Math 103A, Fall 2019

Modern Algebra I, HW 3

Due Friday October 25th at 11:30AM in Ji Zeng's box outside B402A.

From Armstrong's Groups and Symmetry:

Exercises (Chapter 4, pages 18–19):
4.3, 4.6, 4.8, 4.9

Problem A. Let (G, *) be a cyclic group of size 15. Choose a generator $a \in G$.

- (a) List all elements of $\langle a^3 \rangle$ and $\langle a^5 \rangle$.
- (b) Which of the following elements are generators for G?

 $e, \ a, \ a^2, \ a^3, \ a^4, \ a^5, \ a^6, \ a^7, \ a^8, \ a^9, \ a^{10}, \ a^{11}, \ a^{12}, \ a^{13}, \ a^{14}.$

(Circle those elements x for which $G = \langle x \rangle$ holds.)

(c) Find the order of a^{2019} .

Problem B. $(\mathbb{Z}_{12}, +)$ is the additive group of all residue classes modulo 12.

- (a) Explain why [5] is a generator for \mathbb{Z}_{12} .
- (b) Find <u>all</u> integers x in the range $0 \le x < 12$ for which [x] generates \mathbb{Z}_{12} .
- (c) List all elements of $\langle [3] \rangle$ and $\langle [4] \rangle$.

Problem C. Recall that $(\mathbb{Z}_{13}^{\times}, \bullet)$ denotes the multiplicative group of invertible residue classes modulo 13.

- (a) Check that [2] is a generator for \mathbb{Z}_{13}^{\times} . Conclude that \mathbb{Z}_{13}^{\times} is cyclic.
- (b) Find <u>all</u> integers x in the range 0 < x < 13 for which [x] generates \mathbb{Z}_{13}^{\times} .
- (c) List all elements of $\langle [3] \rangle$ and $\langle [4] \rangle$.

Problem D. Let (G, *) and (H, \star) be two groups. Recall that the direct product $G \times H$ is the set of all pairs (g, h) with $g \in G$ and $h \in H$ arbitrary. Define a composition law \bullet on $G \times H$ by working componentwise:

$$(g,h) \bullet (g',h') == (g \ast g',h \star h').$$

- (a) Verify in detail that $G \times H$ with \bullet is a group. What is its neutral element?
- (b) Suppose $g \in G$ and $h \in H$ both have finite order. Prove the formula

$$\operatorname{ord}(g,h) = \operatorname{LCM}(\operatorname{ord}(g),\operatorname{ord}(h)).$$

- (c) Use the observation in (b) to deduce the following: If G and H are finite cyclic groups then so is $G \times H$ provided GCD(|G|, |H|) = 1.
- (d) Can you give a different proof of (c) using the Chinese remainder theorem?