HW0 SOLUTION

JI ZENG

Problem.A

For (a), we have $a=1 \cdot a$.
For (b), $a \mid b$ and $b \mid c$ give integers p, q s.t.(such that) $b=p a$ and $c=q b$, then there's integer, namely $p q$, s.t. $c=(p q) a$. So $a \mid c$.
Now suppose $a \mid b$ and $b \mid a$, it's not necessary that $a=b$. A counterexample is $a=1$ and $b=-1$. Clearly $a \mid b$ as $b=(-1) \cdot a$ and $b \mid a$ as $a=(-1) \cdot b$.

Problem.B
(a) $2019=17 \cdot 118+13$.
(b) $d \mid b$ and $d \mid a$ means there're integers m, n s.t. $b=m d$ and $a=n d$. Then by $b=q a+r$, we have $r=b-q a=m d-q n d=(m-q n) d$, which implies $d \mid r$.
(c) Write $g=\operatorname{gcd}(221,143)$. Notice $221=1 \cdot 143+78$, so by (b) $g \mid 78$. Notice $78=2 \cdot 3 \cdot 13$, so g may only contain $\{2,3,13\}$ as factors (with multiplicity one). Notice $2 \nmid 143,3 \nless 143$ and $13 \mid 143$. So $g=13$.
To get wanted x, y, we apply the Euclid algorithm,

$$
\begin{aligned}
221 & =1 \cdot 143+78 \\
143 & =1 \cdot 78+65 \\
78 & =1 \cdot 65+13
\end{aligned}
$$

Hence

$$
\begin{aligned}
13 & =78-1 \cdot 65 \\
& =78-(143-1 \cdot 78) \\
& =(221-1 \cdot 143)-(143-(221-1 \cdot 143)) \\
& =2 \cdot 221-3 \cdot 143
\end{aligned}
$$

Problem.C
(a) $2,3,5,7,11,13,17,19$.
(b) $60=2 \cdot 2 \cdot 3 \cdot 5$.
(c) No there isn't. Use the binomial theorem

$$
4^{n}=(3+1)^{n}=\sum_{i=0}^{n}\binom{n}{i} 3^{i}
$$

We have $4^{n}-1=\sum_{i=1}^{n}\binom{n}{i} 3^{i}$ so clearly $3 \mid 4^{n}-1$ and $3<4^{n}-1$. So $4^{n}-1$ isn't a prime.

Problem.D
(a) For $n=1$, the identity degenerates to $1=1$.

Suppose now that the identity is proved for n, let's consider $n+1$,

$$
\begin{aligned}
\frac{x^{n+1}-1}{x-1} & =\frac{x^{n+1}-x^{n}+x^{n}-1}{x-1} \\
& =\frac{x^{n+1}-x^{n}}{x-1}+\frac{x^{n}-1}{x-1} \\
& =x^{n}+\frac{x^{n}-1}{x-1} \\
& =x^{n}+x^{n-1}+x^{n-2}+\cdots+1, \text { by induction hypothesis. }
\end{aligned}
$$

Hence we conclude the proof.
(b) Apply the identity to $x=6$, we have $6^{n}-1=\left(\sum_{i=0}^{n-1} 6^{i}\right) \cdot 5$, as wanted.

Problem.E
(a) $|A|=8$ and $|B|=6$.
(b) $A \cup B=\{1,2,3,4,5,7,11,13,17,18,19\}$.
$A \cap B=\{3,11,17\}$.
(c) There're $2^{|B|}=2^{6}$ subsets.
(d) Only (v) is true.

Problem.F
To verify $G L(N, \mathbb{R})$ is a group, we need to verify:

1. Multiplication is associative: this is because matrix multiplication is associative. (You should learned this in your linear algebra course.)
2. Existence of identity: the identity matrix $I \in G L(N, \mathbb{R})$ serves the group identity.
3. Existence of inverses: for any matrix $A \in G L(N, \mathbb{R})$, by definition A is invertible. So A^{-1} exists and is in $G L(N, \mathbb{R})$.
(a) Firstly we verify the identity for $n \geq 0$ by induction. For $n=0,1$, this is trivial. Suppose we have verified the identity for n, and we consider for $n+1$, then

$$
\begin{aligned}
\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right)^{n+1} & =\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right)^{n}\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & n a \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & (n+1) a \\
0 & 1
\end{array}\right), \text { by matrix computation. }
\end{aligned}
$$

Now we verify the identity for $n=-1$, which requires as to show that $\left(\begin{array}{cc}1 & -a \\ 0 & 1\end{array}\right)=$ $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)^{-1}$. Indeed, by matrix multiplication, $\left(\begin{array}{cc}1 & -a \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
Then we verify the identity for $n \leq-1$, write $n=-m$ for some $m \geq 1$. Then

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)^{n} & =\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right)^{-1 \cdot m}=\left(\begin{array}{cc}
1 & -a \\
0 & 1
\end{array}\right)^{m} \\
& =\left(\begin{array}{cc}
1 & m(-a) \\
0 & 1
\end{array}\right), \text { apply above identity with }-a \text { and } m \geq 1
\end{aligned}
$$

$$
=\left(\begin{array}{cc}
1 & n a \\
0 & 1
\end{array}\right)
$$

as wanted.
(b) Consider the rotation matrix $A_{\theta}=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$ with $\theta=\frac{2 \pi}{n}$. We know that i-th time rotation of angel θ is equivalent to rotation of $i \theta$. So $A_{\theta}^{i}=A_{i \theta}$ for all $i \in \mathbb{N}$. We also know that identity is exactly rotation of angel 2π. So $A_{\theta}^{n}=I$ and $A_{\theta}^{i} \neq I$ for $i=1, \ldots, n-1$.

