Math 103A, Fall 2019
Modern Algebra I, HW 3

Due Friday October 25th at 11:30AM in Ji Zeng's box outside B402A.

From Armstrong's Groups and Symmetry:

- Exercises (Chapter 4, pages 18-19):
4.3, 4.6, 4.8, 4.9

Problem A. Let $(G, *)$ be a cyclic group of size 15. Choose a generator $a \in G$.
(a) List all elements of $\left\langle a^{3}\right\rangle$ and $\left\langle a^{5}\right\rangle$.
(b) Which of the following elements are generators for G ?

$$
e, a, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}, a^{7}, a^{8}, a^{9}, a^{10}, a^{11}, a^{12}, a^{13}, a^{14}
$$

(Circle those elements x for which $G=\langle x\rangle$ holds.)
(c) Find the order of a^{2019}.

Problem B. $\left(\mathbb{Z}_{12},+\right)$ is the additive group of all residue classes modulo 12.
(a) Explain why [5] is a generator for \mathbb{Z}_{12}.
(b) Find all integers x in the range $0 \leq x<12$ for which $[x]$ generates \mathbb{Z}_{12}.
(c) List all elements of $\langle[3]\rangle$ and $\langle[4]\rangle$.

Problem C. Recall that $\left(\mathbb{Z}_{13}^{\times}, \bullet\right)$ denotes the multiplicative group of invertible residue classes modulo 13.
(a) Check that [2] is a generator for \mathbb{Z}_{13}^{\times}. Conclude that \mathbb{Z}_{13}^{\times}is cyclic.
(b) Find all integers x in the range $0<x<13$ for which $[x]$ generates \mathbb{Z}_{13}^{\times}.
(c) List all elements of $\langle[3]\rangle$ and $\langle[4]\rangle$.

Problem D. Let $(G, *)$ and (H, \star) be two groups. Recall that the direct product $G \times H$ is the set of all pairs (g, h) with $g \in G$ and $h \in H$ arbitrary. Define a composition law • on $G \times H$ by working componentwise:

$$
(g, h) \bullet\left(g^{\prime}, h^{\prime}\right)=\left(g * g^{\prime}, h \star h^{\prime}\right) .
$$

(a) Verify in detail that $G \times H$ with \bullet is a group. What is its neutral element?
(b) Suppose $g \in G$ and $h \in H$ both have finite order. Prove the formula

$$
\operatorname{ord}(g, h)=\operatorname{LCM}(\operatorname{ord}(g), \operatorname{ord}(h)) .
$$

(c) Use the observation in (b) to deduce the following: If G and H are finite cyclic groups then so is $G \times H-$ provided $\operatorname{GCD}(|G|,|H|)=1$.
(d) Can you give a different proof of (c) using the Chinese remainder theorem?

