Math 103A, Fall 2019

Modern Algebra I, HW 2

Due Friday October 18th at 11:30AM in Ji Zeng's box outside B402A.

From Armstrong's Groups and Symmetry:

- Exercises (Chapter 2, pages 9–10): 2.7
- Exercises (Chapter 3, pages 13–14): 3.3, 3.4, 3.7

Problem A. Let (G, *) be a group. Associated with each element $a \in G$ there is a function from G to itself which we denote $r_a : G \longrightarrow G$ given by the recipe

$$r_a(x) = x * a \qquad \forall x \in G.$$

(Think of r_a as multiplication-by-a on the right.)

- (a) Verify in detail that r_a is bijective for all $a \in G$.
- (b) For any two elements $a, b \in G$ show that the following relation holds:

$$r_{a*b} == r_b \circ r_a.$$

(On the right-hand side \circ denotes composition of functions.)

Problem B.

- (a) Let (G, *) be a group with three elements $\{e, a, b\}$ (of which e is the neutral element). Explain why we must have a * b = e, and use this observation to fill out the entire composition table.
- (b) Now let (G, *) be a group with four elements $\{e, a, b, c\}$. Show that either a * b = e or a * b = c. Assuming a * b = e complete the composition table.
- (c) In continuation of part (b) in the case where a * b = c complete the composition table under the additional assumption that $a^2 = b^2 = c^2 = e$.

Problem C. Let \mathbb{Z}_{43}^{\times} denote the (multiplicative) group of all invertible residue classes modulo 43.

- (a) Find its cardinality $|\mathbb{Z}_{43}^{\times}|$.
- (b) Compute the following products in \mathbb{Z}_{43}^{\times} :

 $[2] \bullet [5], \quad [3] \bullet [17], \quad [11] \bullet [13], \quad [-7] \bullet [19].$

(Express your answers in the form [x] with $x \in \mathbb{Z}$ in the range $0 \le x < 43$.)

(c) Explain why [41] belongs to \mathbb{Z}_{43}^{\times} and find its inverse class: Find the $x \in \mathbb{Z}$ in the range $0 \le x < 43$ satisfying the congruence $41x \equiv 1 \pmod{43}$.

Problem D.

- (a) Calculate $\phi(385)$. (Here ϕ denotes Euler's function.)
- (b) Find the general solution to the following system of congruences:

 $x \equiv 1 \pmod{5} \land x \equiv 2 \pmod{7} \land x \equiv 3 \pmod{11}.$

(c) For the system in (b) list all solutions $x \in \mathbb{Z}$ with |x| < 400.