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Abstract In this article, we explore a beautiful idea of Skinner and Wiles in the context of GSp(4)
over a totally real field. The main result provides congruences between automorphic forms which are
Iwahori-spherical at a certain place w, and forms with a tamely ramified principal series at w. Thus,
after base change to a finite solvable totally real extension, one can often lower the level at w. For the
proof, we first establish an analogue of the Jacquet–Langlands correspondence, using the stable trace
formula. The congruences are then obtained on inner forms, which are compact at infinity modulo the
centre, and split at all the finite places. The crucial ingredient allowing us to do so, is an important
result of Roche on types for principal series representations of split reductive groups.
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1. Introduction

Throughout, we fix embeddings i∞ : Q̄ → C and i� : Q̄ → Q̄� for each prime �.
In Wiles’s proof of Fermat’s Last Theorem [41], it is shown that certain elliptic curves

E over Q are modular : for some/every prime �, the Galois representation

ρE,� : Gal(Q̄/Q) → GL(V�(E)), V�(E) = Q� ⊗Z�
lim
←−

E[�n]

on the Tate module is isomorphic to ρf,� for some weight 2 newform f on Γ0(N). Here
ρf,� is the �-adic representation attached to f , constructed by Eichler and Shimura. It can
be realized on the Tate module of a certain quotient of the Jacobian of the modular curve
X0(N). By an ingenious trick, for the proof of modularity, one may assume that � = 3
and that the reduction ρ̄E,3 is irreducible. This is done by the 3 ↔ 5 switch. Suppose
ρ̄E,3 is reducible. Then the mod 5 representation ρ̄E,5 must be irreducible since there are
no Galois invariant subgroups in E of order 15. One can then construct another elliptic
curve E , with the same mod 5 representation, such that ρ̄E,3 is irreducible. Assuming
ρ̄E,3 is irreducible, the proof of modularity is divided into two steps.

Residual modularity: ρ̄E,3 is modular.

Modularity lifting: ρ̄E,� modular =⇒ ρE,� modular.



596 C. M. Sorensen

The first step is essentially a theorem of Langlands and Tunnell. The point is that ρ̄E,3

has solvable image, so one can use the theory of base change for GL2 to get the result.
The second step is more involved. We assume ρ̄E,� is irreducible, and denote it by ρ̄.
For an arbitrary finite set of primes Σ, we introduce the universal deformation ring RΣ

classifying all deformations of ρ̄, which are well behaved outside Σ. In particular, such
deformations are unramified at primes outside Σ where ρ̄ is unramified. In addition we
have TΣ , the universal modular deformation ring. It is essentially a localization of some
Hecke algebra, classifying all modular deformations of ρ̄ well behaved outside Σ. It is well
defined, at least for large Σ, exactly because we assume ρ̄ has some modular deformation.
By universality, there is a natural surjection from RΣ onto TΣ . The key to step two is
to show that this map is an isomorphism:

RΣ
∼−→ TΣ .

Wiles gave a numerical criterion for this to be an isomorphism: a certain Selmer group
and a certain congruence module should have the same size. Using ideas of Ribet [26]
on level-raising, one shows that the sizes of these objects increase in exactly the same
way when we add a prime to Σ. Consequently, it suffices to get an isomorphism in the
minimal case where Σ = ∅. However, it is not clear at all that T∅ is well defined: does
ρ̄ have a minimal modular deformation? What is needed is level-lowering congruences.
For example, suppose we have

f ∈ S2(Γ0(Np)), ρ̄f,� unramified at p,

where p � N�. Then there is a form f̃ ≡ f mod � of level N . The crucial case of this
result was established by Ribet by a complicated geometric analysis of certain Shimura
curves [27]. Once T∅ is known to exist, the minimal case of the isomorphism is finally
settled by constructing so-called Taylor–Wiles systems.

Several obstacles occur when one tries to extend the above to higher-dimensional Galois
representations. For one thing, it is unknown how to generalize the level-raising part.
In [5], the first installment of the proof of the Sato–Tate conjecture for elliptic curves with
non-integral j-invariant, the expected results are deduced from a conjectural analogue of
Ihara’s lemma [15]. For GSp4, we offer some results in this direction in [33]. However,
inspired by ideas of Kisin, Taylor found a way to bypass Ihara’s lemma and complete the
proof of Sato–Tate in [36]. Second, one does not know in general how to extend Ribet’s
level-lowering argument. For U(2, 1) though, there has been some recent progress by
Helm [14]. Instead, in the paper [5] for example, one adapts the following elegant idea of
Skinner and Wiles: the original paper [32] was written in the context of Hilbert modular
forms, but for this introduction let us for simplicity assume f is the form of level Np

above. An argument much simpler than Ribet’s, and more amenable to generalization,
then shows the existence of a finite solvable totally real extension F over Q, in which all
the primes above � split, such that

• ρ̄f,� remains irreducible when restricted to Gal(Q̄/F ),

• there is a form f̃ ≡ fF (mod �) over F of level prime-to-(p).
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Here fF denotes the base change of f to F . This is of course weaker than Ribet’s result
quoted above, but it has the strong advantage of being easier to generalize to other
situations. Moreover, this weaker version is often enough in order to prove modularity
results. Indeed, by the theory of base change for GL2, it is sufficient to obtain modularity
over the solvable extension F .

In this paper, we explore the Skinner–Wiles trick for GSp4 over a totally real field
F . Our main result is Theorem C below. We first move the initial automorphic repre-
sentation to an inner form G, which is compact at infinity and split at all the finite
places. This requires F to have even degree over Q. We accomplish this in Theorem B
below, as a consequence of the stable trace formula. Then, for G, we obtain the desired
congruences in Theorem A. Here, an important ingredient is a result of Roche on types
for principal series representations. Using Theorem B again, we then move back to GSp4.
Base change, however, is not yet in such a good shape for GSp4. Conditional results are
available though, due to work of Labesse. Basically, if an automorphic representation has
at least two Steinberg components, it admits a weak cyclic base change. We are hopeful
that Ngo’s recent progress on the fundamental lemma might allow one to weaken the
Steinberg condition. Deformations of Galois representations, in the context of GSp4, has
been studied previously by other people. For example, Genestier and Tilouine construct
Taylor–Wiles systems in [8]. We hope that our main result will be of some interest in
this area. In the remainder of this introduction, we state precisely our three theorems
mentioned just above.

For now, let F be an arbitrary totally real field of degree d = [F : Q], and let

G0 = GSp(2n)/F .

Take G to be an arbitrary inner form of G0 over F such that G∞ is compact modulo its
centre. To fix ideas, one can think of the unitary similitude group:

G(R) = {g ∈ GLn(D ⊗F R) : tḡg = µ(g)I},

for any F -algebra R. Here D is a totally definite quaternion F -algebra. Its centre ZG

is canonically isomorphic to Gm. Let us choose a Hecke character ω, and view it as a
central character. Also, we fix an irreducible representation

ξ : G∞ → GL(Vξ).

Its complexification, an algebraic representation of Gd
C, is characterized by its highest

weight. In our situation, it corresponds to a tuple a = (av)v|∞ where

av = (av,1, . . . , av,n, ãv) ∈ Zn+1, av,1 � · · · � av,n � 0.

Our main result for G is the following analogue of Lemma 4.3.3 in [5].

Theorem A. Let � > 2n be a prime. Let π be an automorphic representation of G with
central character ω and infinity type ξ. Suppose w is a finite place of F , where the group
G splits, such that the following two conditions are satisfied:

• πIw
w �= 0, where Iw is an Iwahori subgroup in Gw,

• N(pw) ≡ 1 (mod �).
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For each finite v �= w fix a compact open subgroup Kv in Gv such that πKv
v �= 0. Then

there exists an automorphic representation π̃ of G, with central character ω and infinity
type ξ, satisfying the following three conditions:

• π̃ ≡ π (mod �),

• π̃w = χ̃1 × · · · × χ̃n � χ̃ for at most tamely ramified characters {χ̃i, χ̃},

• π̃Kv
v �= 0 for each finite place v �= w.

In this theorem, we use the notation from [35] for the principal series representations of
G0. Moreover, we use the notation π̃ ≡ π (mod �) to signify that the Hecke eigensystems
are congruent modulo �, via the fixed embeddings i∞ and i�. More concretely, for almost
all v � � different from w, we have the congruence

ηπ̃(φ) ≡ ηπ(φ) (mod �), φ ∈ HZ(Gv, Kv).

Here ηπ(φ) gives the action of φ on the Kv-invariant of πv, which is a one-dimensional
subspace when Kv is hyperspecial. This is true for almost all v. One crucial ingredient
of the proof of Theorem A is a result of Roche on types for principal series [29]. What
we use is the following special case. Let χi and χ be n + 1 characters of F∗

w, inflated to
tamely ramified characters of O∗

w. Then, for an irreducible admissible representation π

of Gw, we consider the subspace of I1-invariant vectors transforming according to the
characters {χi, χ} under the I-action. Then, this space is non-zero if and only if π is a
subquotient of

χ̃1 × · · · × χ̃n � χ̃

for some quasi-characters χ̃i extending the χi, and some χ̃ extending χ. Now, the trick is
to choose the χi wisely such that the above principal series is irreducible for all possible
extensions. Here we use an irreducibility criterion due to Tadić, and the assumptions on
� and w. We can even take the χi and χ to be trivial modulo �, and this is used later on
in the proof in a crucial way.

To get congruences, as in Theorem A, between automorphic forms on G0, we need to
be able to transfer automorphic representations from G to G0 and vice versa. That is,
we need an analogue in higher rank of the Jacquet–Langlands correspondence for GL2

and its inner forms (n = 1). For this, we assume that

n = 2, d = [F : Q] is even.

The first condition seems necessary, in order to apply the trace formula machinery cur-
rently available. The second condition ensures the existence (and uniqueness) of a totally
definite quaternion algebra D over F , split at all finite places. As above, we consider the
unitary similitude group. For F -algebras R,

G(R) = {g ∈ GL2(D ⊗F R) : tḡg = µ(g)I}.
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Then G is the inner form of G0, which is compact at infinity mod centre, and split at all
the finite places. Throughout the paper, we fix an inner twisting

ψ : G → G0.

That is, an isomorphism over Q̄ such that the Galois actions are intertwined up to
G0-conjugation. Our next theorem provides an analogue of the Jacquet–Langlands cor-
respondence for the groups G and G0. To state it precisely, we need to introduce some
notation and terminology. First, we fix a central character ω and an infinity type ξ as
above. Correspondingly, we have an L-packet

Πξ = ⊗v|∞Πξv , Πξv = {Πg
ξv

, Πh
ξv

}

for G0,∞. Here Πg
ξv

and Πh
ξv

are the generic and holomorphic discrete series represen-
tations, respectively, of GSp4(R) having the same infinitesimal character, and the same
central character, as ξv. The theorem we are presenting below, only applies to stable
tempered automorphic representations. Here, by tempered, we mean that almost all local
components are tempered. This implies cuspidality by Langlands’s theory of Eisenstein
series [19]: the discrete non-cuspidal spectrum is given by residues of Eisenstein series,
and those are non-tempered everywhere, see Proposition 4.5.4 in [18]. Our definition of
stable is a bit ad hoc: we take it to mean non-endoscopic and non-CAP (CAP forms are
defined below in Definition 1.2), according to the following definition.

Definition 1.1. A cuspidal automorphic representation Π of G0, or G, is said to be
endoscopic if and only if there exists two cuspidal automorphic representations ρ1 and
ρ2 of GL2, with the same central character, such that for almost all v:

Lv(s, Π, spin) = Lv(s, ρ1)Lv(s, ρ2).

Here the left-hand side is the Euler factor of the degree-four spin L-function of Π. The
above definition is from [40]: see the definition of weak endoscopic lift on p. 15, and the
pertaining remarks. Let us recall the definition of CAP.

Definition 1.2. A cuspidal automorphic representation Π of G0, or G, is said to be
CAP (cuspidal associated to parabolic) relative to the parabolic P in G0 if and only if
there exists a cuspidal automorphic representations ρ of a Levi factor MP such that Π

is weakly equivalent to the constituents of IndG0
P (ρ).

For GSp4, these are completely understood due to the work of Piatetski-Shapiro [23]
and Soudry [34]. One can construct them by θ-correspondence. Let us mention that
Arthur’s conjecture predicts that non-CAP implies tempered, but this is not known over
F . We can now state our main result on functoriality.

Theorem B. Fix an arbitrary member Π+
ξ of the L-packet Πξ. Then there is a natural

multiplicity-preserving one-to-one correspondence between the sets:

{stable tempered automorphic π of G with ωπ = ω and π∞ = ξ}
1:1←→ {stable tempered cuspidal automorphic Π of G0 with ωΠ = ω and Π∞ = Π+

ξ }.

The correspondence takes π 	→ Π+
ξ ⊗ πf and Π 	→ ξ ⊗ Πf .
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The proof of this theorem is an exercise based on deep results of Arthur, Hales, Lang-
lands, Shelstad, Waldspurger and Weissauer. In [33] we proved an analogous result over
Q. However, in that case, the inner form G is necessarily non-split at some finite place.
This makes it impossible to move from G0 to G, as there are no known character relations
à la Shelstad at this finite place.

Combining the two preceding theorems, we obtain congruences for GSp4 à la Skinner
and Wiles [32] in the case of GL2. Thus, we continue to assume that n = 2 and d is
even. The strategy is clear. We start out with a Π on G0. By Theorem B, it corresponds
to a π on G with the same finite part. Theorem A then yields a π̃ ≡ π (mod �). Now,
we wish to apply Theorem B to π̃ and find a corresponding representation Π̃ on G0.
For that we need to make sure π̃ is stable and tempered. Hence, we assume the original
Π admits a Galois representation ρΠ,� and that its mod � reduction ρ̄Π,� is irreducible.
Since π̃ is congruent to π mod �, this ensures that π̃ is stable (endoscopic forms and
CAP forms have reducible Galois representations). Conjecturally, it is automatically
tempered, as mentioned above. One only expects to attach Galois representations to
algebraic automorphic representations of G0.

Definition 1.3. A cuspidal automorphic representation Π of G0 is called algebraic if and
only if the following holds. For each archimedean place v of F consider the L-parameter
of Πv, say σΠv [21]. This is an admissible homomorphism

σΠv
: WFv

→ LG0 = GSp4(C) × WFv
,

where WFv is the Weil group. When we restrict σΠv to C∗, the corresponding four-
dimensional representation should be a sum of characters of the form

z 	→ zpz̄q, for p, q ∈ Z.

Algebraicity gives a restriction on the possible infinity types ξ. For example, in the
Hilbert modular case n = 1, the classical weights must have the same parity. By a
principle propounded by Langlands, algebraic cusp forms on GLn should be associated
with pure motives. See [25] for a precise statement. Here we will only need the �-adic
Galois representation ρΠ,�. We admit the following.

Conjecture. Let Π be a cuspidal automorphic representation of G0 over F , with infinity
type in some Πξ, and assume the twist Π ⊗ |det |w/2 is algebraic for some integer w. Let
SΠ denote the set of ramified places of the representation Π. Then there exists a four-
dimensional continuous semisimple Galois representation

ρΠ,� : Gal(Q̄/F ) → GL4(Q̄�),

which is unramified at all v /∈ SΠ not dividing �. Moreover, for such places v,

Lv(s − w/2, Π, spin) = det(1 − ρΠ,�(Frobv)N(pv)−s)−1.

Here Frobv is the geometric Frobenius. If Π is not CAP, the representation ρΠ,� is pure
of weight w. That is, the eigenvalues of ρΠ,�(Frobv) all have complex absolute value
N(pv)w/2 for v as above. In other words, each Πv is tempered.
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This was proved over Q by Weissauer [38]. Therefore, if Π is a base change from Q,
the conjecture holds. In fact, cyclic base change is known for G0 in many cases. Suppose
F is a cyclic extension of Q, and let Π be a cuspidal automorphic representation of G0

over Q, with at least two Steinberg components. Then Π admits a weak cuspidal base
change ΠF on G0 over F . This is due to Labesse in great generality. See Theorem 4.6.2
in [18] for a more precise statement.

Theorem C. Let � > 3 be a prime. Let Π be a cuspidal automorphic representation
of G0 with central character ω and infinity type Π+

ξ . We assume Π admits a Galois
representation ρΠ,� as above, and that its mod � reduction ρ̄Π,� is irreducible. Suppose
w is a finite place of F , satisfying the two conditions:

• ΠIw
w �= 0, where Iw is an Iwahori subgroup in G0,w,

• N(pw) ≡ 1 (mod �).

For each finite v �= w fix a compact open subgroup Kv in Gv such that ΠKv
v �= 0. Then

there exists a cuspidal automorphic representation Π̃ of G0, with central character ω and
infinity type Π+

ξ , satisfying the following three conditions:

• Π̃ ≡ Π (mod �),

• Π̃w = χ̃1 × χ̃2 � χ̃ for at most tamely ramified characters {χ̃1, χ̃2, χ̃},

• Π̃Kv
v �= 0 for each finite place v �= w.

What keeps us from getting a precise analogue of the main result in [32] is that strong
cyclic base change is unavailable for GSp(4). Gan and Takeda have recently shown the
local Langlands conjecture in this case [6], so locally one can base change L-packets.
What we need is a global lift compatible with the local lift at all places. In the following
informal discussion, we assume we have such a strong lift. We take F to be any totally
real field, and let Π be a cuspidal automorphic representation of G0/F with a Galois
representation ρΠ,�. Here � > 3 is a prime such that the reduction ρ̄Π,� is irreducible.
First, one can base change to a situation where Theorem C applies. Namely, there is a
finite solvable totally real extension E/F of even degree with the following properties:

• ρ̄Π,�|Gal(Q̄/E) is irreducible,

• BCEw̃/Fw
(Πw) is Iwahori-spherical∗ for all w̃ | w,

• N(pw̃) ≡ 1 (mod �) for all w̃ | w.

Here w � � is a fixed finite place of F such that Πw is ramified. Moreover, to retain some
control above �, we may assume that all the places above � split completely in E. The
existence of E follows from a well-known fact, also used in [32], that one can always find
a totally real cyclic extension with prescribed splitting and ramification at a finite set of
places. Now, Theorem C applies to any base change of Π. One deduces the existence of
a cuspidal Π̃ on G0/E with

∗ To be precise, the base change of the L-packet of Πw is an Iwahori-spherical singleton.
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• ωΠ̃ = ωΠ ◦ NE/F and Π̃∞ = Π
⊗[E:F ]
∞ ,

• ρ̄Π̃,� ∼ ρ̄Π,�|Gal(Q̄/E),

• Π̃w̃ is a tamely ramified principal series for all w̃ | w.

Furthermore, we may arrange that Π̃ṽ is unramified at all ṽ | v such that Πv is unramified.
Recall that the places above � split in E, so we may also arrange for Π̃ to have the same
level as Π at such places. Finally, after another solvable base change, we may assume Π̃w̃

is an unramified principal series for all w̃ | w. That is, we can lower the level by passing
to a solvable extension. Using this result, an inductive argument shows the existence of a
finite solvable extension E/F such that ρ̄Π,�|Gal(Q̄/E) admits an automorphic deformation
ρΠ̃,� with minimal ramification. However, we stress that our discussion in this paragraph
relies heavily on the availability of strong cyclic base change for GSp(4).

2. Principal series representations of GSp(2n)

In this section we review two results on principal series needed later. In this section only,
F denotes a finite extension of Qp. We use ν to signify its normalized absolute value | · |F ,
that is, the modulus character of F . We let p denote the maximal ideal in the valuation
ring O, and choose a uniformizer �. Also,

G0 = GSp(2n),

viewed as an algebraic group over F . Here the similitude group is defined using

J =

⎛
⎜⎝

1
. . .

−1

⎞
⎟⎠ .

The group G0 comes with the similitude character µ. So, for any F -algebra R,

G0(R) = {g ∈ GL2n(R) : tgJ g = µ(g)J }.

The subset of upper triangular matrices in G0 form a Borel subgroup B, and the diagonal
matrices form a split maximal torus T of dimension n + 1. Indeed,

T (R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1
. . .

tn
µt−1

n

. . .
µt−1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

for any R as above. Note that n is the rank of the derived group Gder
0 . To define principal

series, consider quasi-characters χ1, . . . , χn and χ of F ∗, and look at

χ1 ⊗ · · · ⊗ χn ⊗ χ : t 	→ χ1(t1) · · ·χn(tn)χ(µ).
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We view it as a character of B(F ), and induce it to a representation of G0(F ):

χ1 × · · · × χn � χ = IndG0
B (χ1 ⊗ · · · ⊗ χn ⊗ χ).

The induction is normalized by δ
1/2
B in the standard way, where δB is the modulus

character of B(F ). Here we use the notation introduced by Tadić in [35].

2.1. An irreducibility criterion of Tadić

For simplicity, we now assume p is odd. Then F ∗ has exactly three characters of order
two, and this simplifies the irreducibility criterion we are about to describe. The reducibil-
ity of unitary principal series for symplectic groups was first studied by Winarsky [42],
and then extended by Keys in [16]. Using their results, Tadić obtained complete results
for similitude groups. We need the following theorem.

Theorem 2.1. The principal series χ1 × · · · × χn � χ is irreducible if and only if

• there are at most two distinct χi of order two,

• χi �= ν±1, for all i,

• χi �= ν±1χ±1
j , for all i < j.

Proof. This is Theorem 7.9 combined with Remark 7.10 in [35]. �

In the last condition, all four combinations of signs are allowed. If all the χi are unitary,
the last two conditions are clearly satisfied. In particular, for the group GSp(4), unitary
principal series are always irreducible. For arbitrary n, the length is at most two: see
Corollary 7.8 in [35]. Now, let us fix a prime

� > 2n such that N(p) ≡ 1 (mod �).

Here N(p) is the cardinality of the residue field F. We assume such an � exists.

Corollary 2.2. There exists n tamely ramified characters χi of O∗ such that

χ̃1 × · · · × χ̃n � χ̃

is irreducible for all quasi-characters χ̃i with χ̃i|O∗ = χi, and all χ̃. Moreover,

χi ≡ 1 (mod �).

Proof. We choose a character χ of F∗ of order �, and inflate it to a character of the unit
group O∗. We then take χi to be χi for each i. By assumption on �,

{χ1, . . . , χn} ∩ {χ−1
1 , . . . , χ−1

n } = ∅.

If χ̃i are quasi-characters of F ∗ extending the χi, the three irreducibility conditions above
are satisfied: none of the tamely ramified χ̃i have order two,

χ̃i = ν±1χ̃±1
j =⇒ χi = χ±1

j .

This contradicts the fact that the above intersection is empty. To show χi is trivial mod �,
note that its reduction maps into the �th roots of unity in F̄�. �
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2.2. A result of Roche on types

We continue to assume p is odd. We review a result of Roche, based on an explicit
construction of types (in the sense of Bushnell and Kutzko) for principal series represen-
tations of split reductive groups. Thus, we let I denote the Iwahori subgroup. That is,
the inverse image of B(F) under the reduction map:

I = {g with g (mod p) ∈ B(F)} ⊂ G0(O).

Also, we introduce the normal subgroup I1, which is the inverse image of Bu(F):

I1 = {g with g (mod p) ∈ Bu(F)} ⊂ I.

The quotient I/I1 is naturally identified with T (F), by reducing the diagonal. If π is an
admissible representation of G0, the finite abelian group T (F) acts on the I1-invariants.
Therefore, this space has a decomposition into eigenspaces:

πI1 =
⊕
χi,χ

πI:χ1⊗···⊗χn⊗χ.

Here the χi and χ run over all characters of F∗, and the corresponding direct summand
is the subspace of vectors transforming according to the associated character of I. We
will need the following consequence of Roche’s paper [29].

Theorem 2.3. Let π be an irreducible admissible representation of G0(F ). Then

πI:χ1⊗···⊗χn⊗χ �= 0

if and only if π is a subquotient of a principal series representation of the form

χ̃1 × · · · × χ̃n � χ̃

for some quasi-characters χ̃i extending the χi, and some χ̃ extending χ.

Proof. By inflation, we view χi and χ as characters of O∗ trivial on the 1-units 1 + p.
This defines an inertial equivalence class in the Bernstein spectrum,

s = [T, χ̃1 ⊗ · · · ⊗ χ̃n ⊗ χ̃].

Here the χ̃i and χ̃ are arbitrary extensions of χi and χ, respectively. By the construction
on p. 367 in [29], we get an s-type, according to Theorem 7.7 in [29]. This theorem
applies since p is odd. By tameness, see Remark 4.2 in Roche’s paper, the compact open
subgroup of the s-type is simply the Iwahori subgroup I. Moreover, the character of I is
the one coming from the χi and χ as above. By the very definition of a type, π|I contains
this character if and only if s is the inertial class of π. That is, π is a subquotient of a
principal series

χ̃1 × · · · × χ̃n � χ̃,

where we may have to modify the characters by unramified twists. Done. �
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It follows that πI1 is non-zero if and only if π is a subquotient of a tamely ramified
principal series (possibly unramified). As a continuation of Corollary 2.2, we get the
following.

Corollary 2.4. With π as above, and the χi as in Corollary 2.2, we have for all χ:

πI:χ1⊗···⊗χn⊗χ �= 0

if and only if π = χ̃1 × · · · × χ̃n � χ̃ for some extensions χ̃i and χ̃ as above.

3. Modular forms and Hecke algebras

For now, let us fix an arbitrary totally real number field F , of degree d = [F : Q]. We
view G0 as an algebraic F -group, and fix an inner form G over F such that

G∞ = G(F ⊗Q R) =
∏
v|∞

G(Fv)

is compact modulo its centre. The centre ZG is isomorphic to Gm over F . The groups
G0 and G are isomorphic over the algebraic closure Q̄, and throughout we fix an inner
twisting ψ. By definition, this is an isomorphism over Q̄,

ψ : G → G0,

such that σψ ◦ψ−1 is an inner automorphism of G0 for all σ ∈ Gal(Q̄/F ). In this fashion,
the equivalence class of G corresponds to a cohomology class in

H1(F, Gad
0 ).

Here Gad
0 is the adjoint group, and H1 is non-abelian Galois cohomology. More concretely,

the group G is the unitary similitude group of an n-dimensional left D-vector space
equipped with a non-degenerate hermitian form, where D is a quaternion F -algebra [24].
By choosing a basis, we can be even more concrete, and realize G as an algebraic subgroup
of GLn(D). For any F -algebra R,

G(R) = {g ∈ GLn(D ⊗F R) : ∗gΦg = µ(g)Φ}.

Here ∗g = tḡ, and Φ is non-degenerate and hermitian. That is, ∗Φ = Φ. By an explicit
calculation, it is not hard to show that the groups G and G0 are conjugate in GL2n over
Q̄. We refer the reader to Lemma 2.3 in [9] for the details. If v is a non-archimedean
place of F , there is a unique non-split inner form of G0 over Fv (the reduced norm on the
division quaternion Fv-algebra is surjective, so all hermitian forms are equivalent). This
inner form has rank [n/2] modulo its centre. If v is archimedean, the hermitian forms are
classified by their signature. Globally, there is always an even number of places v such
that G is non-split over Fv. At those places, the inner form can be prescribed.

Remark. In the special case n = 2, we may alternatively view G as the similitude spin
group of a totally definite quadratic form in five variables over F .
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3.1. Algebraic modular forms on G

We wish to define modular forms on G as in [10]. Thus, we first fix a central character
ω. This is naturally identified with a Hecke character of F , not necessarily unitary. Let
A(ω) be the space of ω-central automorphic forms:

f : G(F )\G(AF ) → C, f(zg) = ω(z)f(g), ∀z ∈ ZG(AF ).

These functions are assumed to be G∞-finite under right translation, and locally constant
when restricted to the group of finite adeles G(Af

F ). In what follows, we simply say f is
smooth. The group G(AF ) acts on the space A(ω) by right translation, and it decomposes
as a direct sum of irreducible automorphic representations π = π∞ ⊗ πf with ωπ = ω,
each occurring with finite multiplicity. We now fix an infinity type. That is, we fix an
irreducible complex representation

ξ : G∞ → GL(Vξ), ξ = ⊗v|∞ξv.

We assume it has central character ω∞. This compatibility is necessary for the following
spaces of modular forms to be non-trivial. First, let us introduce

Aξ(ω) = HomG∞(ξ,A(ω)) = (ξ̌ ⊗ A(ω))G∞ .

It carries an induced action of G(Af
F ), which is admissible, as we will see below. The

space Aξ(ω) is a direct sum of the πf such that ξ ⊗ πf is automorphic, with central
character ω. Hence, the ξ-isotypic subspace of A(ω) may be written as

A(ω)[ξ] = ξ ⊗ Aξ(ω).

We now want to realize Aξ(ω) as a space of vector-valued automorphic forms.

Lemma 3.1. As a G(Af
F )-representation, Aξ(ω) can be identified with the space of

ω-central V̌ξ-valued smooth functions on the quotient G(F )\G(AF ) such that

F(gg−1
∞ ) = ξ̌(g∞)F(g), ∀g∞ ∈ G∞.

Proof. To such an F , we associate the map taking u ∈ Vξ to u ◦ F . �

By restriction to the finite adeles, we get that the space Aξ(ω) can be identified with
the space of ωf -central V̌ξ-valued smooth functions F on G(Af

F ) such that

F(γfg) = ξ̌(γ∞)F(g), ∀γ ∈ G(F ).

Let K be a compact open subgroup of G(Af
F ), and look at the K-invariants:

Aξ(K, ω) �
⊕

π:π∞=ξ

aG
disc(π)πK

f .

Such forms are said to have level K. Their union, as K varies, is all of Aξ(ω). Moreover,
the space above is finite dimensional, thereby proving the aforementioned admissibility.
Indeed, if we choose a set of representatives g1, . . . , gh for

G(F )\G(Af
F )/K,
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the map taking F to the h-tuple (F(g1), . . . ,F(gh)) defines an isomorphism

Aξ(K, ω) �
h⊕

i=1

V̌ Γi

ξ , Γi = G(F ) ∩ giG∞Kg−1
i .

Note that each Γi is a finite subgroup of G∞. In fact, by shrinking K, one can often
assume they are all trivial. For example, this is true if the projection of K onto some
Gv does not contain any non-trivial elements of finite order. In this case, we say K is
sufficiently small. We will often make this assumption.

Remark. We always assume K is so small that ωf is trivial on K ∩ ZG(Af
F ).

3.2. Hecke algebras for G

We let H(G) denote the Hecke algebra of G(Af
F ). That is, the smooth functions with

compact support, equipped with the convolution product associated to some fixed Haar
measure dx. It acts on Aξ(ω) in the usual way. That is,

R(φ)F(g) =
∫

G(Af
F )

φ(x)F(gx) dx.

Let K be a compact open subgroup of G(Af
F ). If we normalize dx such that K has volume

one, the characteristic function eK is an idempotent in H(G). Then

H(G, K) = eK ∗ H(G) ∗ eK

is the algebra of K-biinvariant compactly supported functions. Clearly, it preserves the
level K forms. If we fix a complete set of representatives {t} for

K\G(Af
F )/K,

the characteristic functions of the double cosets KtK form a basis for H(G, K). In fact,
the Z-submodule they generate is a subring HZ(G, K). We introduce:

Tξ(K, ω) = Im{R : HZ(G, K) → EndC Aξ(K, ω)}.

More generally, let S be a finite set of finite places, and assume K can be written as
KSKS where the factor KS is a product of hyperspecial subgroups G(Ov). Then the
Hecke algebra HZ(G, K) factors correspondingly as a tensor product,

HZ(G, K) � HZ(GS , KS) ⊗ HS
Z (G, K),

and we let TS
ξ (K, ω) denote the image of the prime-to-S part HS

Z (G, K) in the above
endomorphism algebra. This factor of the Hecke algebra is commutative.
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3.3. Arithmetic models

Next, we define models of the spaces Aξ(K, ω) over number fields and finite fields. Thus,
we assume our inner twisting ψ is defined over the number field L inside Q̄. By enlarging
L, we may assume ωf maps into L∗, and that L contains F . The complexification of ξ is
an algebraic representation of the complex group

G(F ⊗Q C) =
∏
v|∞

G(Fv ⊗R C).

Such an irreducible representation ⊗v|∞ξv is characterized by its highest weight. This is
a dominant character of T . In our case, since G is isomorphic to G0 over C, the highest
weight corresponds to a tuple a = (av)v|∞ where for each v:

av = (av,1, . . . , av,n, ãv) ∈ Zn+1, av,1 � · · · � av,n � 0.

Again, by enlarging L, we may assume this algebraic representation is defined over L,
viewed as a subfield of C via our fixed embedding i∞. We denote it by

ξ : G̃/L → GL(Vξ(L)), G̃ = ResF/Q(G).

In particular, the group G(F ) acts naturally on Vξ(L): It is a subgroup of G̃(L) via the
diagonal embedding. This allows us to introduce an L-rational structure on the spaces
of modular forms. Indeed, we make the following definition.

Definition 3.2. We define the L-rational modular forms Aξ(K, ω, L) to be the space of
ωf -central V̌ξ(L)-valued K-invariant functions F on G(Af

F ) such that

F(γfg) = ξ̌(γ)F(g), ∀γ ∈ G(F ).

It carries an action of the Hecke algebra Tξ(K, ω). We now complete the above space
�-adically, for a fixed prime �. Thus, let λ be the place of L determined by the embedding
i�, and let Lλ be the corresponding completion of L. We let

Aξ(K, ω, Lλ) = Lλ ⊗L Aξ(K, ω, L).

Of course, this can be identified with smooth V̌ξ(Lλ)-valued functions on G(Af
F ) as above.

However, for the purpose of defining integral models and modular forms mod �, it is better
to work with a different model. Namely, the following.

Lemma 3.3. As a Tξ(K, ω)-module, the space Aξ(K, ω, Lλ) can be identified with the
space of V̌ξ(Lλ)-valued functions F on the quotient G(F )\G(Af

F ) such that

F(gk) = ξ̌(k−1
λ )F(g), ∀k ∈ K,

and such that the prime-to-λ part of ZG(Af
F ) acts on F by the character ωλ

f .

Remark. We abuse notation, and use λ also to denote the place of F defined by i�. The
Hecke action in this model, is given by the following explicit formula:

R(eKtK)F(g) =
∑

x∈KtK/K

ξ̌(xλ)F(gx).
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Proof. For a function F in the former model, the function g 	→ ξ̌(g−1
λ )F(g) is left-

invariant under G(F ), and is easily seen to belong to the latter model—and vice versa:
the compatibility between ω and the central character of ξ ensures that F ∗

λ acts on the
form F by the central character ωλ as desired. �

Now, to define integral models, over the valuation ring Oλ, we need a lattice preserved
by all kλ for k ∈ K. We denote the group of such elements by Kλ. For this, we assume
G̃ extends to a smooth affine group scheme over Oλ, and

ξ : G̃/Oλ
→ GL(Vξ(Oλ))

is an extension of the previous ξ. We assume G̃(Oλ) contains Kλ. Consequently,

Aξ(K, ω, Lλ) = Lλ ⊗Oλ
Aξ(K, ω, Oλ),

where Aξ(K, ω, Oλ) is the lattice of V̌ξ(Oλ)-valued functions F as above. We immediately
observe that this lattice is not preserved the full Hecke algebra Tξ(K, ω), unless ξ is trivial.
Only the prime-to-λ part Tλ

ξ (K, ω) preserves integrality. Finally, to define modular forms
mod �, we tensor by Fλ. That is,

Aξ(K, ω, Fλ) = Fλ ⊗Oλ
Aξ(K, ω, Oλ).

This can of course be canonically identified with the space of V̌ξ(Fλ)-valued functions F
satisfying the transformation properties in the previous lemma.

4. Congruences

In this section, we will prove Theorem A in the introduction. Let us briefly review the
setup. Start with an automorphic representation π of G(AF ) with

ωπ = ω, π∞ = ξ, πI
f �= 0,

where I is a compact open subgroup of G(Af
F ) of the form IwKw for a fixed finite place w

of F where G splits. Here Iw is an Iwahori subgroup of G(Fw), and Kw is some compact
open subgroup prime-to-w. Moreover, we assume that

N(pw) ≡ 1 (mod �), � > 2n.

Let us furthermore assume Kw is factorizable of the form
∏

v �=w Kv, where Kv is hyper-
special for v /∈ S0. We let S� denote the places of F above �, and consider

S = {w} ∪ S0 ∪ S�.

Then the Hecke algebra TS
ξ (I, ω) acts on πI

f via an algebra character, denoted

ηπ : TS
ξ (I, ω) → C.

It maps into Q̄, since the Hecke algebra preserves Aξ(I, ω, L). In fact, via i�, it maps into
Z̄�. Indeed, the previously defined integral structures are preserved. It therefore makes
sense to reduce ηπ mod �. We denote this F̄�-valued character by η̄π, and let m be its
kernel. This is a maximal ideal of the algebra TS

ξ (I, ω).
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Goal. Find an automorphic representation π̃ ≡ π (mod �) of G(AF ) such that

ωπ̃ = ω, π̃∞ = ξ, π̃Kw

f �= 0,

and such that π̃w is a tamely ramified principal series representation of G(Fw).

Here, the notation π̃ ≡ π (mod �) means that η̄π̃ = η̄π, where the character

ηπ̃ : TS
ξ (I, ω) → C

gives the action of TS
ξ (I, ω) on the Kw-invariants of π̃. To reach the goal, we use

the characters χi of the unit group O∗
w from Corollary 2.2. Moreover, fix an arbitrary

χ ≡ 1 (mod �). Having fixed the {χi, χ}, we introduce the subspace

A{χi,χ}
ξ (I, ω)

of forms F invariant under I1wKw, on which Iw acts by ⊗χi ⊗ χ. We need

A{χi,χ}
ξ (I, ω)m �= 0.

Indeed, if this is the case, by Corollary 2.4 there is a π̃ with η̄π̃ = η̄π such that

π̃w = χ̃1 × · · · × χ̃n � χ̃

for some extensions χ̃i and χ̃. It suffices to show non-vanishing at m mod �:

A{χi,χ}
ξ (I, ω, Fλ)m � Fλ ⊗Oλ

A{χi,χ}
ξ (I, ω,Oλ)m.

Now recall from Corollary 2.2 that all the χi are trivial mod �. Therefore,

A{χi,χ}
ξ (I, ω, Fλ)m = A{1,1}

ξ (I, ω, Fλ)m,

and this is simply the space of I-invariants. Here m does occur. We are done.

5. Jacquet–Langlands transfer for n = 2

To get congruences between automorphic forms on G0, we need to establish certain cases
of functoriality, analogous to the Jacquet–Langlands correspondence for GL2 and its
inner forms. For this, we need to impose the two conditions

n = 2, d = [F : Q] is even.

The first condition is dictated by the present state of the trace formula for symplectic
groups. The second condition guarantees the existence of a totally definite quaternion
algebra D over F , which is split at all the finite places:

D ⊗Q R � Hd, Dv � M2(Fv),

for all finite v. Here H denotes the Hamilton quaternions over R. These conditions deter-
mine D uniquely up to isomorphism. We take the hermitian form Φ to be the identity,
and look at the unitary similitude group. For F -algebras R,

G(R) = {g ∈ GL2(D ⊗F R) : ∗gg = µ(g)I}.

Then G∞ is compact modulo its centre, and G is split over Fv for all finite v.
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5.1. The trace formula for G

The group G is anisotropic modulo its centre ZG, so the trace formula takes its simplest
form. We keep the central character ω fixed, and look at the space

C∞
c (G(AF ), ω̌)

of smooth ω̌-central test functions φ on G(AF ), assumed to be compactly supported
modulo the centre. Each such function φ defines a compact operator

R(φ)f(g) =
∫

Gad(AF )
φ(x)f(gx) dx

on A(ω). It turns out to be of trace class, and the trace formula computes its trace in
two different ways. First, one obviously has the spectral expansion:

IG
disc(φ) df= trR(φ) =

∑
π:ωπ=ω

aG
disc(π) trπ(φ),

in terms of the automorphic spectrum of G. One compares it with the geometric expansion
of the trace. First, observe that the operator R(φ) is given by a kernel,

R(φ)f(g) =
∫

ZG(AF )G(F )\G(AF )
Kφ(g, x)f(x) dx,

where we have introduced

Kφ(g, x) =
∑

γ∈Gad(F )

φ(g−1γx).

To get the trace, we integrate Kφ over the diagonal. A short calculation shows that

trR(φ) =
∑
{γ}

vol(ZG(AF )Gγ(F )\Gγ(AF )) Oγ(φ).

Here {γ} is a set of representatives for the conjugacy classes in Gad(F ), and Gγ is the
centralizer of γ in G. Moreover, Oγ denotes the orbital integral. That is,

Oγ(φ) =
∫

Gγ(AF )\G(AF )
φ(x−1γx) dx.

5.2. Stable orbital integrals

One would like to rewrite the geometric side in terms of stable orbital integrals. To
define these, let us first recall the notion of stable conjugacy. Eventually we want to
compare the geometric side of the trace formula for G with that of the (much more
complicated) trace formula for G0, in order to compare automorphic spectra. However,
the two groups are only isomorphic over Q̄, so one can only compare conjugacy classes
over Q̄. We work locally at a fixed place v of F .
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Definition 5.1. Elements γ and γ′ in G(Fv) are stably conjugate if and only if

∃g ∈ G(F̄v) : γ′ = g−1γg (mod centre).

In the case of GLn, this turns out to coincide with usual conjugacy. However, for G0

it is coarser. We have used the fact that the derived group Gder is simply connected;
otherwise, the definition has to be altered slightly. A stable conjugacy class contains only
finitely many conjugacy classes, parametrized by

ker{H1(Fv, Gγ) → H1(Fv, G)}.

Again, H1 is non-abelian Galois cohomology. The parametrization is not difficult; one
looks at the cohomology class of the cocycle σ(g)g−1. In general, for arbitrary semisimple
γ, the centralizer Gγ is a connected reductive group. If γ is regular, Gγ is a torus. It is
connected, again since Gder is simply connected. One can show that the above kernel is
a finite abelian subgroup.

Definition 5.2. Suppose γ′ is stably conjugate to γ. Then Gγ′ is the inner form of Gγ

corresponding to the class in H1(Fv, Gad
γ ) given by the conjugacy class of γ′ in the above

parametrization. Let e(Gγ′) be the Kottwitz sign [17]. Then

SOγ(φ) =
∑
γ′

e(Gγ′) Oγ′(φ)

is the stable orbital integral. Here γ′ ∼ γ runs over the conjugacy classes.

Globally, stable orbital integrals are defined as products of local ones. More generally,
one defines κ-orbital integrals for certain characters κ. The stable case corresponds to
κ = 1. A distribution I on G(AF ) is called stable if it is supported on the stable orbital
integrals. That is, for all test functions φ as above,

SOγ(φ) = 0, ∀ semisimple γ ∈ G(F ) =⇒ I(φ) = 0.

5.3. Elliptic endoscopic triples for G

Unfortunately, one cannot express the geometric side of the trace formula for G purely
in terms of stable orbital integrals on G. The distribution IG

disc turns out to be unstable.
The solution to this problem is to write IG

disc as a sum of stable distributions on the so-
called elliptic endoscopic groups. Actually, to be precise, one looks at equivalence classes
of triples (H, s, ζ), consisting of data:

• H is a quasi-split connected reductive group over F ,

• s is a semisimple element in the dual group Ĝ,

• ζ : Ĥ ↪→ Ĝ is a homomorphism with image ZĜ(s)0.
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Such a triple must satisfy two conditions that we will not state precisely (see p. 20
in [13]). First, ζ must be Galois-equivariant up to Ĝ-conjugation. Second, s must satisfy
some local triviality condition. Finally, the triple is elliptic if

ζ(Z(Ĥ)Γ )Z(Ĝ)/Z(Ĝ), Γ = Gal(Q̄/F ),

is finite. There is a natural equivalence relation on such triples (see Definition 5.2 in [13]).
In our case, G admits precisely two elliptic endoscopic triples up to equivalence. The first
one being the quasi-split inner form G0 equipped with s = 1 and ζ = Id. The connected
reductive group of the second triple is

H = [GL(2) × GL(2)]/Gm.

Here Gm is a subgroup of the centre via the embedding z 	→ (z, z−1). Moreover,

s =

⎛
⎜⎜⎜⎝

1
−1

−1
1

⎞
⎟⎟⎟⎠ ∈ Ĝ = GSp4(C).

The dual group Ĥ is the subgroup of GL2(C) × GL2(C) consisting of pairs of matrices
with the same determinant. We may take the homomorphism ζ to be

ζ :

(
a b

c d

)
×

(
ã b̃

c̃ d̃

)
	→

⎛
⎜⎜⎜⎝

ã b̃

a b

c d

c̃ d̃

⎞
⎟⎟⎟⎠ .

It is straightforward to check that its image is indeed the centralizer of s in Ĝ.

5.4. Transfer and the fundamental lemma

In this section, in the beginning, we fix a place v and let G = Gv and so on. We
wish to make precise, how one transfers a given test function φ on G, or G0, to families
of functions on the endoscopic groups G0 and H. Let us first explain how to go from
G to G0. The set of (semisimple) stable conjugacy classes in G embeds into the set of
stable conjugacy classes in G0. Namely, let γ ∈ G be semisimple, and look at the G0-
conjugacy class of ψ(γ) over F̄ v. Recall that we have fixed an inner twisting ψ. By a
theorem of Kottwitz and Steinberg, since G0 is quasi-split and Gder

0 is simply connected,
the conjugacy class of ψ(γ) intersects the Fv-rational points G0 in a stable conjugacy
class. That is,

∃γ0 ∈ G0 such that γ0 ∼G0(F̄v) ψ(γ).

We write γ ↔ γ0 in this case, and say that γ0 is an image of γ. For a given γ0, when
such a γ exists, we say that γ0 occurs in G. We need the following result.
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Theorem 5.3. For every φ ∈ C∞
c (G, ω̌v) there exists a φG0 ∈ C∞

c (G0, ω̌v) with

SOγ0(φ
G0) = SOγ(φ)

when γ ↔ γ0, and such that SOγ0(φ
G0) = 0 whenever γ0 does not occur in G.

Proof. In the archimedean case, this was proved by Shelstad in [30]. In the non-
archimedean case, it is a deep theorem of Waldspurger, proved in [37]. �

In this situation, we say that φ and φG0 have matching orbital integrals. Of course,
φG0 is not unique, but I(φG0) is well defined for stable distributions I. Next, let us
explain how to go from G to H. The discussion with G replaced by G0 is similar, but
simpler. As above, take a semisimple element γ ∈ G. We first define what it means for a
semisimple γH ∈ H to be an image of γ. Choose a maximal torus TH in the centralizer
HγH

, containing γH . There is a canonical G-conjugacy class of embeddings of TH into G

defined over F̄v. Choose one, say
j : TH ↪→ G,

and assume it maps into the maximal torus T in G. In analogy with the above discussion,
we consider the stable conjugacy class of j(γH). If it contains γ, we say that γH is an
image of γ. Alternative terminology; say γ comes from γH .

Definition 5.4. The roots Φ of G relative to T define characters of TH by pulling back
via j. We say that a semisimple element γH ∈ H is (G, H)-regular if α(γH) �= 1 for all
α ∈ Φ such that the j-restriction αTH

is not a root of H.

The following is the Langlands–Shelstad transfer conjecture, which is known in our
setup.

Theorem 5.5. For every φ ∈ C∞
c (G, ω̌v) there exists a φH ∈ C∞

c (H, ω̌v) with

SOγH
(φH) =

∑
γ

∆G,H(γH , γ)e(Gγ) Oγ(φ)

for all (G, H)-regular γH . The sum is over γ coming from γH , up to conjugacy.

Proof. Again, the archimedean case was worked out completely for all groups by Shel-
stad in [30] and [31]. The non-archimedean case follows from work of Hales [11, 12]
combined with either [22] or [37]. �

Remark. Once we have normalized the Langlands–Shelstad transfer factors ∆G,H , com-
patible measures must be used on both sides. Fortunately, we will not need a precise
definition of ∆G,H , so we will not give it here. The reader is referred to Chapter 7 in [13]
for a nice review of the basic properties. We also note that, since H has no endoscopy, the
left-hand side of the transfer identity is simply the standard orbital integral OγH

(φH),
up to a sign at most.
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Globally, the test functions are spanned by pure tensors φ = ⊗φv, where φv is the char-
acteristic function of a hyperspecial subgroup Kv for almost all v; they are all conjugate.
We would like to transfer φ to a function φH by the formula

φH df= ⊗vφHv
v .

However, for this to make sense, we need to know that we can take φHv
v to be the

characteristic function of a hyperspecial subgroup KH
v for almost all v. This is the so-

called standard fundamental lemma, proved by Hales in the case n = 2.

Theorem 5.6. eHv

Kv
= eKH

v
(up to a non-zero constant depending on the measures).

Proof. This is the main result of [12]. �

Remark. We mention an amazing observation of Waldspurger. For general groups, the
fundamental lemma in fact implies the transfer conjecture [37].

To recapitulate, we can transfer a global function φ on G(AF ) to a function φH on
H(AF ), locally with matching orbital integrals, which is well defined on stable distribu-
tions. Similarly for functions on the group G0(AF ). Furthermore,

φG0 df= ⊗vφG0,v
v

defines the transfer of φ to G0(AF ), well defined since G = G0 at almost all v.

5.5. Character relations for the endoscopic lift

We go back to the local notation from the previous section. Thus, we fix a place v

and let G = Gv and so on. In this section, we discuss the local functorial lift pertaining
to the L-homomorphism extending the map ζ. The lift takes an irreducible admissible
representation ρ of H, and associates to it an L-packet of representations of G0. If a
certain relevancy condition is satisfied, this packet descends to G. The representation ρ

is of the form ρ1 ⊗ ρ2, where the ρi are representations of GL2 with the same central
character. The distribution tr ρ is stable, since H has no endoscopy. By general results
of Arthur [2] in the non-archimedean case, and of Shelstad [30] in the archimedean case,

tr ρ(φH) =
∑

π

∆G,H(ρ, π) trπ(φ), ∀φ ∈ C∞
c (G, ω̌v),

for some coefficients ∆G,H(ρ, π) one should think of as spectral analogues of the transfer
factors. It is zero for almost all irreducible admissible representations π of G. Similar
expansions hold when G is replaced by G0. In the non-archimedean case, the above
expansion has been made very precise by Weissauer in the two preprints [39] and [40]:
for example, when ρ is in the discrete series,

tr ρ(φH) = trπ+(ρ)(φ) − trπ−(ρ)(φ).

Here {π±(ρ)} is the associated L-packet of representations of G (recall that G and G0 are
isomorphic at all finite places). The representation π+(ρ) is always generic, in the sense
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that it has a Whittaker model, whereas the other member π−(ρ) is always non-generic.
One has the following qualitative description.

• ρ1 �= ρ2 (ρ regular): π+(ρ) is a discrete series, π−(ρ) is supercuspidal.

• ρ1 = ρ2 (ρ invariant): {π±(ρ)} are limits of discrete series (⇒ tempered).

We will not need it in this paper, but when the residue characteristic of Fv is odd, the
π±(ρ) have a nice description in terms of θ-correspondence for similitude groups. This
comes about, by identifying H and its inner form H̆ with special orthogonal similitude
groups:

H � GSO(Vsplit), H̆ = [D∗ × D∗]/Gm � GSO(Vaniso).

Here Vsplit and Vaniso are the split and anistropic quaternary quadratic spaces of dis-
criminant one, respectively. Since ρ is in the discrete series, it corresponds to a unique
representation ρ̆ of H̆ under the Jacquet–Langlands correspondence for GL2. By [28],
both ρ and ρ̆ have unique extensions to the corresponding GOs participating in the θ-
correspondence with GSp4. We denote them by ρ+ and ρ̆+. In the regular case, they are
simply the induced representations. Then

π+(ρ) = θ(ρ+), π−(ρ) = θ(ρ̆+).

For this, see Proposition 1 on p. 14 in [40]. In the case of even residue characteristic, one
can can still get an interpretation in terms of θ-correspondence by looking at the globally
relevant subset. Finally, when ρ is a principal series,

tr ρ(φH) = trπ+(ρ)(φ),

for a generic representation π+(ρ) (tempered if ρ is tempered). When one of the ρi are one
dimensional, the support of the expansion of tr ρ does not define L-packets, but A-packets.
Their description is given explicitly in [39]. One should mention that, the above results
of Weissauer are complete analogues of the results known in the archimedean case, due
to the work of Shelstad [30]. Globally, one immediately deduces exact analogues of the
above character expansions: if ρ = ⊗ρv is an automorphic representation of H, then we
have

tr ρ(φH) =
∑

π

∆G,H(ρ, π) trπ(φ), ∀φ ∈ C∞
c (G(AF ), ω̌),

where ∆G,H(ρ, π) is the product of all the local coefficients ∆Gv,Hv (ρv, πv). Here π runs
over the global L-packet for G associated with ρ, that is, the tensor product of all the
local L-packets. It is possibly empty for some ρ.

5.6. Stabilization of the trace formula

A key observation is that H itself has no endoscopy; stable conjugacy is the same as
conjugacy. Indeed, H is essentially just a product of two copies of GL2. Nevertheless,
the trace formula for H is more complicated than that for G, due to the existence of
parabolic subgroups defined over F . One has to build the continuous spectrum from
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Eisenstein series, and subtract this contribution to get the trace of R(φ) on the discrete
spectrum. In the case of GL2 this is done in detail in [7], and Arthur dealt with arbitrary
rank one groups in [1]. In addition to the trace of R(φ) on the discrete spectrum, there
are certain so-called scattering terms occurring discretely on the spectral side of the trace
formula. We collect all these terms, and denote the resulting distribution by IH

disc. From
what we have just said, this is a stable distribution. It can be written as follows:

IH
disc(φ) =

∑
ρ:ωρ=ω

aH
disc(ρ) tr ρ(φ), ∀φ ∈ C∞

c (H(AF ), ω̌).

Here ρ runs over all discrete automorphic representations of H with ωρ = ω. It is of the
form ρ1 ⊗ ρ2, where the ρi are automorphic representations of GL2 with central charac-
ter ω. In general, the complex coefficient aH

disc(ρ) may not be equal to the multiplicity
of ρ. However, in the generic case where no ρi is a character, they are equal. The trace
formula for G0 is even more complicated. There are now three proper parabolic sub-
groups, up to conjugacy, each contributing to the continuous spectrum. Again, besides
the trace of R(φ) on the discrete spectrum, we get additional discretely occurring terms
on the spectral side. They are what Arthur refers to as surviving remnants of Eisenstein
series. As before, we construct a distribution IG0

disc out of these terms, and write it as

IG0
disc(φ) =

∑
Π:ωΠ=ω

aG0
disc(Π) trΠ(φ), ∀φ ∈ C∞

c (G0(AF ), ω̌).

Here Π varies over all discrete automorphic representations of G0 with central character
ω. The coefficient aG0

disc(Π) equals the multiplicity of Π, if Π is cuspidal but not CAP.
Recall that a cuspidal automorphic representation Π is CAP with respect to a parabolic
P , if it is nearly equivalent to the constituents of a representation induced from a cusp
form on a Levi factor M of P . For GLn, this notion is vacuous by a result of Shalika. On
the other hand, for G0, the CAP forms have been constructed via theta correspondence
by Piatetski-Shapiro [23] and Soudry [34]. As with IG

disc, the distribution IG0
disc is also

unstable. However, if we subtract suitable endoscopic error terms, we can make it stable.

Theorem 5.7. The distribution SG0
disc(φ) df= IG0

disc(φ) − 1
4IH

disc(φ
H) is stable.

Proof. This is a special case of a theorem of Arthur announced in [3]. �

We thus arrive at the stable trace formula for G.

Theorem 5.8. IG
disc(φ) = SG0

disc(φ
G0) + 1

4IH
disc(φ

H).

Proof. This was first proved by Kottwitz [17] and Langlands [20], but can be viewed
also as a special case of the aforementioned work of Arthur [3]. �

5.7. A trace identity at infinity

Finally, we are ready to compare the automorphic spectra of G and G0. The link is the
stable distribution SG0

disc. We insert the character expansions of the tr ρ into IH
disc, in order
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to express the contribution from H to the stable trace formula in terms of the spectrum
of G. For all test functions φ on G, we get

SG0
disc(φ

G0) = IG
disc(φ) − 1

4IH
disc(φ

H) =
∑

π:ωπ=ω

ãG
disc(π) trπ(φ),

where
ãG
disc(π) df= aG

disc(π) − 1
4

∑
ρ:ωρ=ω

aH
disc(ρ)∆G,H(ρ, π).

Similarly, for any test function φ0 on G0, we get the the analogous expansion:

SG0
disc(φ0) = IG0

disc(φ0) − 1
4IH

disc(φ
H
0 ) =

∑
Π:ωΠ=ω

ãG0
disc(Π) trΠ(φ0),

where
ãG0
disc(Π) df= aG0

disc(Π) − 1
4

∑
ρ:ωρ=ω

aH
disc(ρ)∆G0,H(ρ, Π).

Taken together, for any pair of matching functions φ 	→ φG0 , we get the relation∑
Π:ωΠ=ω

ãG0
disc(Π) trΠ(φG0) =

∑
π:ωπ=ω

ãG
disc(π) trπ(φ).

Now, the groups G and G0 are isomorphic at all finite places, so by linear independence
of characters on G(Af

F ) we may isolate the finite part. That is, for every irreducible
admissible representation τf of G(Af

F ) we have the identity∑
Π∞:ωΠ∞=ω∞

ãG0
disc(Π∞ ⊗ τf ) trΠ∞(φG0

∞ ) =
∑

π∞:ωπ∞=ω∞

ãG
disc(π∞ ⊗ τf ) trπ∞(φ∞),

for any pair of matching functions φ∞ 	→ φG0
∞ . Of course, we assume that the fixed repre-

sentation τf has central character ωf . In order to compare the coefficients of both sides,
we invoke the character relations of Shelstad. However, first we remove the tildes by
assuming τf is non-endoscopic, in the sense that

∀ρ ∃v � ∞ : ∆Gv,Hv
(ρv, τv) = 0.

Furthermore, we assume τf is tempered, meaning that τv is tempered for almost all v.
Then, by Proposition 6.3 on p. 556 in [4] (which assumes the congruence relation on
p. 555), the representation Π∞ ⊗ τf can only be automorphic for tempered Π∞; once we
know Π∞ is cohomological for some ξ. It must be, if it contributes to the left-hand side
of the above trace identity.

5.8. Shelstad’s character relations at infinity

Recall our standing assumption: τf is a non-endoscopic tempered representation of
G(Af

F ). We wish to compare the trace identity from the previous section with the char-
acter relations of Shelstad [30]. In the archimedean case, the local Langlands correspon-
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dence is completely known [21]. Thus, the irreducible admissible representations of G0,∞
are partitioned into finite subsets Πµ, the L-packets, parametrized by L-parameters µ.
Such a µ corresponds to a tuple

µ = (µv)v|∞, µv : WR → LG0,v.

Here WR is the Weil group of R, a non-trivial extension of {±1} by C∗, and µv is a
so-called admissible homomorphism. For each v, associated with µv, there is an L-packet
Πµv of representations of G0,v. Then Πµ is the tensor product ⊗v|∞Πµv . The group
G∞ is compact mod centre, so its L-packets are singletons, parametrized by the subset
of discrete parameters µ; this means no µv maps into a parabolic subgroup. We denote
the corresponding representation of G∞ by πµ. When µv is discrete, the corresponding
packet for G0,v consists of two discrete series representations. Precisely one of them is
generic (that is, it has a Whittaker model), whereas the other is holomorphic. We will
use the notation

Πµv
= {Πg

µv
, Πh

µv
}.

Thus, the L-packet Πµ consists of exactly 2d discrete series representations.

Lemma 5.9. For a fixed µ, the coefficient aG0
disc(Π∞ ⊗ τf ) is constant for Π∞ ∈ Πµ.

Proof. For a fixed τf , we introduce the following distribution on G0,∞,

T
df=

∑
Π∞:ωΠ∞=ω∞

aG0
disc(Π∞ ⊗ τf ) trΠ∞.

Then T is a stable distribution. Suppose φ is a function on G0,∞ with vanishing stable
orbital integrals. Then it matches the zero function on G∞. By the trace identity from
the previous section, T (φ) = 0. Therefore, we can expand T as

T =
∑

µ

cµ trΠµ, trΠµ
df=

∑
Π∞∈Πµ

trΠ∞.

Since τf is tempered, only the tempered Π∞ can contribute to this sum. So, we are
summing over the tempered parameters µ. That is, those whose image is bounded when
projected onto the dual group. By linear independence of characters for G0,∞, we can
match the coefficients and get what we aimed for,

aG0
disc(Π∞ ⊗ τf ) = cµ

for all Π∞ ∈ Πµ. Here µ is an arbitrary (tempered) L-parameter. �

Now we can group together the terms on the left-hand side of the trace identity into
packets, and invoke the following character relation due to Shelstad [30]:

trΠµ(φG0
∞ ) = trπµ(φ∞), µ discrete.
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Moreover, trΠµ(φG0
∞ ) = 0 when µ is not discrete. Again, using linear independence of

characters on the group G∞, we deduce the equality of multiplicities:

aG
disc(πµ ⊗ τf ) = aG0

disc(Π∞ ⊗ τf ),

for all Π∞ ∈ Πµ and an arbitrary discrete L-parameter µ. This equality immediately
enables us to transfer automorphic representations from G to G0, and vice versa! The
proof of Theorem B on Jacquet–Langlands transfer is complete.
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