HW0 SOLUTION

JI ZENG

Problem A
For (a), we have \(a = 1 \cdot a \).
For (b), \(a \mid b \) and \(b \mid c \) give integers \(p, q \) s.t.(such that) \(b = pa \) and \(c = qb \), then there’s integer, namely \(pq \), s.t. \(c = (pq)a \). So \(a \mid c \).
Now suppose \(a \mid b \) and \(b \mid a \), it’s not necessary that \(a = b \). A counterexample is \(a = 1 \) and \(b = -1 \). Clearly \(a \mid b \) as \(b = (-1) \cdot a \) and \(b \mid a \) as \((-1) \cdot b \).

Problem B
(a) \(2019 = 17 \cdot 118 + 13 \).
(b) \(d \mid b \) and \(d \mid a \) means there’re integers \(m, n \) s.t. \(b = md \) and \(a = nd \). Then by \(b = qa + r \), we have \(r = b - qa = md - qmd = (m - qp)d \), which implies \(d \mid r \).
(c) Write \(g = \gcd(221, 143) \). Notice \(221 = 1 \cdot 143 + 78 \), so by (b) \(g \mid 78 \). Notice \(78 = 2 \cdot 3 \cdot 13 \), so \(g \) may only contain \(\{2, 3, 13\} \) as factors (with multiplicity one).
Notice \(2 \nmid 143, 3 \nmid 143 \) and \(13 \mid 143 \). So \(g = 13 \).
To get wanted \(x, y \), we apply the Euclid algorithm,
\[
221 = 1 \cdot 143 + 78, \\
143 = 1 \cdot 78 + 65, \\
78 = 1 \cdot 65 + 13.
\]
Hence
\[
13 = 78 - 1 \cdot 65 \\
= 78 - (143 - 1 \cdot 78) \\
= (221 - 1 \cdot 143) - (143 - (221 - 1 \cdot 143)) \\
= 2 \cdot 221 - 3 \cdot 143.
\]

Problem C
(a) \(2, 3, 5, 7, 11, 13, 17, 19 \).
(b) \(60 = 2 \cdot 2 \cdot 3 \cdot 5 \).
(c) No there isn’t. Use the binomial theorem
\[
4^n = (3 + 1)^n = \sum_{i=0}^{n} \binom{n}{i} 3^i.
\]
We have \(4^n - 1 = \sum_{i=1}^{n} \binom{n}{i} 3^i \) so clearly \(3 \mid 4^n - 1 \) and \(3 < 4^n - 1 \). So \(4^n - 1 \) isn’t a prime.

Problem D
(a) For \(n = 1 \), the identity degenerates to \(1 = 1 \).
Suppose now that the identity is proved for n, let’s consider $n+1$,
\[
\frac{x^{n+1} - 1}{x - 1} = \frac{x^{n+1} - x^n + x^n - 1}{x - 1} \\
= \frac{x^{n+1} - x^n}{x - 1} + \frac{x^n - 1}{x - 1} \\
= x^n + \frac{x^n - 1}{x - 1} \\
= x^n + x^{n-1} + x^{n-2} + \cdots + 1,
\]
by induction hypothesis.

Hence we conclude the proof.

(b) Apply the identity to $x = 6$, we have $6^n - 1 = (\sum_{i=0}^{n-1} 6^i) \cdot 5$, as wanted.

Problem E
(a) $|A| = 8$ and $|B| = 6$.
(b) $A \cup B = \{1, 2, 3, 4, 5, 7, 11, 13, 17, 18, 19\}$.
$A \cap B = \{3, 11, 17\}$.
(c) There’re $2^{|B|} = 2^6$ subsets.
(d) Only (v) is true.

Problem F
To verify $GL(N, \mathbb{R})$ is a group, we need to verify:
1. Multiplication is associative: this is because matrix multiplication is associative. (You should learned this in your linear algebra course.)
2. Existence of identity: the identity matrix $I \in GL(N, \mathbb{R})$ serves the group identity.
3. Existence of inverses: for any matrix $A \in GL(N, \mathbb{R})$, by definition A is invertible. So A^{-1} exists and is in $GL(N, \mathbb{R})$.

(a) Firstly we verify the identity for $n \geq 0$ by induction. For $n = 0, 1$, this is trivial. Suppose we have verified the identity for n, and we consider for $n+1$, then
\[
\begin{pmatrix}
1 & a \\
0 & 1
\end{pmatrix}^{n+1} = \begin{pmatrix}
1 & a \\
0 & 1
\end{pmatrix}^{n} \begin{pmatrix}
1 & a \\
0 & 1
\end{pmatrix} \\
= \begin{pmatrix}
1 & na \\
0 & 1
\end{pmatrix} \begin{pmatrix}
1 & a \\
0 & 1
\end{pmatrix} \\
= \begin{pmatrix}
1 & (n+1)a \\
0 & 1
\end{pmatrix}, \text{ by matrix computation.}
\]

Now we verify the identity for $n = -1$, which requires as to show that
\[
\begin{pmatrix}
1 & -a \\
0 & 1
\end{pmatrix}^{-1} = \begin{pmatrix}
1 & a \\
0 & 1
\end{pmatrix}.
\]
Indeed, by matrix multiplication, \[
\begin{pmatrix}
1 & -a \\
0 & 1
\end{pmatrix} \begin{pmatrix}
1 & a \\
0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}.
\]
Then we verify the identity for $n \leq -1$, write $n = -m$ for some $m \geq 1$. Then
\[
\begin{pmatrix}
1 & a \\
0 & 1
\end{pmatrix}^{n} = \begin{pmatrix}
1 & a \\
0 & 1
\end{pmatrix}^{-1-m} = \begin{pmatrix}
1 & -a \\
0 & 1
\end{pmatrix}^{m} \\
= \begin{pmatrix}
1 & m(-a) \\
0 & 1
\end{pmatrix}, \text{ apply above identity with } -a \text{ and } m \geq 1
\]
\[
\begin{pmatrix}
1 & na \\
0 & 1
\end{pmatrix},
\]
as wanted.

(b) Consider the rotation matrix \(A_\theta = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \) with \(\theta = \frac{2\pi}{n} \). We know that \(i \)-th time rotation of angle \(\theta \) is equivalent to rotation of \(i\theta \). So \(A_\theta^i = A_{i\theta} \) for all \(i \in \mathbb{N} \). We also know that identity is exactly rotation of angle \(2\pi \). So \(A_\theta^n = I \) and \(A_\theta^i \neq I \) for \(i = 1, \ldots, n - 1 \).