```
Modern Algebra I, HW 7
```

Due Friday November 22nd at 11:30AM in Ji Zeng's box outside B402A.

From Armstrong's Groups and Symmetry:

- Exercises (Chapter 6, pages 30-31):
6.5, 6.11
- Exercises (Chapter 7, page 36):
7.11, 7.12

Problem A. Let $\alpha \in S_{9}$ be the permutation $\alpha=(19462)(679)(735)$.
(a) Express α in array form. That is, fill in the blank boxes below.

$$
\alpha=\left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\square & \square
\end{array}\right)
$$

(b) Write α as a composition of disjoint cycles. Then write α as a composition of transpositions.
(c) Compute ord (α) and $\operatorname{sign}(\alpha)$. Does α belong to A_{9} ?

Problem B. Fix an $n>2$ and consider the alternating group A_{n}.
(a) Check that any 3-cycle $(a b c)$ can be decomposed as $(a b c)=(a b)(b c)$.
(b) Let $(a b)$ and $(c d)$ be two disjoint transpositions in S_{n}. Show that

$$
(a b)(c d)=(a b c)(b c d)
$$

(c) Deduce from parts (a) and (b) that A_{n} is generated by the set of all 3cycles. (That is, every $\alpha \in A_{n}$ can be written as a composition of a finite number of 3-cycles.)

Problem C.

(a) Consider the additive group $\left(\mathbb{Z}_{6},+\right)$ of all residue classes modulo 6 , and let $H=\langle[2]\rangle$ be the subgroup of order 3 .
(i) Find the index $\left[\mathbb{Z}_{6}: H\right]$.
(ii) List all the elements of the two cosets $[2]+H$ and $[3]+H$.
(b) Consider the multiplicative group $\left(\mathbb{Z}_{7}^{\times}, \bullet\right)$ of all invertible residue classes modulo 7 , and let $K=\langle[6]\rangle$ be the subgroup of order 2 .
(i) Find the index $\left[\mathbb{Z}_{7}^{\times}: K\right]$.
(ii) List all the elements of each of the three cosets:

$$
[1] \bullet K \quad[2] \bullet K \quad[3] \bullet K
$$

Problem D. Let $V \subset A_{4}$ be the subgroup $\{e, \alpha, \beta, \gamma\}$ introduced in Problem C on Homework 6.
(a) Compute the indices $\left[S_{4}: V\right]$ and $\left[A_{4}: V\right]$.
(b) List all the elements of the cosets (123) $\circ V$ and $(132) \circ V$. (Each is a subset consisting of four 3-cycles. Give each of the 3-cycles (123) $\circ \alpha=(a b c)$ etc.)
(c) Prove or disprove that $(123) \circ V=V \circ(123)$.
(d) Find the cycle decomposition of all the elements of (12) $\circ V$.

