must be a solution to x2−1 = 0, which factorizes as (x−1)(x+1) = 0. We cannot
have x = 1 since 1 has order 1, so we can divide by (the nonzero) x− 1 to get x+ 1 = 0;
ie, x = −1. Thus, the only option is φ(−1) = −1.

Similarly, i2 = −1, i3 = −i, and i4 = 1, so φ(i) must have the same order, 4, as i.
The elements of order 4 are solutions in C∗ to x4 − 1 = 0, which we can factorize as

0 = x4 − 1

= (x2 − 1)(x2 + 1)

= (x− 1)(x+ 1)(x− i)(x+ i)

By the same reasoning as above, this means that the elements of order 4 must be ±1 or
±i. The former do not have order 4, and −i has order 4 too (for example, because it’s
i−1), so φ(i) must be ±i.

64. Prove that Q, the group of rational numbers under addition, is not isomorphic
to a proper subgroup of itself.

Solution: Let φ : Q → H be an isomorphism with a subgroup H of Q. We want to
show that H = Q. However, if x, y are ∈ Z, φ(x) = x · φ(1), while φ(x

y
) (if y 6= 0)

is equal to xφ( 1
y
), which—since φ(1) = φ(y · 1

y
) = yφ( 1

y
)—must be x

y
φ(1). This shows

that φ is completely determined by φ(1), and in fact that φ is just multiplication by φ(1).
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φ is an isomorphism, so in particular it must be injective, with φ(1) 6= 0. But then
for any g ∈ Q, φ( g

φ(1)
) = g, so the image of φ is Q. Since im(φ) is contained in H almost

by definition, this forces H = Q, so H cannot be a proper subgroup.

Page 6


