Homework #3 Solutions:

#50

a, b group elements, \(|a| = 2, b = e \) s.t. \(ab = b^2 \). Find \(|b| \).

Solu. \(b^2 = e \) since if \(ab = e \) \(\Rightarrow \) \(b = e \) which it isn't.

Thus, \(b^4 = (aba)^2 = ababa \)

\[= ab^2a \]

\[= a(ab)a \]

\[= b \]

\[\Rightarrow b^3 = e \]

\[\Rightarrow \quad |b| = 3 \]

#58

\(U(15) \) has six cyclic subgroups, list them.

Solu. \(\langle 1 \rangle, \langle 2 \rangle = \langle 8 \rangle, \langle 4 \rangle, \langle 7 \rangle = \langle 13 \rangle, \langle 11 \rangle, \langle 14 \rangle \)

#60

G a group with exactly eight elements of order 3. How many order 3 subgroups are in G?

Solu. Let \(H \) be of order 3, thus \(H \) is cyclic, say \(H = \langle x \rangle \)

So \(H = \{ 1, x, x^2 \} \), but \(x^2 = x^{-1} \) and \(|x| = 1 \times |x|^1 \), so \(H = \langle x^{-1} \rangle \). So, there are \(\frac{8}{3} = 4 \) subgroups of order 3.

#70

Let \(F \) be reflection, \(R \) rotation in \(D_n \). Find \(C(F) \) if \(n \) is even or odd, and \(C(F) \).

Solu. \(C(F) = \langle R \rangle \) since any element in \(D_n \) is of the form \(RF \) some \(k \) and \(R \in C(R) \) is clear. So, if \(R^k \in C(R) \) \(\Rightarrow RF \in C(R) \) \(\Rightarrow C(R) = D_n \) which is not true since \(FRF = R^{-1} \).

* For \(n \) even, use that \(R^k = R^{-k} \) to get \(R^k \in C(R) \).

* For \(n \) odd, show that \(R^k \in C(F) \) for any \(i \).
#80

G a finite group with more than one element. Show that G has an element of prime order.

Pf: \(|a| < \infty \) so let \(a \neq e \) be in \(G \). Consider \(< a > \leq G \).

1. Let \(m = |a| \), hence of \(< a > \). Write \(\mathbb{Z}_m = \prod_{p \mid m} p^{a(p)} \) (so \(a(p) = 0 \) for all but finitely many primes \(p \)).

2. Since \(m + 1 \) we know \(\exists p \) s.t. \(a(p) \geq 1 \), consider the subgroup \(< a > \leq < a > \). Then, \(|a^{a(p)}| = p \Rightarrow a^{a(p)} \in G \) is an element of order \(p \).

#9

Suppose \(< a >, < b >, < c > \) are cyclic groups of orders 6, 8, and 20 respectively. Find all generators of \(< a >, < b >, \) and \(< c > \).

- \(|< a >| = 6 \) so, using \(< a > = < a^{\text{gcd}(6,k)} > \), we consider the integers \(1 \leq k \leq 6 \) s.t. \(\text{gcd}(6,k) = 1 \), namely \(k = 1, 5 \).

- \(|< b >| = 8 \) so find \(1 \leq k \leq 8 \) s.t. \(\text{gcd}(8,k) = 1 \), namely \(k = 1, 3, 5, 7 \). Then, generators of \(< b > \) are \(b, b^3, b^5, b^7 \).

- \(|< c >| = 20 \) so find \(1 \leq k \leq 20 \) s.t. \(\text{gcd}(20,k) = 1 \), namely \(k = 1, 3, 7, 9, 11, 13, 17, 19 \), so generators of \(< c > \) are \(c, c^3, c^7, c^9, c^9, c^{13}, c^{17}, c^{19} \).

#4

List elements of \(< 3 > \) and \(< 15 > \) in \(\mathbb{Z}_{18} \). Let \(|a| = 18 \), list elements of \(< a^3 > \) and \(< a^{15} > \).

Solu: \(< 3 > = \{ 3, 6, 9, 12, 15, 0 \} \) or more precisely \(\{ [3], [6], [9], [12], [15] \} \) let \(|a| = 18 \),

Similarly \(< 15 > = \{ [15], [12], [9], [6], [3], [0] \} \).
#8

\[a \in G \text{ s.t. } |a| = 15. \text{ Find:} \]

1. \(|a^3|, |a^6|, |a^9|, |a^{12}| \)
2. \(|a^5|, |a^{10}| \)
3. \(|a^2|, |a^4|, |a^8|, |a^{14}| \)

\[\text{Sol:} \]

Use the fact that if \(a \in G \) is of order \(n \), then \(|a^k| = \frac{n}{(n,k)} \).

So,

\[|a^3| = \frac{15}{(3,15)} = 5, \quad |a^9| = \frac{15}{(9,15)} = 5 \]
\[|a^6| = \frac{15}{(6,15)} = 5, \quad |a^{12}| = \frac{15}{(12,15)} = 5 \]
\[|a^5| = \frac{15}{(5,15)} = 3, \quad |a^{10}| = \frac{15}{(10,15)} = 3 \]
\[|a^2| = 15 = |a^4| = |a^8| = |a^{14}|. \]

#10

In \(\mathbb{Z}_{24} \), list all generators of the subgroup of order 8. Let \(G = \langle a \rangle \) s.t. \(|a| = 24 \), list all generators of the subgroup of order 8.

\[\text{Sol:} \]

\(\mathbb{Z}_{24} : 6|24 \) so \(\exists! \) subgroup of order 8 in \(\mathbb{Z}_{24} \), namely the subgroup generated by \(\langle 3 \rangle \). The generators of \(\langle 3 \rangle \) are all of the form \(3k \) where \((3,8) = 1\), namely \(3, 9, 15, 21 \).

Note: There are \(\phi(8) = 2^3 - 2^2 = 4 \) such generators.

\(G = \langle a \rangle \) with \(|a| = 24 \). \(8|24 \) so \(\exists! \) subgroup of order 8 in G namely \(\langle a^3 \rangle \). The generators of \(\langle a^3 \rangle \) are those of the form \(a^{3k} \) for \((3,8) = 1\), namely, \(a^3, a^9, a^{15}, a^{21} \).

#12

In \(\mathbb{Z} \), find all generators of \(\langle 3 \rangle \). If \(|a| = \infty \), find all generators of \(\langle a \rangle \).

\[\text{Sol:} \]

If \(H \subseteq \mathbb{Z} \implies H = \langle k \rangle \) some \(k \in \mathbb{Z} \). So, since a generator \(x \) of \(\langle 3 \rangle \) would satisfy \(\langle 3 \rangle = \langle x \rangle \) we get \(x \in \langle 3 \rangle \) and \(3 \in \langle x \rangle \).

But, \(x \in \langle 3 \rangle \implies 3|\text{ord } x \), and \(3 \in \langle x \rangle \implies x|3 \), hence only choices for \(x \) are 3 or \(-3 \). Thus, only generators of \(\langle 3 \rangle \) are 3 and \(-3 \). Same for \(\langle a^3 \rangle \), only generators are \(a^3 \) and \(a^{-3} \).