## Math 103A, Fall 2019

Modern Algebra I, HW 6

Due Friday November 15th at 11:30AM in Ji Zeng's box outside B402A.

## From Armstrong's Groups and Symmetry:

- Exercises (Chapter 6, pages 30-31):
6.2, 6.3, 6.6, 6.8

Problem A. Let $\alpha \in S_{7}$ be the permutation given by $\alpha=(5137)(1352)$.
(a) Express $\alpha$ in array form. That is, fill in the blank boxes below.

$$
\alpha=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\square & \square & \square & \square & \square & \square & \square
\end{array}\right)
$$

(b) Is $\alpha$ a cycle? If not, find its decomposition into disjoint cycles.
(c) Compute ord $(\alpha)$ and $\operatorname{sign}(\alpha)$. Does $\alpha$ belong to $A_{7}$ ?

Problem B. Let $\alpha \in S_{9}$ be the permutation given by its array form:

$$
\alpha=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
8 & 9 & 1 & 7 & 6 & 2 & 4 & 3 & 5
\end{array}\right) .
$$

(a) Write $\alpha$ as a composition of disjoint cycles. Then write $\alpha$ as a composition of transpositions.
(b) Is $\alpha$ even or odd? What is the order of $\alpha$ ?
(c) Express $\alpha^{2019}$ and $\alpha^{-2019}$ in array form.

Problem C. Consider the subset $V \subseteq A_{4}$ consisting of the identity $e$ and the three permutations

$$
\alpha=(12)(34) \quad \beta=(13)(24) \quad \gamma=(14)(23)
$$

(a) Verify that $V$ is a subgroup of $A_{4}$, and write down the composition table for $V$. Deduce that $V$ is isomorphic to Klein's four-group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(b) Explain why $V$ contains precisely the elements of $A_{4}$ of order at most two.
(c) Deduce from part (b) that $\delta V \delta^{-1}=V$ for all $\delta \in S_{4}$. (This means $V$ is a "normal" subgroup of $S_{4}$.)

## Problem D.

(a) Let (ab) be an arbitrary transposition in $S_{n}$. For any permutation $\alpha \in S_{n}$, prove the formula:

$$
\alpha(a b) \alpha^{-1}=(\alpha(a) \alpha(b)) .
$$

(Check that the left-hand side interchanges $\alpha(a)$ and $\alpha(\beta)$.)
(b) Suppose some $\alpha \in S_{n}$ commutes with every other element of $S_{n}$, such as (ab). Use part (a) to conclude that $\alpha=e$, assuming that $n>2$.
(c) Now suppose an $\alpha \in A_{n}$ commutes with every element of $A_{n}$. Is it true or false that $\alpha$ must be the identity $e$ ? Assume that $n>3$. (Hint: Extend the formula in part (a) to all 3-cycles (abc).)

