Math 103A, Fall 2019
Modern Algebra I, HW 0

Not to be handed in. For your personal use only. Will not be graded.

Problem A. Let $a, b \in \mathbb{Z}$ be two integers. Recall that a divides b if one can write $b=q a$ for some $q \in \mathbb{Z}$. When that happens the notation we use is $a \mid b$. Prove the following two properties, for any three $a, b, c \in \mathbb{Z}$:
(a) $a \mid a$.
(b) $a|b \wedge b| c \Longrightarrow a \mid c$.

Suppose $a \mid b$ and $b \mid a$. Can one deduce that $a=b$? What if a, b are both nonzero?

Problem B. Given $a, b \in \mathbb{Z}$ with $a>0$, there are uniquely determined $q, r \in \mathbb{Z}$ such that the following two conditions are satisfied simultaneously:
(i) $b=q a+r$,
(ii) $0 \leq r<a$.
(This is called "division with remainder".)
(a) Let $a=17$ and $b=2019$. Find the corresponding pair q, r.
(b) In general, suppose d is a common divisor of a and b. That is $d \mid a$ and $d \mid b$. Deduce that $d \mid r$.
(c) Use the observation in part (b) to find the greatest common divisor of 143 and 221. Then write it in the form

$$
\operatorname{GCD}(143,221)=143 x+221 y
$$

for suitable integer coefficients $x, y \in \mathbb{Z}$. ("Euclid's Algorithm".)

Problem C. A prime number is an integer $p>1$ whose only positive divisors are 1 and p.
(a) List all the prime numbers less than 20 .
(b) Factor 60 as a product of prime numbers.
(c) Is there an $n>1$ such that $4^{n}-1$ is a prime number?

Problem D. For any positive integer $n \in \mathbb{N}$ and any real number $x \neq 1$ the following very useful formula holds:

$$
\begin{equation*}
1+x+x^{2}+x^{3}+\cdots+x^{n-1}=\frac{x^{n}-1}{x-1} \tag{1}
\end{equation*}
$$

(Known as the "Geometric Sum Formula".)
(a) Prove the formula (1) above using mathematical induction on n.
(b) Infer that 5 divides $6^{n}-1$ for all $n \in \mathbb{N}$. (Hint: Take $x=6$.)

Problem E. Consider the following two subsets of \mathbb{N}.

$$
A=\{2,3,5,7,11,13,17,19\}, \quad B=\{1,3,4,11,17,18\}
$$

(a) Find their cardinalities $|A|$ and $|B|$.
(b) List the elements of their union $A \cup B$ and intersection $A \cap B$.
(c) How many subsets does B have?
(d) Which of the following statements are true?
(i) $1 \in A$
(ii) $A \subseteq B$
(iii) $B \subseteq A$
(iv) $x \in A \Longleftrightarrow x$ is a prime number
(v) $x \in B \Longrightarrow x<100$

Problem F. Let $\mathrm{GL}_{N}(\mathbb{R})$ be the set of invertible ${ }^{1} N \times N$-matrices A with all its entries in \mathbb{R}. Verify in gory detail that $\mathrm{GL}_{N}(\mathbb{R})$ constitutes a group under matrix multiplication. (Called the "General Linear" group.)
(a) Verify the relation $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)^{n}=\left(\begin{array}{cc}1 & n a \\ 0 & 1\end{array}\right)$ for all $n \in \mathbb{Z}$ - possibly negative.
(b) For any integer $n>1$ find a 2×2-matrix A such that $A^{n}=I$ but none of the preceding powers $A, A^{2}, \ldots, A^{n-1}$ equal I. (Hint: Try a rotation matrix $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ for a suitable angle θ.)

[^0]
[^0]: ${ }^{1}$ This means there is an $N \times N$-matrix B such that $A B=B A=I=$ the identity matrix.

