From Armstrong's Groups and Symmetry:

- Exercises (Chapter 1, page 5):
1.2, 1.3, 1.4, 1.5

Problem A. Let $(G, *)$ and (H, \star) be two groups. A function $f: G \longrightarrow H$ is said to be a homomorphism if the following equality in H holds for any two elements $a, b \in G$:

$$
f(a * b)=f(a) \star f(b) .
$$

If f is also bijective we say that f is an isomorphism.
(a) Let $f: G \longrightarrow H$ be a homomorphism. Show that f has the two properties below.
(i) $f\left(e_{G}\right)=e_{H}$ ("preserves neutral elements");
(ii) $f\left(a^{-1}\right)=f(a)^{-1}$ ("preserves inverses").
(b) Suppose $f: G \longrightarrow H$ is an isomorphism. Prove that the inverse function $f^{-1}: H \longrightarrow G$ is (automatically) a homomorphism. That is, check that

$$
f^{-1}(x \star y)=f^{-1}(x) * f^{-1}(y) \quad \forall x, y \in H
$$

(Hint: Use that f is injective.)

Notation and terminology: When a function f is an isomorphism we often add a tilde above the arrow as in $f: G \xrightarrow{\sim} H$. We say the two groups G and H are isomorphic and write $G \simeq H$ if there is some isomorphism between them (in which case there may be many).

Problem B. Define a function $f: \mathbb{C}^{\times} \longrightarrow \mathrm{GL}_{2}(\mathbb{R})$ by the following formula

$$
f(a+i b)=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right) .
$$

(a) Check that f is a homomorphism. Is f injective? Is f surjective?
(b) Verify that f takes the complex unit circle \mathbb{C}^{1} into the group $\mathrm{SO}_{2}(\mathbb{R})$ of rotation matrices $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$. Prove that the resulting map

$$
f: \mathbb{C}^{1} \longrightarrow \mathrm{SO}_{2}(\mathbb{R})
$$

is an isomorphism. List all matrices of the form $f(z)$ for some $z \in U_{3}$.

Problem C. Fix an integer $N>0$ and let $\zeta=\cos \left(\frac{2 \pi}{N}\right)+i \sin \left(\frac{2 \pi}{N}\right)$. We introduce the two linear transformations $R, S: \mathbb{C} \longrightarrow \mathbb{C}$ defined as follows. For $z \in \mathbb{C}$,

$$
R(z)=\zeta z \quad S(z)=\bar{z}(\text { "complex conjugation" })
$$

(a) Explain the geometric effect of R, S in the complex plane. What do they do - how do they transform the point z in geometric terms?
(b) Check the relations $R^{N}=\mathrm{Id}$ and $S^{2}=\mathrm{Id}$. Then show that

$$
R \circ S=S \circ R^{N-1}
$$

(c) Deduce from part (b) that the group generated by R and S is isomorphic to the dihedral group D_{N}.

Problem D. Let $(G, *)$ be a group. The commutator of $a, b \in G$ is defined as

$$
[a, b]=a * b * a^{-1} * b^{-1}
$$

(a) Show that $[a, b]=e$ if and only if a, b commute $(a * b=b * a)$.
(b) For the dihedral group D_{N}, show that every commutator is an even power of R and vice versa. ($R=$ rotation by $\frac{2 \pi}{N}$ in the counterclockwise direction.)
(c) By part (b) the set of commutators in D_{N} coincides with the subgroup $\left\langle R^{2}\right\rangle$. What is its size? (Hint: Divide into two cases according to whether N is even or odd.)

