MR1691163 (2000m:11115)

Popescu, Cristian D. (1-TX)

On a refined Stark conjecture for function fields. (English summary)

11R58 (11R27 11R29 11R42 19F27)

FEA TURED REVIEW.

The zeta-function \(\zeta_K(s) \) of a number field \(K \) has a zero of order \(r(K) = r_1 + r_2 - 1 \) at \(s = 0 \), \(r_1 \) and \(r_2 \) being respectively the number of real and complex places of \(K \). In fact, Dedekind’s evaluation of the residue of \(\zeta_K(s) \) at \(s = 1 \) together with the functional equation implies \(\zeta_K(s) = - (h_K R_K/w_K) s^{r(K)} + O(s^{r_1 + r_2}) \), where \(h_K \), \(R_K \), and \(w_K \) are the class number, the regulator, and the number of roots of unity of \(K \). The appearance of \(R_K \) in this equality is of particular interest because \(R_K \) is an \(r(K) \times r(K) \) determinant of logarithms of absolute values of units \(\varepsilon \in K \). The leading term in the Taylor expansion of \(\zeta_K(s) \) at \(s = 0 \) therefore encapsulates information about elements of \(K \).

Let \(K/k \) be an abelian extension of number fields with Galois group \(G \). By class field theory, \(K/k \) is determined by arithmetic invariants in the ring of integers of \(k \). However, the proofs of class field theory do not provide efficient algorithms for constructing \(K \) out of these invariants. Hilbert asked in Problem #12 of his famous list if special values of analytic functions, defined by arithmetic information in completions of \(k \), might generate \(K \). If this is possible in the completion \(k_v \) at a place \(v \) of \(k \), then we expect \(K \subset k_v \), and so \(v \) should split in \(K/k \).

The identity \(\zeta_K(s) = \prod_{\chi \in \hat{G}} L(s, \chi) \) factors the zeta-function of \(K \) as a product of \(L \)-functions that are defined over \(k \) by the same arithmetic invariants that determine \(K \) as a class field. In a series of papers [Advances in Math. 7 (1971), 301–343 (1971); MR0289429 (44 #6620); Advances in Math. 17 (1975), no. 1, 60–92; MR0382194 (52 #3082); Advances in Math. 22 (1976), no. 1, 64–84; MR0437501 (55 #10427); Adv. in Math. 35 (1980), no. 3, 197–235; MR0563924 (81f:10054)]. H. Stark proposed conjectures detailing how the leading terms of the Taylor series of these \(L \)-functions at \(s = 0 \) encapsulate information about \(S \)-units of \(K \), \(S \) being any finite set of \(k \)-places containing the Archimedean places and all places that ramify in \(K/k \). The conjectures
apply most naturally to the imprimitive functions $\zeta_{K,S}(s)$ and $L_S(s, \chi)$ obtained by removing Euler factors over S. If $r(\chi)$ is the order of vanishing of $L_S(s, \chi)$ at $s = 0$, then $L_S(s, \chi) = L(\chi) \cdot s^{r(\chi)} + O(s^{r(\chi)+1})$ defines a complex number $L(\chi) \neq 0$. Loosely speaking, Stark constructed an $r(\chi) \times r(\chi)$ determinant of \mathbb{Q}-linear forms in $\log |\varepsilon|_w$, the ε’s being S-units of K and the w’s in the set S_K of K-places dividing a place in S, and he conjectured that $L(\chi)/R(\chi) \in \mathbb{Q}(\chi)$, the subfield of \mathbb{C} generated by the values of χ.

When the minimal value of the $r(\chi)$ is unity and S contains a distinguished split place v, Stark formulated a precise conjecture that identifies the linear form $R(\chi)$ in terms of an S-unit $\varepsilon_v \in K$ and its conjugates under G. Stark identified the denominator in $\mathbb{Q}(\chi)$ as w_K, and he conjectured that $K(\varepsilon^{1/w_K})/K$ is abelian. This “first order zero” conjecture implies an algorithm, currently implemented in PARI, for constructing K when k is totally real. J. T. Tate, [Les conjectures de Stark sur les fonctions L d’Artin en $s = 0$. Lecture notes edited by Dominique Bernardi and Norbert Schappacher, Progr. Math., 47, Birkhäuser Boston, Boston, MA, 1984; MR0782485 (86e:11112)(Chapter V)] applied the l-adic cohomological interpretation of L-functions to prove this conjecture in function fields.

In the paper under review, Popescu proves Rubin’s conjecture in function fields over \mathbb{F}_q up to primes dividing g. He invokes the l-adic étale cohomology for every prime l, as well as crystalline p-adic cohomology at the characteristic p of \mathbb{F}_q. Popescu proceeds by first proving a strong form of the conjecture over $\mathbb{Z}[1/g]$ for the case $r = 0$. Using functorial properties, he then finds a unique element in $\mathbb{Z}[1/g] \text{Fitt}_{\mathbb{Z}[G]}[A_{S,T}] \cdot \Lambda_{S,T}$ satisfying the conjecture for any $r \geq 0$. Here, $A_{S,T}$ is the S-class group of K trivialized along T. His techniques involve tensoring the l-adic [resp. crystalline] cohomology with \mathbb{C}_l [resp. \mathbb{C}_p] and then decomposing into χ-components. When K/k is a constant field extension, Popescu proves a stronger form of the full conjecture.

These results provide the first extensive non-classical evidence for Rubin’s conjecture for arbitrary r.

{See also the following review [MR1711315 (2000m:11116)].}

Reviewed by David R. Hayes
[References]

16. Tate, J.: On Stark’s conjecture on the behaviour of $L(s, \chi)$ at $s = 0$, J. Fac. Sci. Univ. Tokyo 28 (1982), 963–978. MR0656067 (83m:12018a)
17. Tate, J.: Les Conjectures de Stark sur les Fonctions L d’Artin en $s = 0$, Progr. in Math. 47, Birkhauser, Boston, 1984. MR0782485 (86e:11112)

© Copyright American Mathematical Society 2000, 2004