MATH 103A, MODERN ALGEBRA I, FINAL Friday, December 13th, 2019, 8–11am, APM B402A

- Your Name:
- ID Number:
- Section:

B01 (5:00 PM) B02 (6:00 PM)

Problem #	Points (out of 10)
1	
2	
3	
4	
5	
6	
7	
8	
9	

Total (out of 90):

Problem 1. Let (G, *) be a cyclic group of size 10. Choose a generator $a \in G$.

(a) Find the <u>order</u> of each of its elements:

e a a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9

Circle those x above for which $G = \langle x \rangle$ holds.

- (b) List the elements of the two non-trivial subgroups $\langle a^2 \rangle$ and $\langle a^5 \rangle$.
- (c) Find all the elements of the cosets $a * \langle a^2 \rangle$ and $a * \langle a^5 \rangle$.

Problem 2. Recall that $(\mathbb{Z}_{11}^{\times}, \bullet)$ denotes the multiplicative group of all the invertible residue classes modulo 11.

- (a) Find $|\mathbb{Z}_{11}^{\times}|$ and check that the residue class [2] generates \mathbb{Z}_{11}^{\times} .
- (b) Give the order of each of the elements:

 $[1] \quad [2] \quad [3] \quad [4] \quad [5] \quad [6] \quad [7] \quad [8] \quad [9] \quad [10]$

Circle those [x] above for which $\mathbb{Z}_{11}^{\times} = \langle [x] \rangle$ holds.

(c) List all the elements of the cosets $[2] \bullet \langle [4] \rangle$ and $[3] \bullet \langle [4] \rangle$.

Problem 3. Recall that $(\mathbb{Z}_{15}, +)$ denotes the additive group of all residue classes modulo 15.

- (a) Give all integers x in the range $0 \le x < 15$ such that $\mathbb{Z}_{15} = \langle [x] \rangle$.
- (b) Write down all elements of the two non-trivial subgroups of $\mathbb{Z}_{15}.$
- (c) Explain why the quotient group $\mathbb{Z}_{15}/\langle [5] \rangle$ is isomorphic to \mathbb{Z}_5 .

Problem 4. Consider the additive group $(\mathbb{Z}, +)$ of all integers. Recall that $N\mathbb{Z}$ denotes the subgroup of \mathbb{Z} consisting of all integer multiples of N.

- (a) Find the positive integer M such that $65\mathbb{Z} \cap 91\mathbb{Z} = M\mathbb{Z}$.
- (b) Find the positive integer N such that $65\mathbb{Z} + 91\mathbb{Z} = N\mathbb{Z}$, and express N as a linear combination 65x + 91y for suitable integers $x, y \in \mathbb{Z}$.
- (c) Let $f: 65\mathbb{Z} \longrightarrow \mathbb{Z}_{91}$ be the homomorphism sending an $a \in 65\mathbb{Z}$ to its residue class [a] modulo 91. Calculate the following two quantities:
 - (i) The cardinality of im(f).
 - (ii) The index of ker(f) in 65 \mathbb{Z} .

Problem 5. Let $\alpha \in S_9$ be the permutation $\alpha = (1234)(25)(617)(389)$.

(a) Express α in array form. That is, fill in the blank boxes below.

 $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \Box & \Box \end{pmatrix}$

- (b) Is α a cycle? If not, find its decomposition into disjoint cycles.
- (c) Compute $\operatorname{ord}(\alpha)$ and $\operatorname{sign}(\alpha)$. Does α belong to A_9 ?

Problem 6. For each of the five statements below indicate whether it is true or false. Justify your answers.

- (a) The group of rotational symmetries of a tetrahedron is isomorphic to S_3 .
- (b) The group of rotational symmetries of a cube is isomorphic to S_4 .
- (c) The direct product $G \times G$ is **not** cyclic for any non-trivial group G.
- (d) All subgroups of an abelian group are normal.
- (e) If G is any group, and $H \subset G$ is a normal subgroup, the following holds:

G cyclic $\iff H$ and G/H are cyclic.

Problem 7. Consider the alternating group A_5 .

- (a) Compute its cardinality $|A_5|$ and its index in S_5 .
- (b) Prove or disprove the existence of a non-trivial homomorphism

$$f: A_5 \longrightarrow \{\pm 1\}.$$

- (c) Let $H \subset A_5$ be the subgroup generated by the 3-cycle (135).
 - (i) Find the index $[A_5:H]$.
 - (ii) List all elements of the coset $(12345) \circ H$. (Express all permutations as a composition of disjoint cycles.) Is $(12345) \circ H = H \circ (12345)$?

Problem 8. Let (G, *) be a group. The <u>commutator</u> of $a, b \in G$ is the element

$$[a,b] == a * b * a^{-1} * b^{-1}.$$

Let $H \subset G$ be the subset consisting of all finite products¹ of commutators.

- (a) Show that $[a, b]^{-1} = [b, a]$. Deduce that H is a subgroup of G.
- (b) Verify the formula below for all $g, a, b \in G$:

$$g * [a, b] * g^{-1} = [g * a * g^{-1}, g * b * g^{-1}].$$

Deduce that H is a **normal** subgroup of G.

(c) Prove that the quotient group G/H is abelian.

¹I.e., all expressions $[a_1, b_1] \ast \cdots \ast [a_N, b_N]$ for varying N and $a_i, b_i \in G$. This includes e.

Problem 9. Consider the dihedral group D_5 of all symmetries of a pentagon centered at the origin. Recall that D_5 is generated by elements r, s satisfying:

 $\operatorname{ord}(r) = 5$ $\operatorname{ord}(s) = 2$ $rs = sr^{-1}$

(a) Write down its cardinality $|D_5|$. Is D_5 an abelian group?

(b) What is the order of the element rs?

- (c) Prove the following two statements:
 - (i) The **only** two elements of D_5 commuting with s are e and s.
 - (ii) The **only** elements of D_5 commuting with r are the powers of r.

Extra I.

Extra II.

Extra III.