Due Friday October 18th at 11:30AM in Ji Zeng's box outside B402A.

From Armstrong's Groups and Symmetry:

- Exercises (Chapter 2, pages 9-10):
2.7
- Exercises (Chapter 3, pages 13-14):
3.3, 3.4, 3.7

Problem A. Let $(G, *)$ be a group. Associated with each element $a \in G$ there is a function from G to itself which we denote $r_{a}: G \longrightarrow G$ given by the recipe

$$
r_{a}(x)=x * a \quad \forall x \in G
$$

(Think of r_{a} as multiplication-by- a on the right.)
(a) Verify in detail that r_{a} is bijective for all $a \in G$.
(b) For any two elements $a, b \in G$ show that the following relation holds:

$$
r_{a * b}=r_{b} \circ r_{a}
$$

(On the right-hand side \circ denotes composition of functions.)

Problem B.

(a) Let $(G, *)$ be a group with three elements $\{e, a, b\}$ (of which e is the neutral element). Explain why we must have $a * b=e$, and use this observation to fill out the entire composition table.
(b) Now let $(G, *)$ be a group with four elements $\{e, a, b, c\}$. Show that either $a * b=e$ or $a * b=c$. Assuming $a * b=e$ complete the composition table.
(c) In continuation of part (b) - in the case where $a * b=c$ complete the composition table under the additional assumption that $a^{2}=b^{2}=c^{2}=e$.

Problem C. Let \mathbb{Z}_{43}^{\times}denote the (multiplicative) group of all invertible residue classes modulo 43.
(a) Find its cardinality $\left|\mathbb{Z}_{43}^{\times}\right|$.
(b) Compute the following products in \mathbb{Z}_{43}^{\times}:

$$
[2] \bullet[5], \quad[3] \bullet[17], \quad[11] \bullet[13], \quad[-7] \bullet[19]
$$

(Express your answers in the form $[x]$ with $x \in \mathbb{Z}$ in the range $0 \leq x<43$.)
(c) Explain why [41] belongs to \mathbb{Z}_{43}^{\times}and find its inverse class: Find the $x \in \mathbb{Z}$ in the range $0 \leq x<43$ satisfying the congruence $41 x \equiv 1(\bmod 43)$.

Problem D.

(a) Calculate $\phi(385)$. (Here ϕ denotes Euler's function.)
(b) Find the general solution to the following system of congruences:

$$
x \equiv 1(\bmod 5) \quad \wedge \quad x \equiv 2(\bmod 7) \quad \wedge \quad x \equiv 3(\bmod 11) .
$$

(c) For the system in (b) list all solutions $x \in \mathbb{Z}$ with $|x|<400$.

