Math 103 HW 9 Solutions to Selected Problems

4. Show that $U(8)$ is not isomorphic to $U(10)$.

Solution: Unfortunately, the two groups have the same order: the elements are $U(n)$ are just the coprime elements of Z_{n}, so $U(8)=\{1,3,5,7\}$ while $U(10)=\{1.3 .7 .9\}$. Thus, we must examine the elements further. We claim that $U(10)$ is cyclic. This is easy to calculate:

$$
\begin{aligned}
3^{2} & \equiv 9 \\
3^{3} & =27 \\
& \equiv 7 \\
3^{4} & \equiv 3 \cdot 7 \\
& \equiv 1(\bmod 10)
\end{aligned}
$$

which means 3 generates $U(10)$.

Now if $U(10)$ and $U(8)$ were isomorphic, we have seen that this would mean $U(8)$ was cyclic as well. In particular, it would have a generator of order 4 . However, we can see that

$$
\begin{aligned}
3^{2} & =9 \\
& \equiv 1 \\
5^{2} & =25 \\
& \equiv 1 \\
7^{2} & =49 \\
& \equiv 1(\bmod 8)
\end{aligned}
$$

so every element of $U(8)$ has order dividing 2 . Therefore, $U(8)$ is not cyclic, hence is not isomorphic to $U(10)$.
12. Let G be a group. Prove that the mapping $\alpha(g)=g^{-1}$ for all g in G is an automorphism if and only if G is Abelian.

Solution: α is clearly its own inverse, so it is always a bijective map. The only question is whether it is a morphism of groups, so it is enough to show this is true if and only if G is Abelian. If G is Abelian, then certainly

$$
\begin{aligned}
\alpha(g h) & =(g h)^{-1} \\
& =h^{-1} g^{-1} \\
& =g^{-1} h^{-1} \\
& =\alpha(g) \alpha(h)
\end{aligned}
$$

since we can commute elements, so α is a morphism. On the other hand, by definition α being a morphism is equivalent to $(g h)^{-1}=g^{-1} h^{-1}$ for every $g, h \in G$. By problem 25 from Homework 4, this implies that G is Abelian. Putting the two together, we have our result.

17. If G is a group, prove that $\operatorname{Aut}(G)$ and $\operatorname{Inn}(G)$ are groups.

Solution: We first show that each has an identity. The operation is function composition, so the identity here is just the identity function $i d_{G}$ on G. This is certainly bijective, and it is a morphism simply because G is a group. This shows $i d_{G} \in \operatorname{Aut}(G)$. Function composition is also associative (see Theorem 0.8.1), we know that the composition of bijective functions is bijective, and it easy to check that the composition of morphisms is again a morphism ${ }^{1}$. Thus, $\operatorname{Aut}(G)$ is closed under multiplication. It remains to show it is closed under inversion. We know at least that the function α^{-1} exists for $\alpha \in \operatorname{Aut}(G)$ (since bijective is equivalent to invertible). If we let g, h be in G, then

$$
\begin{aligned}
& \alpha^{-1}(g h)=\alpha^{-1}\left(\alpha\left(\alpha^{-1}(g)\right) \alpha\left(\alpha^{-1}(h)\right)\right. \\
& =\alpha^{-1}\left(\alpha\left(\alpha^{-1}(g) \alpha^{-1}(h)\right)\right) \text { (since } \alpha \text { is a morphism) } \\
& =\alpha^{-1}(g) \alpha^{-1}(h)
\end{aligned}
$$

meaning α^{-1} is actually in $\operatorname{Aut}(G)$. This shows that $\operatorname{Aut}(G)$ is a group.
$\operatorname{Inn}(G)$ is defined as a subset of $\operatorname{Aut}(G)$, so we need not show associativity again. For any $g \in G$, ege $=g$, so $i d_{G}=\phi_{e}$, which is certainly an element of $\operatorname{Inn}(G)$. Furthermore,

$$
\begin{aligned}
\phi_{g} \phi_{h}(x) & =\phi_{g}\left(h x h^{-1}\right) \\
& =g h x h^{-1} g^{-1} \\
& =\phi_{g h}(x)
\end{aligned}
$$

for each $x \in G$, so $\phi_{g} \phi_{h}=\phi_{g h}$ is in $\operatorname{Inn}(G)$. In particular, this show thats $\phi_{g} \phi_{g^{-1}}=$ $\phi_{g^{-1}} \phi_{g}=\phi_{e}$, the identity, so $\left(\phi_{g}\right)^{-1}=\phi_{g^{-1}}$. Thus $\operatorname{Inn}(G)$ is closed under multiplication and taking inverses, and contains the identity, so it is indeed a subgroup of $\operatorname{Aut}(G)$.

[^0]24. Let ϕ be an automorphism of a group G. Prove that $H=\{x \in G \mid \phi(x)=x\}$ is a subgroup of G.

Solution: For any morphism $G \rightarrow G, \phi(e)=e$, meaning $e \in H$. Since ϕ is a morphism, if $x, y \in H, \phi(x y)=\phi(x) \phi(y)=x y$, so $x y \in H$ as well. We also know that $\phi(g)^{-1}=$ $\phi\left(g^{-1}\right)$ for all $g \in G$, so $x \in H$ implies $\phi\left(x^{-1}\right)=\phi(x)^{-1}=x^{-1}$; ie, $x^{-1} \in H$. Thus, H is a subgroup.
26. Suppose that $\phi: Z_{20} \rightarrow Z_{20}$ is an automorphism and $\phi(5)=5$. What are the possiblities for $\phi(x)$?

Solution: Note that since Z_{20} is cyclic, generated by $1, \phi$ is completely determined by $\phi(1): \phi(x)=\phi(x \cdot 1)=x \cdot \phi(1)$ since ϕ is a morphism. This shows that the morphisms from Z_{20} to itself are precisely given by $\phi_{m}(x)=m x$ for $m \in Z_{20}$ (this is a morphism because $\phi(x+y)=m(x+y)=m x+m y)$. To be an automorphism, it is enough for $\phi_{m}(1)=m$ to generate Z_{20}, since for finite sets, surjective implies bijective. This means that m must be coprime to 20 . Let our ϕ be one of these ϕ_{m}. The only other constraint we have is that $\phi(5)=5$ in Z_{20}; that is, $5 m \equiv 5(\bmod 20)$. But we know this is true if and only if 20 divides $5 m-5=5(m-1)$, or in other words 4 divides $m-1$. Checking all the members of Z_{20}^{\times}, we see that the only m satisfying this condition are $m=1,9,13$ and 17 , so these are the only possibilities for $\phi(x)=m x$.
30. The group $\left\{\left.\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right) \right\rvert\, a \in \mathbb{Z}\right\}$ is isomorphic to what familiar group? What if \mathbb{Z} is replaced by \mathbb{R} ?

Solution: Let G be this group (implicit here is that the operation is matrix multiplication). We claim that G is isomorphic to \mathbb{Z}. To this end, we try to use the easiest map $\phi: G \rightarrow \mathbb{Z}$ possible, given by $\phi\left(\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)\right)=a$. This is a morphism because

$$
\begin{aligned}
\phi\left(\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)\right)\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) & =\phi\left(\left(\begin{array}{cc}
1 & a+b \\
0 & 1
\end{array}\right)\right) \\
& =a+b \\
& =\phi\left(\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)\right)+\phi\left(\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\right)
\end{aligned}
$$

On the other hand, we can see that ϕ is invertible: if we let $\psi: \mathbb{Z} \rightarrow G, a \mapsto\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$, then certainly $\psi \circ \phi\left(\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)\right)=\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$ and $\phi \circ \psi(a)=a$ for all $a \in \mathbb{Z}$, so $\psi=\phi^{-1}$. Thus, ϕ is an isomorphism. Nothing about our proof relied on any properties of \mathbb{Z}, besides that it had an additive structure, so, , replacing \mathbb{Z} with \mathbb{R} everywhere, it would work for \mathbb{R} as well.
38. Let

$$
G=\{a+b \sqrt{2} \mid a, b \text { are rational }\}
$$

and

$$
H=\left\{\left.\left(\begin{array}{cc}
a & 2 b \\
b & a
\end{array}\right) \right\rvert\, a, b \text { are rational }\right\} .
$$

Show that G and H are isomorphic under addition. Prove that G and H are closed under multiplication. Does your isomorphism preserve multiplication as well as addition?

Solution: Define $\phi: H \rightarrow G$ by $\phi\left(\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)\right)=a+b \sqrt{2}$ (which is in G since $a, b \in$ $\mathbb{Q})$. This is definitely surjective, so we must show it is an injective morphism. Given $a, b, c, d \in \mathbb{Q}$,

$$
\begin{aligned}
\phi\left(\left(\begin{array}{cc}
a & 2 b \\
b & a
\end{array}\right)+\left(\begin{array}{cc}
c & 2 d \\
d & c
\end{array}\right)\right) & =\phi\left(\left(\begin{array}{cc}
a+c & 2(b+d) \\
b+d & a+c
\end{array}\right)\right. \\
& =(a+c)+(b+d) \sqrt{2} \\
& =a+b \sqrt{2}+c+d \sqrt{2} \\
& =\phi\left(\left(\begin{array}{cc}
a & 2 b \\
b & a
\end{array}\right)\right)+\phi\left(\left(\begin{array}{cc}
c & 2 d \\
d & c
\end{array}\right)\right)
\end{aligned}
$$

as desired, hence ϕ is a morphism. As we proved in section ${ }^{2}, \phi$ being injective is equivalent to saying that $\phi(h)=0$ implies $h=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ (the identity in H) for any $h \in H$. In other words, we must show that (letting $h=\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)$) if $a, b \in \mathbb{Q}, a+b \sqrt{2}=0$ implies $a=b=0$. Suppose not; then $a=-b \sqrt{2}$, so b must not be 0 or else $a=0 \sqrt{2}=0$. But then $-\frac{a}{b}=\sqrt{2}$, meaning we can write $\sqrt{2}$ as the quotient of two rational numbers. This forces $\sqrt{2}$ itself to be rational, as \mathbb{Q} is a field (so closed under division by nonzero elements). However, it is well known (for example, often proved in Math 109) that $\sqrt{2}$ is irrational, so we must have $a=b=0$ after all.
G is closed under multiplication, as

$$
(a+b \sqrt{2})(c+d \sqrt{2})=a c+2 b d+(a d+b c) \sqrt{2}
$$

which is in G since the rationals are closed under multiplication and addition. What's more,

$$
\left(\begin{array}{cc}
a & 2 b \\
b & a
\end{array}\right)\left(\begin{array}{cc}
c & 2 d \\
d & c
\end{array}\right)=\left(\begin{array}{cc}
a c+2 b d & 2(b c+a d) \\
(b c+a d) & a c+2 b d
\end{array}\right)
$$

which is in H for the same reasons. This shows that H is closed under multiplication, and also that ϕ preserves multiplication.

[^1]44. Suppose that G is a finite Abelian group and G has no element of order 2. Show that the mapping $g \mapsto g^{2}$ is an automorphism of G. Show, by example, that there is an infinite Abelian group for which the mapping $g \mapsto g^{2}$ is one-to-one and operation preserving but not an automorphism.

Solution: Call this map α. Since G is Abelian, $\alpha(g h)=g h g h=g^{2} h^{2} \forall g, h \in G$, hence α is a morphism. Suppose $\alpha(g)=e$. Then either $g=e$ or g has order 2, so by assumption we must have $g=e$. By the fact mentioned in the previous problem, this is enough to show α is injective. As G is finite, injective implies bijective, so α is an automorphism.

Now consider the infinite Abelian group \mathbb{Z}. In additive notation, $\alpha: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by $\alpha(x)=2 x$. We know that every element of \mathbb{Z} has infinite order except the identity, so the proof above still works to show that α is an injective morphism (or we can just divide the equation $2 x=2 y$ by 2). However, injective does not imply bijective in this case: the image of α is the even integers, which definitely isn't all of \mathbb{Z}. Therefore, α is not surjective, and hence cannot be an automorphism.
55. Let ϕ be an automorphism of \mathbb{C}^{*}, the group of nonzero complex numbers under multiplication. Determine $\phi(-1)$. Determine the possibilities for $\phi(i)$.

Solution: We have seen that isomorphisms preserve orders, and so $(-1)^{2}=1$ implies that $\phi(-1)$ has order 2 . What are the elements of order 2 in \mathbb{C}^{*} ? Such an element - call it x-must be a solution to $x^{2}-1=0$, which factorizes as $(x-1)(x+1)=0$. We cannot have $x=1$ since 1 has order 1 , so we can divide by (the nonzero) $x-1$ to get $x+1=0$; ie, $x=-1$. Thus, the only option is $\phi(-1)=-1$.

Similarly, $i^{2}=-1, i^{3}=-i$, and $i^{4}=1$, so $\phi(i)$ must have the same order, 4 , as i. The elements of order 4 are solutions in \mathbb{C}^{*} to $x^{4}-1=0$, which we can factorize as

$$
\begin{aligned}
0 & =x^{4}-1 \\
& =\left(x^{2}-1\right)\left(x^{2}+1\right) \\
& =(x-1)(x+1)(x-i)(x+i)
\end{aligned}
$$

By the same reasoning as above, this means that the elements of order 4 must be ± 1 or $\pm i$. The former do not have order 4 , and $-i$ has order 4 too (for example, because it's i^{-1}, so $\phi(i)$ must be $\pm i$.
64. Prove that \mathbb{Q}, the group of rational numbers under addition, is not isomorphic to a proper subgroup of itself.

Solution: Let $\phi: \mathbb{Q} \rightarrow H$ be an isomorphism with a subgroup H of \mathbb{Q}. We want to show that $H=\mathbb{Q}$. However, if x, y are $\in \mathbb{Z}, \phi(x)=x \cdot \phi(1)$, while $\phi\left(\frac{x}{y}\right)($ if $y \neq 0)$ is equal to $x \phi\left(\frac{1}{y}\right)$, which-since $\phi(1)=\phi\left(y \cdot \frac{1}{y}\right)=y \phi\left(\frac{1}{y}\right)$-must be $\frac{x}{y} \phi(1)$. This shows that ϕ is completely determined by $\phi(1)$, and in fact that ϕ is just multiplication by $\phi(1)$.
ϕ is an isomorphism, so in particular it must be injective, with $\phi(1) \neq 0$. But then for any $g \in \mathbb{Q}, \phi\left(\frac{g}{\phi(1)}\right)=g$, so the image of ϕ is \mathbb{Q}. Since $\operatorname{im}(\phi)$ is contained in H almost by definition, this forces $H=\mathbb{Q}$, so H cannot be a proper subgroup.

[^0]: ${ }^{1}$ that is, if α and β are two morphisms from G to $G, \alpha(\beta(g h))=\alpha(\beta(g h))=\alpha(\beta(g) \beta(h))=$ $\alpha(\beta(g)) \alpha(\beta(h))$

[^1]: ${ }^{2}$ and is useful to prove yourself if you didn't go to section

