HW4 SOLUTION

JI ZENG

Only problems with provided solutions will be graded. Solutions might be con-
cise for some problems, but please be noticed that they don’t reflect the wanted
level of detailedness of your answer.

Armstrong.5.2
Provided m|n, then ord([%]) = WL#) = m, which means H := ([X]) C Z,, is a
subgroup of order m.
Z., contains only one subgroup of order m. Indeed, assume H’ = ([k]) is another
subgroup of order m. Then n|km == |k, which implies k € (J-). So H' C H,
and by their cardinality H' = H.
(You can directly claim existence and uniqueness of such a subgroup from lecture
12 as well.)

Armstrong.5.5
We prove the harder direction ( <= ) here, the other direction ( = ) follows
from the definition of a subgroup. Assume xzy € H,Vx,y € H, then fix arbitrary
x € H # (0, consider the sequence

zx b,

They take values in H by hypothesis, and as H is finite, In # m s.t. =" = z™.
WLOG (without loss of generality) we assume n > m, then 2"~™ =1 € G. Again
by hypothesis z"~™ € Hso 1€ H.

It remains to show that H is closed under taking inverses. Indeed, for arbitrary
rc Hifrx=1then 27! =2 € H. If x # 1, we know from above that z* = 1 for
some k > 2, then 27! = 2*~! € H by hypothesis, as wanted.

Problem.B
(a) Use the formula ord([k]) = Jed(ay 10 Zn, under the isomorphism Z; ~ Uyz we
can compute

ord(¢h) = 12, 0rd(¢?) = 6,0rd(¢®) = 4, 0ord(¢*) = 3;
ord(¢®) = 12,0rd(¢%) = 2,0rd(¢") = 12, 0rd(¢®) = 3;
1

ord(¢?) = 4,0rd(¢'?) = 6,0rd(¢*) = 12, 0rd(¢'?)

Generators are ¢, ¢°, ¢7, ¢!,

(b)
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FicUure 1. {¢%,¢4,¢5, ¢3¢0 1}

Ficure 2. {¢3,¢%,¢°,1}
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FIcure 3. {¢*,¢5%,1}

FIGURE 4. {¢5 1}

(c) (n*) < (*), °) € (*), (°) < (n®).

Problem.C
(a) 1,5,7,11,13,17.
(b) The four subgroups are (2), (3), (6), (9).
(9) C (3), (6) C (3), (6) C (2).
( ) Zlg X Zlg, Zlg X leg7 Zlg X ZTl are not CyCliC: We explain for Zlg X U12, the
others are similar. For any (g, h) € Z1g x U2, we know from HW3 Problem.D that

ord(g, h) = lem(ord(g), ord(h)).

And we also know ord(g)|18 and ord(g)|12. So ord(g,h) < lem(18,12). Because
ged(18,12) # 1, ord(g, h) < lem(18,12) < 18 % 12, so ord(g,h) # 18 % 12, which
means none of the elements could be a generator.
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Zaqg X Zng is cyclic by Chinese Remainder Theorem.

Problem.D
(a) MZ + NZ is closed under addition: Vay,as € MZ + NZ, we can write a; =
Mzuz; + Ny; for z;,y; € Z. Then a3 + ag = M(z1 4+ x2) + N(y1 + y2) € MZ + NZ.
0e MZ+ NZ: 0=M x0+ N %0.
Existence of inverse: VYa € MZ + NZ, write a = Mz + Ny, then —a = M(—z) +
N(—y) € MZ + NZ.
MZ + NZ C gcd(M,N)Z: Ya € MZ + NZ, write a = Mz + Ny. Because
ged(M, N)|M and ged(M, N)|N, we conclude ged(M,N)|Mx + Ny = a. Hence
a € ged(M, N)Z, as wanted.
MZ + NZ D> gcd(M,N)Z: VYa € gcd(M,N)Z, write a = ged(M, N)k for some
k € Z. By Euclid’s algorithm, gcd(M,N) = Mx + Ny for some z,y € Z. Then
a = M(zk)+ N(yk) € MZ + NZ, as wanted.
(b) MZN NZ is closed under addition:Vay,as € MZN NZ. We have M|a; for both
i so M|aj + az. Similarly, N|a; + az. So a3 + as € MZ N NZ.
0€ MZNNZ: M|0 and N|0 obviously.
Existence of inverse: Ya € MZNNZ. M|a so a = Mx for some z, so —a = M(—z),
hence M| — a. Similarly N| —a. So —a € MZ N NZ.
MZNNZ > lem(M,N)Z: Va € lem(M, N)Z, we have lem(M, N)|a. Notice that
Mllem(M,N), so M|a as well. Similarly N|a. Hence a € lem(M, N)Z.
MZNNZ C lem(M,N)Z: Ya € MZNNZ, we have M|a and Nla. So a is a common
multiple of M and N. By the property of least common multiple, lem(M, N)|a. So
a € lem(M,N)Z.
(Note: You don’t need to prove this property of least common multiple for credit
in HW, but it’s good to know why: If a is a common multiple of M, N, our claim
is that lem(M, N)|a.
Indeed, we notice first that m and N are coprime. Suppose they are not,
they would have a common divisor d > 1, then d * ged(M, N) would be a common
divisor of M, N which is greater than ged(M, N) contradicting that ged(M, N) is
the greatest common divisor.

Now provided % and N are coprime, from N|a and % |a, we have their

product %m. We conclude the proof as QCC%TATN) =lem(M,N).)
(¢c)2€2ZU3Z and 3 € 2ZU3Z, but 2+3="5¢ 2 € 2Z U 3Z.



