Math 103A, Fall 2019

MODERN ALGEBRA I, HW 8

Due MONDAY December 2nd at 11:30AM in Ji Zeng's box outside B402A.

From Armstrong's Groups and Symmetry:

- Exercises (Chapter 11, page 60): 11.3, 11.4
- Exercises (Chapter 15, pages 84–85):
 15.12, 15.14

Problem A. Consider the alternating group A_5 , and let $H \subset A_5$ be the subgroup generated by the 5-cycle (12345).

- (a) Give the index $[A_5:H]$.
- (b) List all the elements of the left coset $(123) \circ H$ and the right coset $H \circ (123)$. (Decompose all permutations into disjoint cycles.) Are they the same?
- (c) Does A_5 have a subgroup of index 18?

Problem B.

(a) Let (G, *) be a group with a subgroup $H \subset G$ of index two. Show that

 $a^2 \in H$

for all elements $a \in G$. Is H automatically a **normal** subgroup of G?

- (b) Use part (a) to prove that A_n does not admit a subgroup of index two for any n > 2. (Hint: Observe that $(abc) = (acb)^2$ and use the result of Problem B part (c) on Homework 7.)
- (c) Find all integers N > 0 for which there exists a surjective homomorphism

$$f: A_4 \longrightarrow \mathbb{Z}_N.$$

Problem C. Define a function $f : \mathbb{R} \longrightarrow \mathbb{C}^{\times}$ by the formula

$$f(x) = \cos(2\pi x) + i\sin(2\pi x).$$

- (a) Verify that f is a homomorphism from $(\mathbb{R}, +)$ to $(\mathbb{C}^{\times}, \bullet)$.
- (b) Find im(f) and ker(f).
- (c) Check that $f(\mathbb{Q}) = \{f(x) : x \in \mathbb{Q}\}$ coincides with the group $\bigcup_{N=1}^{\infty} U_N$ from Exercise 3.4 on page 14 in Armstrong's book (cf. Homework 2).

Problem D.

- (a) Check that [3] generates \mathbb{Z}_7^{\times} and conclude that there is a unique homomorphism $f : \mathbb{Z}_7^{\times} \longrightarrow \mathbb{Z}_{12}$ such that f([3]) = [4]. (Be careful here. \mathbb{Z}_{12} is an additive group, whereas \mathbb{Z}_7^{\times} is multiplicative.)
- (b) Find all the other values of f:

f([1]) f([2]) f([3]) f([4]) f([5]) f([6]).

(c) List all the elements of im(f) and ker(f).

Problem E. Please complete your CAPE teaching evaluation forms. The deadline is Monday December 9th at 8AM. Thank you so much, it has been a pleasure teaching this class!