Math 103A, Fall 2019

Modern Algebra I, HW 0

Not to be handed in. For your personal use only. Will not be graded.

Problem A. Let $a, b \in \mathbb{Z}$ be two integers. Recall that a <u>divides</u> b if one can write b = qa for some $q \in \mathbb{Z}$. When that happens the notation we use is a|b. Prove the following two properties, for any three $a, b, c \in \mathbb{Z}$:

- (a) a|a.
- (b) $a|b \wedge b|c \Longrightarrow a|c$.

Suppose a|b and b|a. Can one deduce that a = b? What if a, b are both nonzero?

Problem B. Given $a, b \in \mathbb{Z}$ with a > 0, there are uniquely determined $q, r \in \mathbb{Z}$ such that the following two conditions are satisfied simultaneously:

- (i) b = qa + r,
- (ii) $0 \le r < a$.

(This is called "division with remainder".)

- (a) Let a = 17 and b = 2019. Find the corresponding pair q, r.
- (b) In general, suppose d is a common divisor of a and b. That is d|a and d|b. Deduce that d|r.
- (c) Use the observation in part (b) to find the greatest common divisor of 143 and 221. Then write it in the form

$$GCD(143, 221) = 143x + 221y$$

for suitable integer coefficients $x, y \in \mathbb{Z}$. ("Euclid's Algorithm".)

Problem C. A prime number is an integer p > 1 whose only positive divisors are 1 and p.

(a) List all the prime numbers less than 20.

- (b) Factor 60 as a product of prime numbers.
- (c) Is there an n > 1 such that $4^n 1$ is a prime number?

Problem D. For any positive integer $n \in \mathbb{N}$ and any real number $x \neq 1$ the following very useful formula holds:

$$1 + x + x^{2} + x^{3} + \dots + x^{n-1} = \frac{x^{n} - 1}{x - 1}.$$
 (1)

(Known as the "Geometric Sum Formula".)

- (a) Prove the formula (1) above using mathematical induction on n.
- (b) Infer that 5 divides $6^n 1$ for all $n \in \mathbb{N}$. (Hint: Take x = 6.)

Problem E. Consider the following two subsets of \mathbb{N} .

$$A = \{2, 3, 5, 7, 11, 13, 17, 19\}, \qquad B = \{1, 3, 4, 11, 17, 18\}.$$

- (a) Find their cardinalities |A| and |B|.
- (b) List the elements of their union $A \cup B$ and intersection $A \cap B$.
- (c) How many subsets does B have?
- (d) Which of the following statements are true?
 - (i) $1 \in A$
 - (ii) $A \subseteq B$
 - (iii) $B \subseteq A$
 - (iv) $x \in A \iff x$ is a prime number
 - (v) $x \in B \Longrightarrow x < 100$

Problem F. Let $\operatorname{GL}_N(\mathbb{R})$ be the set of invertible¹ $N \times N$ -matrices A with all its entries in \mathbb{R} . Verify in gory detail that $\operatorname{GL}_N(\mathbb{R})$ constitutes a group under matrix multiplication. (Called the "General Linear" group.)

- (a) Verify the relation $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & na \\ 0 & 1 \end{pmatrix}$ for all $n \in \mathbb{Z}$ possibly negative.
- (b) For any integer n > 1 find a 2×2 -matrix A such that $A^n = I$ but none of the preceding powers A, A^2, \ldots, A^{n-1} equal I. (Hint: Try a rotation matrix $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ for a suitable angle θ .)

¹This means there is an $N \times N$ -matrix B such that AB = BA = I = the identity matrix.