Math 103A, Fall 2019
Modern Algebra I, HW 8

Due MONDAY December 2nd at 11:30AM in Ji Zeng's box outside B402A.

From Armstrong's Groups and Symmetry:

- Exercises (Chapter 11, page 60):
11.3, 11.4
- Exercises (Chapter 15, pages 84-85):
15.12, 15.14

Problem A. Consider the alternating group A_{5}, and let $H \subset A_{5}$ be the subgroup generated by the 5 -cycle (12345).
(a) Give the index $\left[A_{5}: H\right]$.
(b) List all the elements of the left coset $(123) \circ H$ and the right coset $H \circ(123)$.
(Decompose all permutations into disjoint cycles.) Are they the same?
(c) Does A_{5} have a subgroup of index 18 ?

Problem B.

(a) Let $(G, *)$ be a group with a subgroup $H \subset G$ of index two. Show that

$$
a^{2} \in H
$$

for all elements $a \in G$. Is H automatically a normal subgroup of G ?
(b) Use part (a) to prove that A_{n} does not admit a subgroup of index two for any $n>2$. (Hint: Observe that $(a b c)=(a c b)^{2}$ and use the result of Problem B part (c) on Homework 7.)
(c) Find all integers $N>0$ for which there exists a surjective homomorphism

$$
f: A_{4} \longrightarrow \mathbb{Z}_{N}
$$

Problem C. Define a function $f: \mathbb{R} \longrightarrow \mathbb{C}^{\times}$by the formula

$$
f(x)=\cos (2 \pi x)+i \sin (2 \pi x)
$$

(a) Verify that f is a homomorphism from $(\mathbb{R},+)$ to $\left(\mathbb{C}^{\times}, \bullet\right)$.
(b) Find $\operatorname{im}(f)$ and $\operatorname{ker}(f)$.
(c) Check that $f(\mathbb{Q})=\{f(x): x \in \mathbb{Q}\}$ coincides with the group $\bigcup_{N=1}^{\infty} U_{N}$ from Exercise 3.4 on page 14 in Armstrong's book (cf. Homework 2).

Problem D.

(a) Check that [3] generates \mathbb{Z}_{7}^{\times}and conclude that there is a unique homomorphism $f: \mathbb{Z}_{7}^{\times} \longrightarrow \mathbb{Z}_{12}$ such that $f([3])=[4]$. (Be careful here. \mathbb{Z}_{12} is an additive group, whereas \mathbb{Z}_{7}^{\times}is multiplicative.)
(b) Find all the other values of f :
$f([1]) \quad f([2]) \quad f([3]) \quad f([4]) \quad f([5]) \quad f([6])$.
(c) List all the elements of $\operatorname{im}(f)$ and $\operatorname{ker}(f)$.

Problem E. Please complete your CAPE teaching evaluation forms. The deadline is Monday December 9th at 8AM. Thank you so much, it has been a pleasure teaching this class!

