Due Friday October 11th at 11:30AM in Ji Zeng's box outside B402A.

From Armstrong's Groups and Symmetry:

- Exercises (Chapter 2, pages 9-10):
2.3, 2.8
- Exercises (Chapter 3, pages 13-14):
3.1, 3.2

Problem A. Let $(G, *)$ be a set with a composition law. An element $e \in G$ is called neutral if the equalities $a * e=a$ and $e * a=a$ both hold for all $a \in G$.
(a) Prove that there can be at most one neutral element e.
(b) Give an example of a pair $(G, *)$ which does not admit a neutral element.

Problem B. Keep the setup in Problem A, but add the assumptions that ($G, *$) satisfies the associative law and has a neutral element e. Given an $a \in G$, an inverse of a is an element $b \in G$ for which $a * b=e$ and $b * a=e$.
(a) Show that any element $a \in G$ can have at most one inverse b.
(b) Consider \mathbb{Z} with multiplication. Which elements have an inverse in \mathbb{Z} ?

Problem C. For each of the congruence equations below find all integer solutions x in the range $|x|<25$.
(a) $x+3 \equiv 5(\bmod 11)$
(b) $3 x \equiv 5(\bmod 11)$
(c) $5 x+3 \equiv 1(\bmod 11)$

Problem D.

(a) Compute $\operatorname{GCD}(899,1147)$ and $\operatorname{LCM}(899,1147)$. (Hint: Euclid.)
(b) Find a pair of integers (x, y) satisfying the following relation:

$$
\operatorname{GCD}(899,1147)=899 x+1147 y
$$

(c) Factor each of the number 899 and 1147 into prime numbers.

