
HW4 SOLUTION

JI ZENG

Only problems with provided solutions will be graded. Solutions might be con-
cise for some problems, but please be noticed that they don’t reflect the wanted
level of detailedness of your answer.

Armstrong.5.2
Provided m|n, then ord([ nm ]) = n

gcd(n, n
m ) = m, which means H := 〈[ nm ]〉 ⊂ Zm is a

subgroup of order m.
Zm contains only one subgroup of order m. Indeed, assume H ′ = 〈[k]〉 is another
subgroup of order m. Then n|km =⇒ n

m |k, which implies k ∈ 〈 nm 〉. So H ′ ⊂ H,
and by their cardinality H ′ = H.
(You can directly claim existence and uniqueness of such a subgroup from lecture
12 as well.)

Armstrong.5.5
We prove the harder direction ( ⇐= ) here, the other direction ( =⇒ ) follows
from the definition of a subgroup. Assume xy ∈ H,∀x, y ∈ H, then fix arbitrary
x ∈ H 6= ∅, consider the sequence

x, x2, x3, . . .

They take values in H by hypothesis, and as H is finite, ∃n 6= m s.t. xn = xm.
WLOG (without loss of generality) we assume n > m, then xn−m = 1 ∈ G. Again
by hypothesis xn−m ∈ H so 1 ∈ H.
It remains to show that H is closed under taking inverses. Indeed, for arbitrary
x ∈ H if x = 1 then x−1 = x ∈ H. If x 6= 1, we know from above that xk = 1 for
some k ≥ 2, then x−1 = xk−1 ∈ H by hypothesis, as wanted.

Problem.B
(a) Use the formula ord([k]) = n

gcd(n,k) in Zn, under the isomorphism Z12 ' U12 we
can compute

ord(ζ1) = 12, ord(ζ2) = 6, ord(ζ3) = 4, ord(ζ4) = 3;

ord(ζ5) = 12, ord(ζ6) = 2, ord(ζ7) = 12, ord(ζ8) = 3;

ord(ζ9) = 4, ord(ζ10) = 6, ord(ζ11) = 12, ord(ζ12) = 1.

Generators are ζ, ζ5, ζ7, ζ11.
(b)
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Figure 1. {ζ2, ζ4, ζ6, ζ8, ζ10, 1}
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Figure 2. {ζ3, ζ6, ζ9, 1}
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Figure 3. {ζ4, ζ8, 1}
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Figure 4. {ζ6, 1}

(c) 〈η4〉 ⊂ 〈η2〉, 〈η6〉 ⊂ 〈η2〉, 〈η6〉 ⊂ 〈η3〉.

Problem.C
(a) 1, 5, 7, 11, 13, 17.
(b) The four subgroups are 〈2〉, 〈3〉, 〈6〉, 〈9〉.
〈9〉 ⊂ 〈3〉, 〈6〉 ⊂ 〈3〉, 〈6〉 ⊂ 〈2〉.
(c) Z18 × Z18, Z18 × U12, Z18 × Z∗11 are not cyclic: We explain for Z18 × U12, the
others are similar. For any (g, h) ∈ Z18×U12, we know from HW3 Problem.D that

ord(g, h) = lcm(ord(g), ord(h)).

And we also know ord(g)|18 and ord(g)|12. So ord(g, h) ≤ lcm(18, 12). Because
gcd(18, 12) 6= 1, ord(g, h) ≤ lcm(18, 12) < 18 ∗ 12, so ord(g, h) 6= 18 ∗ 12, which
means none of the elements could be a generator.



4 JI ZENG

Z18 × Z19 is cyclic by Chinese Remainder Theorem.

Problem.D
(a) MZ + NZ is closed under addition: ∀a1, a2 ∈ MZ + NZ, we can write ai =
Mxi +Nyi for xi, yi ∈ Z. Then a1 + a2 = M(x1 + x2) +N(y1 + y2) ∈MZ +NZ.
0 ∈MZ +NZ: 0 = M ∗ 0 +N ∗ 0.
Existence of inverse: ∀a ∈ MZ + NZ, write a = Mx + Ny, then −a = M(−x) +
N(−y) ∈MZ +NZ.
MZ + NZ ⊂ gcd(M,N)Z: ∀a ∈ MZ + NZ, write a = Mx + Ny. Because
gcd(M,N)|M and gcd(M,N)|N , we conclude gcd(M,N)|Mx + Ny = a. Hence
a ∈ gcd(M,N)Z, as wanted.
MZ + NZ ⊃ gcd(M,N)Z: ∀a ∈ gcd(M,N)Z, write a = gcd(M,N)k for some
k ∈ Z. By Euclid’s algorithm, gcd(M,N) = Mx + Ny for some x, y ∈ Z. Then
a = M(xk) +N(yk) ∈MZ +NZ, as wanted.
(b) MZ∩NZ is closed under addition:∀a1, a2 ∈MZ∩NZ. We have M |ai for both
i so M |a1 + a2. Similarly, N |a1 + a2. So a1 + a2 ∈MZ ∩NZ.
0 ∈MZ ∩NZ: M |0 and N |0 obviously.
Existence of inverse: ∀a ∈MZ∩NZ. M |a so a = Mx for some x, so −a = M(−x),
hence M | − a. Similarly N | − a. So −a ∈MZ ∩NZ.
MZ ∩ NZ ⊃ lcm(M,N)Z: ∀a ∈ lcm(M,N)Z, we have lcm(M,N)|a. Notice that
M |lcm(M,N), so M |a as well. Similarly N |a. Hence a ∈ lcm(M,N)Z.
MZ∩NZ ⊂ lcm(M,N)Z: ∀a ∈MZ∩NZ, we have M |a and N |a. So a is a common
multiple of M and N . By the property of least common multiple, lcm(M,N)|a. So
a ∈ lcm(M,N)Z.
(Note: You don’t need to prove this property of least common multiple for credit
in HW, but it’s good to know why: If a is a common multiple of M,N , our claim
is that lcm(M,N)|a.
Indeed, we notice first that M

gcd(M,N) and N are coprime. Suppose they are not,

they would have a common divisor d > 1, then d ∗ gcd(M,N) would be a common
divisor of M,N which is greater than gcd(M,N) contradicting that gcd(M,N) is
the greatest common divisor.
Now provided M

gcd(M,N) and N are coprime, from N |a and M
gcd(M,N) |a, we have their

product MN
gcd(M,N) |a. We conclude the proof as MN

gcd(M,N) = lcm(M,N).)

(c) 2 ∈ 2Z ∪ 3Z and 3 ∈ 2Z ∪ 3Z, but 2 + 3 = 5 6∈ 2 ∈ 2Z ∪ 3Z.


