MATH 103A, FALL 2019

Modern Algebra I, HW 1

Due Friday October 11th at 11:30AM in Ji Zeng's box outside B402A.

From Armstrong's Groups and Symmetry:

- Exercises (Chapter 2, pages 9–10): 2.3, 2.8
- Exercises (Chapter 3, pages 13–14): 3.1, 3.2

Problem A. Let (G, *) be a set with a composition law. An element $e \in G$ is called <u>neutral</u> if the equalities a * e = a and e * a = a both hold for all $a \in G$.

- (a) Prove that there can be at most one neutral element e.
- (b) Give an example of a pair (G, *) which does not admit a neutral element.

Problem B. Keep the setup in Problem A, but add the assumptions that (G, *) satisfies the associative law and has a neutral element e. Given an $a \in G$, an inverse of a is an element $b \in G$ for which a * b = e and b * a = e.

- (a) Show that any element $a \in G$ can have at most one inverse b.
- (b) Consider \mathbb{Z} with multiplication. Which elements have an inverse in \mathbb{Z} ?

Problem C. For each of the congruence equations below find all integer solutions x in the range |x| < 25.

- (a) $x+3 \equiv 5 \pmod{11}$
- (b) $3x \equiv 5 \pmod{11}$
- (c) $5x + 3 \equiv 1 \pmod{11}$

Problem D.

- (a) Compute GCD(899,1147) and LCM(899,1147). (Hint: Euclid.)
- (b) Find a pair of integers (x, y) satisfying the following relation:

GCD(899, 1147) = 899x + 1147y.

(c) Factor each of the number 899 and 1147 into prime numbers.