Math 103 HW 9 Solutions to Selected Problems

4. Show that U(8) is not isomorphic to U(10).

Solution: Unfortunately, the two groups have the same order: the elements are U(n) are just the coprime elements of Z_n , so $U(8) = \{1, 3, 5, 7\}$ while $U(10) = \{1.3.7.9\}$. Thus, we must examine the elements further. We claim that U(10) is cyclic. This is easy to calculate:

$$3^{2} \equiv 9$$

$$3^{3} = 27$$

$$\equiv 7$$

$$3^{4} \equiv 3 \cdot 7$$

$$\equiv 1 \pmod{10}$$

which means 3 generates U(10).

Now if U(10) and U(8) were isomorphic, we have seen that this would mean U(8) was cyclic as well. In particular, it would have a generator of order 4. However, we can see that

$$3^{2} = 9$$

$$\equiv 1$$

$$5^{2} = 25$$

$$\equiv 1$$

$$7^{2} = 49$$

$$\equiv 1 \pmod{8}$$

so every element of U(8) has order dividing 2. Therefore, U(8) is not cyclic, hence is not isomorphic to U(10).

12. Let G be a group. Prove that the mapping $\alpha(g) = g^{-1}$ for all g in G is an automorphism if and only if G is Abelian.

Solution: α is clearly its own inverse, so it is always a bijective map. The only question is whether it is a morphism of groups, so it is enough to show this is true if and only if G is Abelian. If G is Abelian, then certainly

$$\begin{aligned} \alpha(gh) &= (gh)^{-1} \\ &= h^{-1}g^{-1} \\ &= g^{-1}h^{-1} \\ &= \alpha(g)\alpha(h) \end{aligned}$$

since we can commute elements, so α is a morphism. On the other hand, by definition α being a morphism is equivalent to $(gh)^{-1} = g^{-1}h^{-1}$ for every $g, h \in G$. By problem 25 from Homework 4, this implies that G is Abelian. Putting the two together, we have our result.

17. If G is a group, prove that Aut(G) and Inn(G) are groups.

Solution: We first show that each has an identity. The operation is function composition, so the identity here is just the identity function id_G on G. This is certainly bijective, and it is a morphism simply because G is a group. This shows $id_G \in Aut(G)$. Function composition is also associative (see Theorem 0.8.1), we know that the composition of bijective functions is bijective, and it easy to check that the composition of morphisms is again a morphism ¹. Thus, Aut(G) is closed under multiplication. It remains to show it is closed under inversion. We know at least that the function α^{-1} exists for $\alpha \in Aut(G)$ (since bijective is equivalent to invertible). If we let g, h be in G, then

$$\begin{aligned} \alpha^{-1}(gh) &= \alpha^{-1}(\alpha(\alpha^{-1}(g))\alpha(\alpha^{-1}(h))) \\ &= \alpha^{-1}(\alpha(\alpha^{-1}(g)\alpha^{-1}(h))) \text{ (since } \alpha \text{ is a morphism)} \\ &= \alpha^{-1}(g)\alpha^{-1}(h) \end{aligned}$$

meaning α^{-1} is actually in Aut(G). This shows that Aut(G) is a group.

Inn(G) is defined as a subset of Aut(G), so we need not show associativity again. For any $g \in G$, ege = g, so $id_G = \phi_e$, which is certainly an element of Inn(G). Furthermore,

$$\phi_g \phi_h(x) = \phi_g(hxh^{-1})$$
$$= ghxh^{-1}g^{-1}$$
$$= \phi_{gh}(x)$$

for each $x \in G$, so $\phi_g \phi_h = \phi_{gh}$ is in Inn(G). In particular, this show thats $\phi_g \phi_{g^{-1}} = \phi_{g^{-1}} \phi_g = \phi_e$, the identity, so $(\phi_g)^{-1} = \phi_{g^{-1}}$. Thus Inn(G) is closed under multiplication and taking inverses, and contains the identity, so it is indeed a subgroup of Aut(G).

¹that is, if α and β are two morphisms from G to G, $\alpha(\beta(gh)) = \alpha(\beta(gh)) = \alpha(\beta(g)\beta(h)) = \alpha(\beta(g)\beta(h))$

24. Let ϕ be an automorphism of a group G. Prove that $H = \{x \in G | \phi(x) = x\}$ is a subgroup of G.

Solution: For any morphism $G \to G$, $\phi(e) = e$, meaning $e \in H$. Since ϕ is a morphism, if $x, y \in H$, $\phi(xy) = \phi(x)\phi(y) = xy$, so $xy \in H$ as well. We also know that $\phi(g)^{-1} = \phi(g^{-1})$ for all $g \in G$, so $x \in H$ implies $\phi(x^{-1}) = \phi(x)^{-1} = x^{-1}$; ie, $x^{-1} \in H$. Thus, H is a subgroup.

26. Suppose that $\phi: Z_{20} \to Z_{20}$ is an automorphism and $\phi(5) = 5$. What are the possiblities for $\phi(x)$?

Solution: Note that since Z_{20} is cyclic, generated by 1, ϕ is completely determined by $\phi(1)$: $\phi(x) = \phi(x \cdot 1) = x \cdot \phi(1)$ since ϕ is a morphism. This shows that the morphisms from Z_{20} to itself are precisely given by $\phi_m(x) = mx$ for $m \in Z_{20}$ (this is a morphism because $\phi(x + y) = m(x + y) = mx + my$). To be an automorphism, it is enough for $\phi_m(1) = m$ to generate Z_{20} , since for finite sets, surjective implies bijective. This means that m must be coprime to 20. Let our ϕ be one of these ϕ_m . The only other constraint we have is that $\phi(5) = 5$ in Z_{20} ; that is, $5m \equiv 5 \pmod{20}$. But we know this is true if and only if 20 divides 5m - 5 = 5(m - 1), or in other words 4 divides m - 1. Checking all the members of Z_{20}^{\times} , we see that the only m satisfying this condition are m = 1, 9, 13 and 17, so these are the only possibilities for $\phi(x) = mx$.

30. The group $\left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \middle| a \in \mathbb{Z} \right\}$ is isomorphic to what familiar group? What if \mathbb{Z} is replaced by \mathbb{R} ?

Solution: Let G be this group (implicit here is that the operation is matrix multiplication). We claim that G is isomorphic to Z. To this end, we try to use the easiest map $\phi: G \to \mathbb{Z}$ possible, given by $\phi\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} = a$. This is a morphism because

$$\phi\begin{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} = \phi\begin{pmatrix} \begin{pmatrix} 1 & a + b \\ 0 & 1 \end{pmatrix} = a + b$$
$$= \phi\begin{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} + \phi\begin{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$$

On the other hand, we can see that ϕ is invertible: if we let $\psi : \mathbb{Z} \to G$, $a \mapsto \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$, then certainly $\psi \circ \phi(\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ and $\phi \circ \psi(a) = a$ for all $a \in \mathbb{Z}$, so $\psi = \phi^{-1}$. Thus, ϕ is an isomorphism. Nothing about our proof relied on any properties of \mathbb{Z} , besides that it had an additive structure, so, , replacing \mathbb{Z} with \mathbb{R} everywhere, it would work for \mathbb{R} as well. 38. Let

$$G = \{a + b\sqrt{2} | a, b \text{ are rational}\}$$

and

$$H = \left\{ \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} \middle| a, b \text{ are rational} \right\}.$$

Show that G and H are isomorphic under addition. Prove that G and H are closed under multiplication. Does your isomorphism preserve multiplication as well as addition?

Solution: Define $\phi : H \to G$ by $\phi(\begin{pmatrix} a & 2b \\ b & a \end{pmatrix}) = a + b\sqrt{2}$ (which is in G since $a, b \in \mathbb{Q}$). This is definitely surjective, so we must show it is an injective morphism. Given $a, b, c, d \in \mathbb{Q}$,

$$\phi\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} + \begin{pmatrix} c & 2d \\ d & c \end{pmatrix} = \phi\begin{pmatrix} a+c & 2(b+d) \\ b+d & a+c \end{pmatrix}$$
$$= (a+c) + (b+d)\sqrt{2}$$
$$= a+b\sqrt{2}+c+d\sqrt{2}$$
$$= \phi\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} + \phi\begin{pmatrix} c & 2d \\ d & c \end{pmatrix}$$

as desired, hence ϕ is a morphism. As we proved in section ², ϕ being injective is equivalent to saying that $\phi(h) = 0$ implies $h = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ (the identity in H) for any $h \in H$. In other words, we must show that (letting $h = \begin{pmatrix} a & 2b \\ b & a \end{pmatrix}$) if $a, b \in \mathbb{Q}$, $a + b\sqrt{2} = 0$ implies a = b = 0. Suppose not; then $a = -b\sqrt{2}$, so b must not be 0 or else $a = 0\sqrt{2} = 0$. But then $-\frac{a}{b} = \sqrt{2}$, meaning we can write $\sqrt{2}$ as the quotient of two rational numbers. This forces $\sqrt{2}$ itself to be rational, as \mathbb{Q} is a field (so closed under division by nonzero elements). However, it is well known (for example, often proved in Math 109) that $\sqrt{2}$ is irrational, so we must have a = b = 0 after all.

G is closed under multiplication, as

$$(a+b\sqrt{2})(c+d\sqrt{2}) = ac+2bd+(ad+bc)\sqrt{2}$$

which is in G since the rationals are closed under multiplication and addition. What's more,

$$\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} \begin{pmatrix} c & 2d \\ d & c \end{pmatrix} = \begin{pmatrix} ac+2bd & 2(bc+ad) \\ (bc+ad) & ac+2bd \end{pmatrix}$$

which is in H for the same reasons. This shows that H is closed under multiplication, and also that ϕ preserves multiplication.

²and is useful to prove yourself if you didn't go to section

44. Suppose that G is a finite Abelian group and G has no element of order 2. Show that the mapping $g \mapsto g^2$ is an automorphism of G. Show, by example, that there is an infinite Abelian group for which the mapping $g \mapsto g^2$ is one-to-one and operation preserving but not an automorphism.

Solution: Call this map α . Since G is Abelian, $\alpha(gh) = ghgh = g^2h^2 \ \forall g, h \in G$, hence α is a morphism. Suppose $\alpha(g) = e$. Then either g = e or g has order 2, so by assumption we must have g = e. By the fact mentioned in the previous problem, this is enough to show α is injective. As G is finite, injective implies bijective, so α is an automorphism.

Now consider the infinite Abelian group \mathbb{Z} . In additive notation, $\alpha : \mathbb{Z} \to \mathbb{Z}$ is defined by $\alpha(x) = 2x$. We know that every element of \mathbb{Z} has infinite order except the identity, so the proof above still works to show that α is an injective morphism (or we can just divide the equation 2x = 2y by 2). However, injective does not imply bijective in this case: the image of α is the even integers, which definitely isn't all of \mathbb{Z} . Therefore, α is not surjective, and hence cannot be an automorphism.

55. Let ϕ be an automorphism of \mathbb{C}^* , the group of nonzero complex numbers under multiplication. Determine $\phi(-1)$. Determine the possibilities for $\phi(i)$.

Solution: We have seen that isomorphisms preserve orders, and so $(-1)^2 = 1$ implies that $\phi(-1)$ has order 2. What are the elements of order 2 in \mathbb{C}^* ? Such an element—call it *x*—must be a solution to $x^2 - 1 = 0$, which factorizes as (x-1)(x+1) = 0. We cannot have x = 1 since 1 has order 1, so we can divide by (the nonzero) x - 1 to get x + 1 = 0; ie, x = -1. Thus, the only option is $\phi(-1) = -1$.

Similarly, $i^2 = -1$, $i^3 = -i$, and $i^4 = 1$, so $\phi(i)$ must have the same order, 4, as *i*. The elements of order 4 are solutions in \mathbb{C}^* to $x^4 - 1 = 0$, which we can factorize as

$$0 = x^{4} - 1$$

= $(x^{2} - 1)(x^{2} + 1)$
= $(x - 1)(x + 1)(x - i)(x + i)$

By the same reasoning as above, this means that the elements of order 4 must be ± 1 or $\pm i$. The former do not have order 4, and -i has order 4 too (for example, because it's i^{-1}), so $\phi(i)$ must be $\pm i$.

64. Prove that Q, the group of rational numbers under addition, is not isomorphic to a proper subgroup of itself.

Solution: Let $\phi : \mathbb{Q} \to H$ be an isomorphism with a subgroup H of \mathbb{Q} . We want to show that $H = \mathbb{Q}$. However, if x, y are $\in \mathbb{Z}$, $\phi(x) = x \cdot \phi(1)$, while $\phi(\frac{x}{y})$ (if $y \neq 0$) is equal to $x\phi(\frac{1}{y})$, which—since $\phi(1) = \phi(y \cdot \frac{1}{y}) = y\phi(\frac{1}{y})$ —must be $\frac{x}{y}\phi(1)$. This shows that ϕ is completely determined by $\phi(1)$, and in fact that ϕ is just multiplication by $\phi(1)$.

 ϕ is an isomorphism, so in particular it must be injective, with $\phi(1) \neq 0$. But then for any $g \in \mathbb{Q}$, $\phi(\frac{g}{\phi(1)}) = g$, so the image of ϕ is \mathbb{Q} . Since $im(\phi)$ is contained in H almost by definition, this forces $H = \mathbb{Q}$, so H cannot be a proper subgroup.